首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The phenomenon of gradual telomere shortening has become a paradigm for how we understand the biology of aging and cancer. Cell proliferation is accompanied by cumulative telomere loss, and the aged cell either senesces, dies or transforms toward cancer. This transformation requires the activation of telomere elongation mechanisms in order to restore telomere length such that cell death or senescence programs are not induced. Most of the time, this occurs through telomerase reactivation. In other rare cases, the Alternative lengthening of telomeres (ALT) pathway hijacks DNA recombination‐associated mechanisms to hyperextend telomeres, often to more than 50 kb. Why telomere length is restricted and what sets their maximal length has been a long‐standing puzzle in cell biology. Two recent studies published in this issue of EMBO Reports [1] and recently in Science [2] sought to address this important question. Both built on omics approaches that identified ZBTB48 as a potential telomere‐associated protein and reveal it to be a critical regulator of telomere length homeostasis by the telomere trimming mechanism. These discoveries provide fundamental insights for our understanding of telomere trimming and how it impacts telomere integrity in stem and cancer cells.  相似文献   

2.
Short Telomeres Initiate Telomere Recombination in Primary and Tumor Cells   总被引:2,自引:0,他引:2  
Human tumors that lack telomerase maintain telomeres by alternative lengthening mechanisms. Tumors can also form in telomerase-deficient mice; however, the genetic mechanism responsible for tumor growth without telomerase is unknown. In yeast, several different recombination pathways maintain telomeres in the absence of telomerase—some result in telomere maintenance with minimal effects on telomere length. To examine non-telomerase mechanisms for telomere maintenance in mammalian cells, we used primary cells and lymphomas from telomerase-deficient mice (mTR−/− and Eμmyc+mTR−/−) and CAST/EiJ mouse embryonic fibroblast cells. These cells were analyzed using pq-ratio analysis, telomere length distribution outliers, CO-FISH, Q-FISH, and multicolor FISH to detect subtelomeric recombination. Telomere length was maintained during long-term growth in vivo and in vitro. Long telomeres, characteristic of human ALT cells, were not observed in either late passage or mTR−/− tumor cells; instead, we observed only minimal changes in telomere length. Telomere length variation and subtelomeric recombination were frequent in cells with short telomeres, indicating that length maintenance is due to telomeric recombination. We also detected telomere length changes in primary mTR−/− cells that had short telomeres. Using mouse mTR+/− and human hTERT+/− primary cells with short telomeres, we found frequent length changes indicative of recombination. We conclude that telomere maintenance by non-telomerase mechanisms, including recombination, occurs in primary cells and is initiated by short telomeres, even in the presence of telomerase. Most intriguing, our data indicate that some non-telomerase telomere maintenance mechanisms occur without a significant increase in telomere length.  相似文献   

3.
Although length of the telomeric DNA tract varies widely across evolution, a species-specific set point is established and maintained by unknown mechanisms. To investigate how telomere length is controlled in Arabidopsis thaliana, we analyzed bulk telomere length in 14 wild-type accessions. We found that telomere tracts in Arabidopsis are fairly uniformly distributed throughout a size range of 2 to 9 kb. Unexpectedly, telomeres in plants of the Wassilewskija ecotype displayed a bimodal size distribution, with some individuals harboring telomeres of 2 to 5 kb and others telomeres of 4 to 9 kb. F1 and F2 progeny of a cross between long and short telomere parents had intermediate telomeres, implying that telomere length in Arabidopsis is not controlled by a single genetic factor. We provide evidence that although global telomere length is strictly regulated within an ecotype-specific range, telomere tracts on individual chromosome ends do not occupy a predetermined length territory. We also demonstrate that individual telomere tracts on homologous chromosomes are coordinately regulated throughout development and that telomerase acts preferentially on the shortest telomeres. We propose that an optimal size for telomere tracts is established and maintained for each Arabidopsis ecotype.  相似文献   

4.
Telomere length is an important parameter of telomere function since it determines number of aspects controlling chromosome stability and cell division. Since telomeres shorten with age in humans and premature aging syndromes are often associated with the presence of short telomeres, it has been proposed that telomere length is also an important parameter for organismal aging. How mean telomere lengths are determined in humans remains puzzling, but it is clear that genetic and epigenetic factors appear to be of great importance. Experimental evidence obtained from many different organisms has provided the basis for a widely accepted counting mechanism based on a negative feedback loop for telomerase activity at the level of individual telomeres. In addition, recent studies in both normal and pathological contexts point to the existence of chromosome-specific mechanisms of telomere length regulation determining a telomere length profile, which is inherited and maintained throughout life. In this review, we recapitulate the available data, propose a synthetic view of telomere length control mechanisms in humans and suggest new approaches to test current hypotheses.  相似文献   

5.
Telomeres are structures composed of repetitive DNA and proteins that protect the chromosomal ends in eukaryotic cells from fusion or degradation, thus contributing to genomic stability. Although telomere length varies between species, in all organisms studied telomere length appears to be controlled by a dynamic equilibrium between elongating mechanisms (mainly addition of repeats by the enzyme telomerase) and nucleases that shorten the telomeric sequences. Two previous studies have analyzed a collection of yeast deletion strains (deleted for nonessential genes) and found over 270 genes that affect telomere length (Telomere Length Maintenance or TLM genes). Here we complete the list of TLM by analyzing a collection of strains carrying hypomorphic alleles of most essential genes (DAmP collection). We identify 87 essential genes that affect telomere length in yeast. These genes interact with the nonessential TLM genes in a significant manner, and provide new insights on the mechanisms involved in telomere length maintenance. The newly identified genes span a variety of cellular processes, including protein degradation, pre-mRNA splicing and DNA replication.  相似文献   

6.
Reactive oxygen species (ROS) are proposed to play a major role in telomere length alterations during aging. The mechanisms by which ROS disrupt telomeres remain unclear. In Saccharomyces cerevisiae, telomere DNA consists of TG(1–3) repeats, which are maintained primarily by telomerase. Telomere length maintenance can be modulated by the expression level of telomerase subunits and telomerase activity. Additionally, telomerase‐mediated telomere repeat addition is negatively modulated by the levels of telomere‐bound Rap1‐Rif1‐Rif2 protein complex. Using a yeast strain defective in the major peroxiredoxin Tsa1 that is involved in ROS neutralization, we have investigated the effect of defective ROS detoxification on telomere DNA, telomerase, telomere‐binding proteins, and telomere length. Surprisingly, the tsa1 mutant does not show significant increase in steady‐state levels of oxidative DNA lesions at telomeres. The tsa1 mutant displays abnormal telomere lengthening, and reduction in oxidative exposure alleviates this phenotype. The telomere lengthening in the tsa1 cells was abolished by disruption of Est2, subtelomeric DNA, Rap1 C‐terminus, or Rif2, but not by Rif1 deletion. Although telomerase expression and activity are not altered, telomere‐bound Est2 is increased, while telomere‐bound Rap1 is reduced in the tsa1 mutant. We propose that defective ROS scavenging can interfere with pathways that are critical in controlling telomere length homeostasis.  相似文献   

7.
8.
Telomere stability and telomerase in mesenchymal stem cells   总被引:1,自引:0,他引:1  
Telomeres are repetitive genetic material that cap and thereby protect the ends of chromosomes. Each time a cell divides, telomeres get shorter. Telomere length is mainly maintained by telomerase. This enzyme is present in high concentrations in the embryonic stem cells and in fast growing embryonic cells, and declines with age. It is still unclear to what extent there is telomerase in adult stem cells, but since these are the founder cells of cells of all the tissues in the body, understanding the telomere dynamics and expression of telomerase in adult stem cells is very important. In the present communication we focus on telomere expression and telomere length in stem cells, with a special focus on mesenchymal stem cells. We consider different mechanisms by which stem cells can maintain telomeres and also focus on the dynamics of telomere length in mesenchymal stem cells, both the overall telomere length and the telomere length of individual chromosomes.  相似文献   

9.
Individuals in free‐living animal populations generally differ substantially in reproductive success, lifespan and other fitness‐related traits, but the molecular mechanisms underlying this variation are poorly understood. Telomere length and dynamics are candidate traits explaining this variation, as long telomeres predict a higher survival probability and telomere loss has been shown to reflect experienced “life stress.” However, telomere dynamics among very long‐lived species are unresolved. Additionally, it is generally not well understood how telomeres relate to reproductive success or sex. We measured telomere length and dynamics in erythrocytes to assess their relationship to age, sex and reproduction in Cory's shearwaters (Calonectris borealis), a long‐lived seabird, in the context of a long‐term study. Adult males had on average 231 bp longer telomeres than females, independent of age. In females, telomere length changed relatively little with age, whereas male telomere length declined significantly. Telomere shortening within males from one year to the next was three times higher than the interannual shortening rate based on cross‐sectional data of males. Past long‐term reproductive success was sex‐specifically reflected in age‐corrected telomere length: males with on average high fledgling production were characterized by shorter telomeres, whereas successful females had longer telomeres, and we discuss hypotheses that may explain this contrast. In conclusion, telomere length and dynamics in relation to age and reproduction are sex‐dependent in Cory's shearwaters and these findings contribute to our understanding of what characterises individual variation in fitness.  相似文献   

10.
Telomeres are nucleoprotein structures that protect the ends of eukaryotic chromosomes and play important roles in ensuring the genome’s integrity. Telomere length is maintained by complex mechanisms that ensure length homeostasis. Recent work has linked telomere length maintenance to the Tor protein kinases, which are central regulators of cellular growth. Here we summarize these results, which suggest a link between nutrient availability, telomere length maintenance and chronological lifespan.  相似文献   

11.

Background

Leukocyte telomere length, an emerging marker of biological age, has been shown to predict cardiovascular morbidity and mortality. However, the natural history of telomere length in patients with coronary artery disease has not been studied. We sought to investigate the longitudinal trajectory of telomere length, and to identify the independent predictors of telomere shortening, in persons with coronary artery disease.

Methodology/Principal Findings

In a prospective cohort study of 608 individuals with stable coronary artery disease, we measured leukocyte telomere length at baseline, and again after five years of follow-up. We used multivariable linear and logistic regression models to identify the independent predictors of leukocyte telomere trajectory. Baseline and follow-up telomere lengths were normally distributed. Mean telomere length decreased by 42 base pairs per year (p<0.001). Three distinct telomere trajectories were observed: shortening in 45%, maintenance in 32%, and lengthening in 23% of participants. The most powerful predictor of telomere shortening was baseline telomere length (OR per SD increase = 7.6; 95% CI 5.5, 10.6). Other independent predictors of telomere shortening were age (OR per 10 years = 1.6; 95% CI 1.3, 2.1), male sex (OR = 2.4; 95% CI 1.3, 4.7), and waist-to-hip ratio (OR per 0.1 increase = 1.4; 95% CI 1.0, 2.0).

Conclusions/Significance

Leukocyte telomere length may increase as well as decrease in persons with coronary artery disease. Telomere length trajectory is powerfully influenced by baseline telomere length, possibly suggesting negative feedback regulation. Age, male sex, and abdominal obesity independently predict telomere shortening. The mechanisms and reversibility of telomeric aging in cardiovascular disease deserve further study.  相似文献   

12.
The telomerase enzyme plays a critical role in human aging and cancer biology by maintaining telomere length and extending the proliferative lifespan of most stem cells and cancer cells. Despite the importance of this enzyme, our understanding of the mechanisms that regulate its activity and establish telomere length homeostasis in mammalian cells is incomplete, in part because the perfect repetitive nature of telomeric sequence hampers in situ detection of telomere elongation patterns. Here, we describe a novel assay using a mutant telomerase that adds a well-tolerated variant telomeric repeat sequence to telomere ends. By specifically detecting the addition of these variant repeats, we can directly visualize telomere elongation events in human cells. We validate this approach by in situ mapping of telomere elongation patterns within individual nuclei and across a population of cells.  相似文献   

13.
In eukaryotes, terminal chromosome repeats are bound by a specialized nucleoprotein complex that controls telomere length and protects chromosome ends from DNA repair and degradation. In mammals the “shelterin” complex mediates these central functions at telomeres. In the recent years it has become evident that also the heterochromatic structure of mammalian telomeres is implicated in telomere length regulation. Impaired telomeric chromatin compaction results in a loss of telomere length control. Progressive telomere shortening affects chromatin compaction at telomeric and subtelomeric repeats and activates alternative telomere maintenance mechanisms. Dynamics of chromatin structure of telomeres during early mammalian development and nuclear reprogramming further indicates a central role of telomeric heterochromatin in organismal development. In addition, the recent discovery that telomeres are transcribed, giving rise to UUAGGG-repeat containing TelRNAs/TERRA, opens a new level of chromatin regulation at telomeres. Understanding the links between the epigenetic status of telomeres, TERRA/TelRNA and telomere homeostasis will open new avenues for our understanding of organismal development, cancer and ageing.  相似文献   

14.
Preterm birth is associated with abnormal respiratory functions throughout life. The mechanisms underlying these long-term consequences are still unclear. Shortening of telomeres was associated with many conditions, such as chronic obstructive pulmonary disease. We aimed to search for an association between telomere length and lung function in adolescents born preterm. Lung function and telomere length were measured in 236 adolescents born preterm and 38 born full-term from the longitudinal EPIPAGE cohort. Associations between telomere length and spirometric indices were tested in univariate and multivariate models accounting for confounding factors in the study population. Airflows were significantly lower in adolescents born preterm than controls; forced expiratory volume in one second was 12% lower in the extremely preterm born group than controls (p<0.001). Lower birth weight, bronchopulmonary dysplasia and postnatal sepsis were significantly associated with lower airflow values. Gender was the only factor that was significantly associated with telomere length. Telomere length correlated with forced expiratory flow 25–75 in the extremely preterm adolescent group in univariate and multivariate analyses (p = 0.01 and p = 0.02, respectively). We evidenced an association between telomere length and abnormal airflow in a population of adolescents born extremely preterm. There was no evident association with perinatal events. This suggests other involved factors, such as a continuing airway oxidative stress leading to persistent inflammation and altered lung function, ultimately increasing susceptibility to chronic obstructive pulmonary disease.  相似文献   

15.
Homologous recombination is suppressed at normal length telomere sequences. In contrast, telomere recombination is allowed when telomeres erode in the absence of telomerase activity or as a consequence of nucleolytic degradation or incomplete replication. Here, we review the mechanisms that contribute to regulating mitotic homologous recombination at telomeres and the role of these mechanisms in signalling short telomeres in the budding yeast Saccharomyces cerevisiae.  相似文献   

16.
Differences in individual quality and survival within species are a major focus in evolutionary ecology, but we know very little about the underlying physiological mechanisms that determine these differences. Telomere shortening associated with cellular senescence and ageing may be one such mechanism. To date, however, there is little evidence linking telomere length and survival. Here, we show that tree swallows (Tachycineta bicolor) with relatively short telomeres at the age of 1 year have lower survival than tree swallows of the same age with relatively long telomeres. The survival advantage in the long telomere group continues for at least three breeding seasons. It will be important to identify mechanisms that link telomere length with survival early in life.  相似文献   

17.
Telomeres are emerging as a biomarker for ageing and survival, and are likely important in shaping life-history trade-offs. In particular, telomere length with which one starts in life has been linked to lifelong survival, suggesting that early telomere dynamics are somehow related to life-history trajectories. This result highlights the importance of determining the extent to which telomere length is inherited, as a crucial factor determining early life telomere length. Given the scarcity of species for which telomere length inheritance has been studied, it is pressing to assess the generality of telomere length inheritance patterns. Further, information on how this pattern changes over the course of growth in individuals living under natural conditions should provide some insight on the extent to which environmental constraints also shape telomere dynamics. To fill this gap partly, we followed telomere inheritance in a population of king penguins (Aptenodytes patagonicus). We tested for paternal and maternal influence on chick initial telomere length (10 days old after hatching), and how these relationships changed with chick age (at 70, 200 and 300 days old). Based on a correlative approach, offspring telomere length was positively associated with maternal telomere length early in life (at 10 days old). However, this relationship was not significant at older ages. These data suggest that telomere length in birds is maternally inherited. Nonetheless, the influence of environmental conditions during growth remained an important factor shaping telomere length, as the maternal link disappeared with chicks'' age.  相似文献   

18.
ALT- 端粒延长替代机制   总被引:1,自引:0,他引:1  
吴晓明  唐文如  罗瑛 《遗传》2009,31(12):1185-1191
端粒长度和结构的稳定与肿瘤及衰老的发生密切相关, 端粒维持机制是细胞增殖的必要条件, 端粒维持机制的激活是肿瘤细胞演化过程中的一个重要环节。这种端粒维持机制可能是通过重新激活端粒酶, 使细胞快速增殖。在端粒酶失活或不足的情况下, 也存在着一种或多种维持和增加端粒长度的机制, 统称为端粒延长替代机制(Alterative lengthening of telomere, ALT)。其特点包括: 具有不均一的端粒长度, 存在与ALT相关的PML小体(APBs)以及同源重组增加。ALT细胞内存在的ALT相关蛋白及异常活跃的同源重组为ALT机制的激活和维持提供了可能。文章综述了ALT的特征性表型、与端粒酶的相关性及其可能的发生机制。对ALT机制的深入研究将有利于阐明衰老与肿瘤之间的辩证关系。  相似文献   

19.

Inbreeding can have negative effects on survival and reproduction, which may be of conservation concern in small and isolated populations. However, the physiological mechanisms underlying inbreeding depression are not well-known. The length of telomeres, the DNA sequences protecting chromosome ends, has been associated with health or fitness in several species. We investigated effects of inbreeding on early-life telomere length in two small island populations of wild house sparrows (Passer domesticus) known to be affected by inbreeding depression. Using genomic measures of inbreeding we found that inbred nestling house sparrows (n?=?371) have significantly shorter telomeres. Using pedigree-based estimates of inbreeding we found a tendency for inbred nestling house sparrows to have shorter telomeres (n?=?1195). This negative effect of inbreeding on telomere length may have been complemented by a heterosis effect resulting in longer telomeres in individuals that were less inbred than the population average. Furthermore, we found some evidence of stronger effects of inbreeding on telomere length in males than females. Thus, telomere length may reveal subtle costs of inbreeding in the wild and demonstrate a route by which inbreeding negatively impacts the physiological state of an organism already at early life-history stages.

  相似文献   

20.
Immunosenescence, the deterioration of immune system capability with age, may play a key role in mediating age-related declines in whole-organism performance, but the mechanisms that underpin immunosenescence are poorly understood. Biomedical research on humans and laboratory models has documented age and disease related declines in the telomere lengths of leukocytes (‘immune cells’), stimulating interest their having a potentially general role in the emergence of immunosenescent phenotypes. However, it is unknown whether such observations generalise to the immune cell populations of wild vertebrates living under ecologically realistic conditions. Here we examine longitudinal changes in the mean telomere lengths of immune cells in wild European badgers (Meles meles). Our findings provide the first evidence of within-individual age-related declines in immune cell telomere lengths in a wild vertebrate. That the rate of age-related decline in telomere length appears to be steeper within individuals than at the overall population level raises the possibility that individuals with short immune cell telomeres and/or higher rates of immune cell telomere attrition may be selectively lost from this population. We also report evidence suggestive of associations between immune cell telomere length and bovine tuberculosis infection status, with individuals detected at the most advanced stage of infection tending to have shorter immune cell telomeres than disease positive individuals. While male European badgers are larger and show higher rates of annual mortality than females, we found no evidence of a sex difference in either mean telomere length or the average rate of within-individual telomere attrition with age. Our findings lend support to the view that age-related declines in the telomere lengths of immune cells may provide one potentially general mechanism underpinning age-related declines in immunocompetence in natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号