首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The mitochondrial genome of Trypanosoma brucei does not contain genes encoding tRNAs; instead this protozoan parasite must import nuclear-encoded tRNAs from the cytosol for mitochondrial translation. Previously, it has been shown that mitochondrial tRNA import requires ATP hydrolysis and a proteinaceous mitochondrial membrane component. However, little is known about the mitochondrial membrane proteins involved in tRNA binding and translocation into the mitochondrion. Here we report the purification of a mitochondrial membrane complex using tRNA affinity purification and have identified several protein components of the putative tRNA translocon by mass spectrometry. Using an in vivo tRNA import assay in combination with RNA interference, we have verified that two of these proteins, Tb11.01.4590 and Tb09.v1.0420, are involved in mitochondrial tRNA import. Using Protein C Epitope -Tobacco Etch Virus-Protein A Epitope (PTP)-tagged Tb11.01.4590, additional associated proteins were identified including Tim17 and other mitochondrial proteins necessary for mitochondrial protein import. Results presented here identify and validate two novel protein components of the putative tRNA translocon and provide additional evidence that mitochondrial tRNA and protein import have shared components in trypanosomes.  相似文献   

2.
The targeting and assembly of nuclear-encoded mitochondrial proteins are essential processes because the energy supply of humans is dependent upon the proper functioning of mitochondria. Defective import of mitochondrial proteins can arise from mutations in the targeting signals within precursor proteins, from mutations that disrupt the proper functioning of the import machinery, or from deficiencies in the chaperones involved in the proper folding and assembly of proteins once they are imported. Defects in these steps of import have been shown to lead to oxidative stress, neurodegenerative diseases, and metabolic disorders. In addition, protein import into mitochondria has been found to be a dynamically regulated process that varies in response to conditions such as oxidative stress, aging, drug treatment, and exercise. This review focuses on how mitochondrial protein import affects human health and disease.  相似文献   

3.
Most mitochondrial proteins are synthesized in the cytosol, translocated into the organelle and directed along specific sorting pathways. Over the past 20 years, >30 proteins have been identified as having key roles in mitochondrial protein import. Recently, the elucidation of the structures of several import components has provided fresh insight into the import process. Here, we review the different pathways involved in sorting proteins into mitochondrial subcompartments. Along the way, we highlight the available structural information about the protein-import machinery and discuss how these structures correlate with previously ascribed functions. Future challenges for the cell biologists will be to use this structural information to test specific hypotheses addressing the molecular mechanisms of mitochondrial protein import.  相似文献   

4.
The acquisition of mitochondria was a key event in eukaryote evolution. The aim of this study was to identify homologues of the components of the mitochondrial protein import machinery in the brown alga Ectocarpus and to use this information to investigate the evolutionary history of this fundamental cellular process. Detailed searches were carried out both for components of the protein import system and for related peptidases. Comparative and phylogenetic analyses were used to investigate the evolution of mitochondrial proteins during eukaryote diversification. Key observations include phylogenetic evidence for very ancient origins for many protein import components (Tim21, Tim50, for example) and indications of differences between the outer membrane receptors that recognize the mitochondrial targeting signals, suggesting replacement, rearrangement and/or emergence of new components across the major eukaryotic lineages. Overall, the mitochondrial protein import components analysed in this study confirmed a high level of conservation during evolution, indicating that most are derived from very ancient, ancestral proteins. Several of the protein import components identified in Ectocarpus, such as Tim21, Tim50 and metaxin, have also been found in other stramenopiles and this study suggests an early origin during the evolution of the eukaryotes.  相似文献   

5.
Proteomic studies have demonstrated that yeast mitochondria contain roughly 1000 different proteins. Only eight of these proteins are encoded by the mitochondrial genome and are synthesized on mitochondrial ribosomes. The remaining 99% of mitochondrial precursors are encoded within the nuclear genome and after their synthesis on cytosolic ribosomes must be imported into the organelle. Targeting of these proteins to mitochondria and their import into one of the four mitochondrial subcompartments--outer membrane, intermembrane space (IMS), inner membrane and matrix--requires various membrane-embedded protein translocases, as well as numerous chaperones and cochaperones in the aqueous compartments. During the last years, several novel protein components involved in the import and assembly of mitochondrial proteins have been identified. The picture that emerges from these exciting new findings is that of highly dynamic import machineries, rather than of regulated, but static protein complexes. In this review, we will give an overview on the recent progress in our understanding of mitochondrial protein import. We will focus on the presequence translocase of the inner mitochondrial membrane, the TIM23 complex and the presequence translocase-associated motor, the PAM complex. These two molecular machineries mediate the multistep import of preproteins with cleavable N-terminal signal sequences into the matrix or inner membrane of mitochondria.  相似文献   

6.
In Chlamydomonas reinhardtii several nucleus-encoded proteins that participate in the mitochondrial oxidative phosphorylation are targeted to the organelle by unusually long mitochondrial targeting sequences. Here, we explored the components of the mitochondrial import machinery of the green alga. We mined the algal genome, searching for yeast and plant homologs, and reconstructed the mitochondrial import machinery. All the main translocation components were identified in Chlamydomonas as well as in Arabidopsis thaliana and in the recently sequenced moss Physcomitrella patens. Some of these components appear to be duplicated, as is the case of Tim22. In contrast, several yeast components that have relatively large hydrophilic regions exposed to the cytosol or to the intermembrane space seem to be absent in land plants and green algae. If present at all, these components of plants and algae may differ significantly from their yeast counterparts. We propose that long mitochondrial targeting sequences in some Chlamydomonas mitochondrial protein precursors are involved in preventing the aggregation of the hydrophobic proteins they carry.  相似文献   

7.
T Komiya  M Sakaguchi    K Mihara 《The EMBO journal》1996,15(2):399-407
Two ATP-dependent cytosolic chaperones, mitochondrial import stimulation factor (MSF) and hsp70, are known to be involved in the import of precursor proteins into mitochondria. Hsp70 generally recognizes unfolded proteins, while MSF specifically recognizes mitochondrial precursor proteins and targets them to mitochondria in a NEM-sensitive manner. Here we analyzed the relative contribution of these chaperones in the import process and confirmed that the precursor proteins are targeted to mitochondria via two distinct pathways: one requiring MSF and the other requiring hsp70. Both pathways depend on distinct proteinaceous components of the outer mitochondrial membrane. The MSF-dependent pathway is NEM-sensitive and requires the hydrolysis of extra-mitochondrial ATP for the release of MSF from the mitochondrial import receptor, whereas the hsp70-dependent pathway is NEM-sensitive and does not require extra-mitochondrial ATP. The NEM-insensitive, hsp70-dependent import became NEM-sensitive depending on the amount of MSF added. The relative importance of the two pathways appears to be determined by the affinities of MSF and hsp70 for the precursor proteins.  相似文献   

8.
Mitochondrial biogenesis requires the import of hundreds of different proteins from the cytosol. Protein import into mitochondria is a multistep pathway that includes recognition of precursor proteins by machinery both in the cytoplasm and on the mitochondrial surface, translocation of the precursor across one or both mitochondrial membranes, and folding of the protein after its import into the organelle. Over the past several years, many components of the import machinery have been identified using both biochemical and genetic methods. Recently, significant progress has been made determining the function of some of these import proteins. One purpose of this minireview is to summarize our current understanding of the import pathway, and to introduce the topics of the minireviews that will follow. The other goal of this minireview is to discuss recent findings suggesting that proteins are translocated across both the mitochondrial inner and outer membranes through aqueous channels.  相似文献   

9.
Mitochondrial biogenesis utilizes a complex proteinaceous machinery for the import of cytosolically synthesized preproteins. At least three large multisubunit protein complexes, one in the outer membrane and two in the inner membrane, have been identified. These translocase complexes cooperate with soluble proteins from the cytosol, the intermembrane space and the matrix. The translocation of presequence-containing preproteins through the outer membrane channel includes successive electrostatic interactions of the charged mitochondrial targeting sequence with a chain of import components. Translocation across the inner mitochondrial membrane utilizes the energy of the proton motive force of the inner membrane and the hydrolysis of ATP. The matrix chaperone system of the mitochondrial heat shock protein 70 forms an ATP-dependent import motor by interaction with the polypeptide chain in transit and components of the inner membrane translocase. The precursors of integral inner membrane proteins of the metabolite carrier family interact with newly identified import components of the intermembrane space and are inserted into the inner membrane by a second translocase complex. A comparison of the full set of import components between the yeast Sacccharomyces cerevisiae and the nematode Caenorhabditis elegans demonstrates an evolutionary conservation of most components of the mitochondrial import machinery with a possible greater divergence for the import pathway of the inner membrane carrier proteins.  相似文献   

10.
Precise targeting of mitochondrial precursor proteins to mitochondria requires receptor functions of Tom20, Tom22, and Tom70 on the mitochondrial surface. Tom20 is a major import receptor that recognizes preferentially mitochondrial presequences, and Tom70 is a specialized receptor that recognizes presequence-less inner membrane proteins. The cytosolic domain of Tom22 appears to function as a receptor in cooperation with Tom20, but how its substrate specificity differs from that of Tom20 remains unclear. To reveal possible differences in substrate specificities between Tom20 and Tom22, if any, we deleted the receptor domain of Tom20 or Tom22 in mitochondria in vitro by introducing cleavage sites for a tobacco etch virus protease between the receptor domains and transmembrane segments of Tom20 and Tom22. Then mitochondria without the receptor domain of Tom20 or Tom22 were analyzed for their abilities to import various mitochondrial precursor proteins targeted to different mitochondrial subcompartments in vitro. The effects of deletion of the receptor domains on the import of different mitochondrial proteins for different import pathways were quite similar between Tom20 and Tom22. Therefore Tom20 and Tom22 are apparently involved in the same step or sequential steps along the same pathway of targeting signal recognition in import.  相似文献   

11.
12.
Mitochondrial biogenesis utilizes a complex proteinaceous machinery for the import of cytosolically synthesized preproteins. At least three large multisubunit protein complexes, one in the outer membrane and two in the inner membrane, have been identified. These translocase complexes cooperate with soluble proteins from the cytosol, the intermembrane space and the matrix. The translocation of presequence-containing preproteins through the outer membrane channel includes successive electrostatic interactions of the charged mitochondrial targeting sequence with a chain of import components. Translocation across the inner mitochondrial membrane utilizes the energy of the proton motive force of the inner membrane and the hydrolysis of ATP. The matrix chaperone system of the mitochondrial heat shock protein 70 forms an ATP-dependent import motor by interaction with the polypeptide chain in transit and components of the inner membrane translocase. The precursors of integral inner membrane proteins of the metabolite carrier family interact with newly identified import components of the intermembrane space and are inserted into the inner membrane by a second translocase complex. A comparison of the full set of import components between the yeast Sacccharomyces cerevisiae and the nematode Caenorhabditis elegans demonstrates an evolutionary conservation of most components of the mitochondrial import machinery with a possible greater divergence for the import pathway of the inner membrane carrier proteins.  相似文献   

13.
The role of plant mitochondrial outer membrane proteins in the process of preprotein import was investigated, as some of the principal components characterized in yeast have been shown to be absent or evolutionarily distinct in plants. Three outer membrane proteins of Arabidopsis thaliana mitochondria were studied: TOM20 (translocase of the outer mitochondrial membrane), METAXIN, and mtOM64 (outer mitochondrial membrane protein of 64 kD). A single functional Arabidopsis TOM20 gene is sufficient to produce a normal multisubunit translocase of the outer membrane complex. Simultaneous inactivation of two of the three TOM20 genes changed the rate of import for some precursor proteins, revealing limited isoform subfunctionalization. Inactivation of all three TOM20 genes resulted in severely reduced rates of import for some but not all precursor proteins. The outer membrane protein METAXIN was characterized to play a role in the import of mitochondrial precursor proteins and likely plays a role in the assembly of beta-barrel proteins into the outer membrane. An outer mitochondrial membrane protein of 64 kD (mtOM64) with high sequence similarity to a chloroplast import receptor was shown to interact with a variety of precursor proteins. All three proteins have domains exposed to the cytosol and interacted with a variety of precursor proteins, as determined by pull-down and yeast two-hybrid interaction assays. Furthermore, inactivation of one resulted in protein abundance changes in the others, suggesting functional redundancy. Thus, it is proposed that all three components directly interact with precursor proteins to participate in early stages of mitochondrial protein import.  相似文献   

14.
15.
Protein import into mitochondria involves a number of complex steps occurring in the cytosol, on the mitochondrial surface, and inside the organelle. Once an initial interaction between mitochondrial proteins and their specific receptors occurs, the proteins are transported into the organelle in a series of reactions involving (in the case of a protein to be translocated into the mitochondrial matrix) the mitochondrial membrane potential, ATP hydrolysis and an undetermined number of membrane components. Inside the organelle, mitochondrial proteins are processed and sorted to their final intramitochondrial destinations. The earliest steps in the import process take place in the cytosol and include the synthesis of the mitochondrial proteins themselves, their interaction with cytosolic factors, and perhaps the establishment of cotranslational import complexes on the mitochondrial surface. These early events are important because it is during this phase that the system as a whole is most sensitive to cytosolic conditions that may exert control over the entire import process.  相似文献   

16.
Distler AM  Kerner J  Hoppel CL 《Proteomics》2008,8(19):4066-4082
For the proteomic study of mitochondrial membranes, documented high quality mitochondrial preparations are a necessity to ensure proper localization. Despite the state-of-the-art technologies currently in use, there is no single technique that can be used for all studies of mitochondrial membrane proteins. Herein, we use examples to highlight solubilization techniques, different chromatographic methods, and developments in gel electrophoresis for proteomic analysis of mitochondrial membrane proteins. Blue-native gel electrophoresis has been successful not only for dissection of the inner membrane oxidative phosphorylation system, but also for the components of the outer membrane such as those involved in protein import. Identification of PTMs such as phosphorylation, acetylation, and nitration of mitochondrial membrane proteins has been greatly improved by the use of affinity techniques. However, understanding of the biological effect of these modifications is an area for further exploration. The rapid development of proteomic methods for both identification and quantitation, especially for modifications, will greatly impact the understanding of the mitochondrial membrane proteome.  相似文献   

17.
The protein-import apparatus of plant mitochondria   总被引:5,自引:0,他引:5  
The import and assembly of mitochondrial proteins synthesized in the cytosol is mediated by the protein-import apparatus which plays a central role in mitochondrial biogenesis. Ten years ago only some components of the protein-import apparatus from fungi and mammals were characterized, but today its major components have been analyzed at the molecular level also in plants. Interestingly there are specific features which distinguish the protein-import apparatus of plants from that of fungi and mammals. Here we give an overview of all known components of the protein-import apparatus from plants and focus on its differences in comparison to heterotrophic eukaryotes. Received: 29 March 1999 / Accepted: 14 May 1999  相似文献   

18.
《The Journal of cell biology》1993,122(5):1003-1012
To identify new components that mediate mitochondrial protein import, we analyzed mas6, an import mutant in the yeast Saccharomyces cerevisiae. mas6 mutants are temperature sensitive for viability, and accumulate mitochondrial precursor proteins at the restrictive temperature. We show that mas6 does not correspond to any of the presently identified import mutants, and we find that mitochondria isolated from mas6 mutants are defective at an early stage of the mitochondrial protein import pathway. MAS6 encodes a 23-kD protein that contains several potential membrane spanning domains, and yeast strains disrupted for MAS6 are inviable at all temperatures and on all carbon sources. The Mas6 protein is located in the mitochondrial inner membrane and cannot be extracted from the membrane by alkali treatment. Antibodies to the Mas6 protein inhibit import into isolated mitochondria, but only when the outer membrane has been disrupted by osmotic shock. Mas6p therefore represents an essential import component located in the mitochondrial inner membrane.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号