首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The TIM23 complex mediates translocation of proteins across, and their lateral insertion into, the mitochondrial inner membrane. Translocation of proteins requires both the membrane-embedded core of the complex and its ATP-dependent import motor. Insertion of some proteins, however, occurs in the absence of ATP, questioning the need for the import motor during lateral insertion. We show here that the import motor associates with laterally inserted proteins even when its ATPase activity is not required. Furthermore, our results suggest a role for the import motor in lateral insertion. Thus, the import motor is involved in ATP-dependent translocation and ATP-independent lateral insertion.  相似文献   

2.
Oxa1 is the mitochondrial representative of a family of related proteins that mediate the insertion of substrate proteins into the membranes of bacteria, chloroplasts, and mitochondria. Several studies have demonstrated that the bacterial homologue YidC participates both in the direct uptake of proteins from the bacterial cytosol, and in the uptake of nascent proteins from the Sec translocase. Studies on the biogenesis of membrane proteins in mitochondria established that Oxa1 has the capability to receive substrates at the inner surface of the inner membrane. In this study, we asked if Oxa1 may similarly cooperate with a protein translocase within the membrane. Since Oxa1 is involved in its own biogenesis, we used the precursor of Oxa1 as a model protein and investigated its import pathway. We found that immediately after import into mitochondria, Oxa1 initially accumulates at Tim23 that forms the inner membrane protein translocase. Cleavage of the Oxa1 presequence is dependent on mtHsp70, a heat shock protein of the mitochondrial matrix. However, mutant mtHsp70 showing a defect in the release of bound substrate proteins does not interfere with subsequent membrane insertion, indicating that membrane insertion of the mature protein is essentially mtHsp70-independent. We conclude that Oxa1 has the ability to accept preproteins within the membrane.  相似文献   

3.
The structures of the fifth and sixth transmembrane segments of the bovine mitochondrial oxoglutarate carrier (OGC) and of the hydrophilic loop that connects them were studied by CD and NMR spectroscopies. Peptides F215-R246, W279-K305 and P257-L278 were synthesized and structurally characterized. CD data showed that at high concentrations of TFE and SDS all peptides assume α-helical structures. 1H-NMR spectra of the three peptides in TFE/water were fully assigned and the secondary structures of the peptides were obtained from nuclear Overhauser effects, 3JαH-NH coupling constants and αH chemical shifts. The three-dimensional solution structures of the peptides were generated by distance geometry calculations. A well-defined α–helix was found in the region L220-V243 of peptide F215-R246 (TMS-V), in the region P284-M303 of peptide W279-K305 (TMS-VI) and in the region N261-F275 of peptide P257-L278 (hydrophilic loop). The helix L220-V243 exhibited a sharp kink at P239, while a little bend around P291 was observed in the helical region P284-M303. Fluorescence studies performed on peptide W279-K305, alone and together with other transmembrane segments of OGC, showed that the W279 fluorescence was quenched upon addition of peptide F215-R246, but not of peptides K21-K46, R78-R108 and P117-A149 suggesting a specific interaction between TMS-V and TMS-VI of OGC.  相似文献   

4.
Mitochondrial fission in mammals is mediated by at least two proteins, DLP1/Drp1 and hFis1. DLP1 mediates the scission of mitochondrial membranes through GTP hydrolysis, and hFis1 is a putative DLP1 receptor anchored at the mitochondrial outer membrane by a C-terminal single transmembrane domain. The cytosolic domain of hFis1 contains six α-helices (α1-α6) out of which α2-α5 form two tetratricopeptide repeat (TPR) folds. In this study, by using chimeric constructs, we demonstrated that the cytosolic domain contains the necessary information for hFis1 function during mitochondrial fission. By using transient expression of different mutant forms of the hFis1 protein, we found that hFis1 self-interaction plays an important role in mitochondrial fission. Our results show that deletion of the α1 helix greatly increased the formation of dimeric and oligomeric forms of hFis1, indicating that α1 helix functions as a negative regulator of the hFis1 self-interaction. Further mutational approaches revealed that a tyrosine residue in the α5 helix and the linker between α3 and α4 helices participate in hFis1 oligomerization. Mutations causing oligomerization defect greatly reduced the ability to induce not only mitochondrial fragmentation by full-length hFis1 but also the formation of swollen ball-shaped mitochondria caused by α1-deleted hFis1. Our data suggest that oligomerization of hFis1 in the mitochondrial outer membrane plays a role in mitochondrial fission, potentially through participating in fission factor recruitment.  相似文献   

5.
Ingrid Leroy  Alan Diot 《FEBS letters》2010,584(14):3153-3157
Mitochondrial fusion depends on the evolutionary conserved dynamin, OPA1/Mgm1p/Msp1p, whose activity is controlled by proteolytic processing. Since processing diverges between Mgm1p (Saccharomyces cerevisiae) and OPA1 (mammals), we explored this process in another model, Msp1p in Schizosaccharomyces pombe. Generation of the short isoform of Msp1p neither results from the maturation of the long isoform nor correlates with mitochondrial ATP levels. Msp1p is processed by rhomboid and a protease of the matrix ATPase associated with various cellular activities (m-AAA) family. The former is involved in the generation of short Msp1p and the latter in the stability of long Msp1p. These results reveal that Msp1p processing may represent an evolutionary switch between Mgm1p and OPA1.  相似文献   

6.
The mitochondrial inner membrane peptidase Imp is required for proteolytic processing of the mitochondrially encoded protein Cox2, the nucleus-encoded Cyt b2, Mcr1, and Cyt c1, and possibly other proteins, during their transport across the mitochondrial membranes. The peptidase contains two catalytic subunits, Imp1 and Imp2. The small protein Som1 was previously shown to affect the function of Imp1, but the precise role of Som1 remained unknown. Using mutants deleted for IMP1, IMP2 and SOM1, we show here that the Som1 protein is absent in the imp1Δ mutant, whereas the level of the Imp1 subunit of the peptidase is only slightly reduced in the som1 null mutant. The Som1 protein is not essential for proteolytic processing of Cyt b2, while the two other known Imp1 substrates, Cox2 and Mcr1, are not processed in the absence of Som1. Proteolytic processing of Cyt c1 by the Imp2 subunit, and of Ccp by an as yet unidentified peptidase, is not impaired in the som1 deletion mutant. By crosslinking and co-immunoprecipitation assays we demonstrate that the Imp1 and Som1 proteins physically interact. We conclude from our results that stabilisation of Som1 and correct Imp1 function is mediated by a direct interaction between the Imp1 and Som1 proteins, suggesting that Som1 represents a third subunit of the Imp peptidase complex. Received: 24 September 1999 / Accepted: 9 December 1999  相似文献   

7.
目的:克隆小鼠TIM1、TIM2及TIM3基因全长编码区cDNA,同时对其进行序列分析.方法:采用RT-PCR方法,从小鼠活化淋巴细胞中获取TIM1、TIM2及TIM3基因cDNA全长,克隆至pMD18-T载体,选择阳性克隆进行序列测定.结果:扩增得到小鼠TIM1、TIM2及TIM3基因编码区cDNA全长分别是918bp、918bp和846bp,分别编码306、306和282个氨基酸残基,与GeneBank中发表的序列完全一致.结论:获得小鼠TIM1、TM2及TIM3基因的全长克隆,为进一步研究其生物学功能奠定了基础.  相似文献   

8.
The yeast gene MCR1 encodes two isoforms of the mitochondrial NADH-cytochrome b5 reductase. One form is embedded in the outer membrane whereas the other is located in the intermembrane space (IMS). In the present work we investigated the biogenesis of the outer membrane form. We demonstrate that while the IMS form crosses the outer membrane via the translocase of the outer mitochondrial membrane (TOM) complex, the other form is integrated into the outer membrane by a process that does not require any of the known import components at the outer membrane. Thus, the import pathways of the two forms diverge in a stage before the encounter with the TOM complex and their mechanism of biogenesis represents a unique example how to achieve dual localization within one organelle.  相似文献   

9.
The mitochondrial inner membrane (IM) serves as the site for ATP production by hosting the oxidative phosphorylation complex machinery most notably on the crista membranes. Disruption of the crista structure has been implicated in a variety of cardiovascular and neurodegenerative diseases. Here, we characterize ChChd3, a previously identified PKA substrate of unknown function (Schauble, S., King, C. C., Darshi, M., Koller, A., Shah, K., and Taylor, S. S. (2007) J. Biol. Chem. 282, 14952-14959), and show that it is essential for maintaining crista integrity and mitochondrial function. In the mitochondria, ChChd3 is a peripheral protein of the IM facing the intermembrane space. RNAi knockdown of ChChd3 in HeLa cells resulted in fragmented mitochondria, reduced OPA1 protein levels and impaired fusion, and clustering of the mitochondria around the nucleus along with reduced growth rate. Both the oxygen consumption and glycolytic rates were severely restricted. Ultrastructural analysis of these cells revealed aberrant mitochondrial IM structures with fragmented and tubular cristae or loss of cristae, and reduced crista membrane. Additionally, the crista junction opening diameter was reduced to 50% suggesting remodeling of cristae in the absence of ChChd3. Analysis of the ChChd3-binding proteins revealed that ChChd3 interacts with the IM proteins mitofilin and OPA1, which regulate crista morphology, and the outer membrane protein Sam50, which regulates import and assembly of β-barrel proteins on the outer membrane. Knockdown of ChChd3 led to almost complete loss of both mitofilin and Sam50 proteins and alterations in several mitochondrial proteins, suggesting that ChChd3 is a scaffolding protein that stabilizes protein complexes involved in maintaining crista architecture and protein import and is thus essential for maintaining mitochondrial structure and function.  相似文献   

10.
We have recently shown that two ATP binding cassette (ABC) transporters are enriched in Lubrol-resistant noncaveolar membrane domains in multidrug-resistant human cancer cells [Hinrichs, J. W. J., K. Klappe, I. Hummel, and J. W. Kok. 2004. ATP-binding cassette transporters are enriched in non-caveolar detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in human multidrug-resistant cancer cells. J. Biol. Chem. 279: 5734-5738]. Here, we show that aminophospholipids are relatively enriched in Lubrol-resistant membrane domains compared with Triton X-100-resistant membrane domains, whereas sphingolipids are relatively enriched in the latter. Moreover, Lubrol-resistant membrane domains contain more protein and lipid mass. Based on these results, we postulate a model for detergent-insoluble glycosphingolipid-enriched membrane domains consisting of a Lubrol-insoluble/Triton X-100-insoluble region and a Lubrol-insoluble/Triton X-100-soluble region. The latter region contains most of the ABC transporters as well as lipids known to be necessary for their efflux activity. Compared with drug-sensitive cells, the detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in drug-resistant cells differ specifically in sphingolipid content and not in protein, phospholipid, or cholesterol content. In drug-resistant cells, sphingolipids with specific fatty acids (especially C24:1) are enriched in these membrane domains. Together, these data show that multidrug resistance-associated changes in both sphingolipids and ABC transporters occur in DIGs, but in different regions of these domains.  相似文献   

11.
The mitochondrial dynamin-like GTPase Mgm1 exists as a long (l-Mgm1) and a short isoform (s-Mgm1). They both are essential for mitochondrial fusion. Here we show that the isoforms interact in a homotypic and heterotypic manner. Their submitochondrial distribution between inner boundary membrane and cristae was markedly different. Overexpression of l-Mgm1 exerts a dominant negative effect on mitochondrial fusion. A functional GTPase domain is required only in s-Mgm1 but not in l-Mgm1. We propose that l-Mgm1 acts primarily as an anchor in the inner membrane that in concert with the GTPase activity of s-Mgm1 mediates the fusion of inner membranes.  相似文献   

12.
13.
In yeast, mitochondrial-fission is regulated by the cytosolic dynamin-like GTPase (Dnm1p) in conjunction with a peripheral protein, Mdv1p, and a C-tail-anchored outer membrane protein, Fis1p. In mammals, a dynamin-related protein (Drp1) and Fis1 are involved in the mitochondrial-fission reaction as Dnm1 and Fis1 orthologues, respectively. The involvement of other component(s), such as the Mdv1 homologue, and the mechanisms regulating mitochondrial-fission remain unclear. Here, we identified rat Fis1 (rFis1) and analyzed its structure-function relationship. Blue-native-polyacrylamide gel electrophoresis revealed that rFis1 formed a approximately 200-kDa complex in the outer mitochondrial membrane. Its expression in HeLa cells promoted extensive mitochondrial fragmentation, and gene knock-down by RNAi induced extension of the mitochondrial networks. Taking advantage of these properties, we analyzed functional domains of rFis1. These experiments revealed that the N-terminal and C-terminal segments are both essential for oligomeric rFis1 interaction, and the middle TPR-like domains regulate proper oligomer assembly. Any mutations that disturb the proper oligomeric assembly compromise mitochondrial division-stimulating activity of rFis1.  相似文献   

14.
Mitochondria are dynamic organelles that undergo frequent fission and fusion or branching. To analyze the mitochondrial fusion reaction, mitochondria were separately labeled with green or red fluorescent protein (GFP and RFP, respectively) in HeLa cells, and the cells were fused using hemagglutinating virus of Japan (HVJ). The resulting mixing of the fluorescent reporters was then followed using fluorescence microscopy. This system revealed that mitochondria fuse frequently in mammalian cells, and the fusion depends on the membrane potential across the inner membrane. The protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP), led to fragmentation of the mitochondria and inhibited the fusion reaction. Removal of CCCP recovered the fusion activity to reform filamentous mitochondrial networks. Analysis of the effects of GTP-binding proteins, DRP1 and two FZO1 isoforms, and the GTPase-domain mutants on the CCCP-induced mitochondrial morphologic changes revealed that DRP1 and FZO1 are involved in membrane budding and fusion, respectively. Furthermore, a HVJ-dependent cell fusion assay combined with RNA interference (RNAi) demonstrated that both FZO1 isoforms are essential and must be acting in cis for the mitochondrial fusion reaction to occur.  相似文献   

15.
Mgm1p is a nuclearly encoded GTPase important for mitochondrial fusion. Long and short isoforms of the protein are generated in a unique "alternative topogenesis" process in which the most N-terminal of two hydrophobic segments in the protein is inserted into the inner mitochondrial membrane in about half of the molecules and translocated across the inner membrane in the other half. In the latter population, the second hydrophobic segment is cleaved by the inner membrane protease Pcp1p, generating the short isoform. Here, we show that charged residues in the regions flanking the first segment critically affect the ratio between the two isoforms, providing new insight into the importance of charged residues in the insertion of proteins into the mitochondrial inner membrane.  相似文献   

16.
Members of the ATP-binding cassette (ABC) transporter family are essential proteins in species as diverse as archaea and humans. Their domain architecture has remained relatively fixed across these species, with rare exceptions. Here, we show one exception to be the trigalactosyldiacylglycerol 1, 2, and 3 (TGD1, -2, and -3) putative lipid transporter located at the chloroplast inner envelope membrane. TGD2 was previously shown to be in a complex of >500 kDa. We demonstrate that this complex also contains TGD1 and -3 and is very stable because it cannot be broken down by gentle denaturants to form a "core" complex similar in size to standard ABC transporters. The complex was purified from Pisum sativum (pea) chloroplast envelopes by native gel electrophoresis and examined by mass spectrometry. Identified proteins besides TGD1, -2, or -3 included a potassium efflux antiporter and a TIM17/22/23 family protein, but these were shown to be in separate high molecular mass complexes. Quantification of the complex components explained the size of the complex because 8-12 copies of the substrate-binding protein (TGD2) were found per functional transporter.  相似文献   

17.
18.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective death of motor neurons. Mutations in Cu/Zn superoxide dismutase-1 (SOD1) cause familial ALS but the molecular mechanisms whereby these mutations induce motor neuron death remain controversial. Here, we show that stable overexpression of mutant human SOD1 (G37R) - but not wild-type SOD1 (wt-SOD1) - in mouse neuroblastoma cells (N2a) results in morphological abnormalities of mitochondria accompanied by several dysfunctions. Activity of the oxidative phosphorylation complex I was significantly reduced in G37R cells and correlated with lower mitochondrial membrane potential and reduced levels of cytosolic ATP. Using targeted chimeric aequorin we further analyzed the consequences of mitochondrial dysfunction on cellular Ca(2+) handling. Mitochondrial Ca(2+) uptake, elicited by IP(3)-induced Ca(2+) release from endoplasmic reticulum (ER) was significantly reduced in G37R cells, while uptake induced by a brief Ca(2+) pulse was not affected in permeabilized cells. The decreased mitochondrial Ca(2+) uptake resulted in increased cytosolic Ca(2+) transients, whereas ER Ca(2+) load and resting cytosolic Ca(2+) levels were not affected. Together, these findings suggest that the mechanism linking mutant G37R SOD1 and ALS involves mitochondrial respiratory chain deficiency resulting in ATP loss and impairment of mitochondrial and cytosolic Ca(2+) homeostasis.  相似文献   

19.
Mrp2 is a protein component of the small subunit of mitochondrial ribosomes in the yeast Saccharomyces cerevisiae. We have examined the expression of Mrp2 in yeast mutants lacking mitochondrial DNA and found that the steady-state level of Mrp2 is dramatically decreased relative to wild type. These data suggest that the accumulation of Mrp2 depends on the expression of one or more mitochondrial gene products. The mitochondrial genome of S. cerevisiae encodes two components of the small ribosomal subunit, 15S rRNA and the Var1 protein, both of which are necessary for the formation of mature 37S subunits. Several studies have shown that in the absence of Var1 incomplete subunits accumulate, which lack a limited number of ribosomal proteins. Here, we show that Mrp2 is one of the proteins absent from subunits lacking Var1, indicating that Var1 plays an important role in the incorporation of Mrp2 into mitochondrial ribosomal subunits.  相似文献   

20.
We report the identification and characterization of Ψ3Tom20, a novel processed pseudogene of the human Tom20 (hTom20) gene, which is 96.2% similarity with the hTom20 cDNA and is 5′ and 3′ truncated. In addition, we present the complete characterization of Ψ1Tom20 and Ψ2Tom20, the two other recently reported members of this pseudogene family. Comparison of the sequences of Ψ3Tom20 with that of the previously reported Ψ2Tom20 revealed and corrected an error in the previously determined sequence of Ψ2Tom20. A detailed analysis of these three pseudogenes, including their flanking regions, is presented. It suggests they probably arose from mRNAs that were polyadenylated at different sites. Possible mechanisms involved in their integration as retroposons are also discussed. Received: 29 October 1998 / Accepted: 7 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号