首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell-binding and internalization studies on neuronal and non-neuronal cells have demonstrated that the 37-kDa/67-kDa laminin receptor (LRP/LR) acts as the receptor for the cellular prion protein (PrP). Here we identify direct and heparan sulfate proteoglycan (HSPG)-dependent interaction sites mediating the binding of the cellular PrP to its receptor, which we demonstrated in vitro on recombinant proteins. Mapping analyses in the yeast two-hybrid system and cell-binding assays identified PrPLRPbd1 [amino acids (aa) 144-179] as a direct and PrPLRPbd2 (aa 53-93) as an indirect HSPG-dependent laminin receptor precursor (LRP)-binding site on PrP. The yeast two-hybrid system localized the direct PrP-binding domain on LRP between aa 161 and 179. Expression of an LRP mutant lacking the direct PrP-binding domain in wild-type and mutant HSPG-deficient Chinese hamster ovary cells by the Semliki Forest virus system demonstrates a second HSPG-dependent PrP-binding site on LRP. Considering the absence of LRP homodimerization and the direct and indirect LRP-PrP interaction sites, we propose a comprehensive model for the LRP-PrP-HSPG complex.  相似文献   

2.
The 37kDa/67kDa laminin receptor (LRP/LR) has been identified as a cell surface receptor for cellular and infectious prion proteins. Here, we show that an N-terminally truncated LRP mutant encompassing the extracellular domain of the LRP/LR (LRP102-295::FLAG) reduces the binding of recombinant cellular huPrP to mouse neuroblastoma cells, and infectious moPrP27-30 to BHK cells, and interferes with the PrP(Sc) propagation in scrapie-infected neuroblastoma cells (N2aSc(+)). A cell-free binding assay demonstrated the direct binding of the LRP102-295::FLAG mutant to both PrP(c) and PrP(Sc). These results, together with the finding that endogenous LRP levels remain unaffected by the expression of the mutant, indicate that the secreted LRP102-295::FLAG mutant may act in a trans-dominant negative manner as a decoy by trapping PrP molecules. The LRP mutant might represent a potential therapeutic tool for the treatment of TSEs.  相似文献   

3.
Doppel (Dpl) is a homolog of normal cellular prion protein (PrPc) with unknown functions. Ectopic expression of Dpl in the central nervous system (CNS) causes neurotoxicity and this effect is rescued by the expression of PrPc. However, the molecular basis for the protective effect of PrPc remains unclear. Using a yeast two-hybrid system, we showed that Dpl binds the full-length 37-kDa laminin receptor precursor protein (LRP), one of the receptors of PrPc. The interaction was also validated by immunoprecipitation and immunoblotting using transfected cell lines and in vivo derived tissues. Further mapping experiments showed that although the middle fragment containing residues 100-220 of LRP was able to interact with Dpl, deletion of the N-terminal domain of the full-length LRP abolished its interaction with Dpl. These results suggest that while both PrPc and Dpl interact with LRP, the domains that are involved in the binding are not the same. Our results may have implications for the molecular mechanisms of Dpl-PrPc antagonism and physiological roles of Dpl.  相似文献   

4.
The 37-kDa/67-kDa laminin receptor (LRP/LR) plays a major role in the propagation of PrPSc, the abnormal form of the prion protein. In order to ablate the expression of LRP/LR in mouse brain we generated transgenic mice ectopically expressing antisense LRP RNA in the brain under control of the neuron-specific enolase (NSE) promoter. Hemizygous transgenic mice TgN(NSEasLRP)2 showed a significant reduction of LRP/LR protein levels in hippocampal and cerebellar brain regions. These mice might act as powerful tools to investigate the role of the laminin receptor in scrapie pathogenesis.  相似文献   

5.
Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes-15 kD (PED/PEA-15) is an anti-apoptotic protein whose expression is increased in several human cancers. In addition to apoptosis, PED/PEA-15 is involved in the regulation of other major cellular functions, including cell adhesion, migration, proliferation and glucose metabolism. To further understand the functions of this protein, we performed a yeast two-hybrid screening using PED/PEA-15 as a bait and identified the 67 kD high-affinity laminin receptor (67LR) as an interacting partner. 67 kD laminin receptor is a non-integrin cell-surface receptor for the extracellular matrix (ECM), derived from the dimerization of a 37 kD cytosolic precursor (37LRP). The 67LR is highly expressed in human cancers and widely recognized as a molecular marker of metastatic aggressiveness. The molecular interaction of PED/PEA-15 with 67LR was confirmed by pull-down experiments with recombinant His-tagged 37LRP on lysates of PED/PEA-15 transfected HEK-293 cells. Further, overexpressed or endogenous PED/PEA-15 was co-immunoprecipitated with 67LR in PED/PEA-15-transfected HEK-293 cells and in U-373 glioblastoma cells, respectively. PED/PEA-15 overexpression significantly increased 67LR-mediated HEK-293 cell adhesion and migration to laminin that, in turn, determined PED/PEA-15 phosphorylation both in Ser-104 and Ser-116, thus enabling cell proliferation and resistance to apoptosis. PED/PEA-15 ability to induce cell responses to ECM-derived signals through interaction with 67LR may be of crucial importance for tumour cell survival in a poor microenvironment, thus favouring the metastatic spread and colonization.  相似文献   

6.
7.
The 37-kDa/67-kDa laminin receptor precursor/laminin receptor (LRP/LR) acting as a receptor for prions and viruses is overexpressed in various cancer cell lines, and their metastatic potential correlates with LRP/LR levels. We analyzed the tumorigenic fibrosarcoma cell line HT1080 regarding 37-kDa/67-kDa LRP/LR levels and its invasive potential. Compared to the less invasive embryonic fibroblast cell line NIH3T3, the tumorigenic HT1080 cells display approximately 1.6-fold higher cell-surface levels of LRP/LR. We show that anti-LRP/LR tools interfere with the invasive potential of HT1080 cells. Anti-LRP/LR single-chain variable fragment antibody (scFv) iS18 generated by chain shuffling from parental scFv S18 and its full-length version immunoglobulin G1-iS18 reduced the invasive potential of HT1080 cells significantly by 37% and 38%, respectively. HT1080 cells transfected with lentiviral plasmids expressing small interfering RNAs directed against LRP mRNA showed reduced LRP levels by approximately 44%, concomitant with a significant decrease in the invasive potential by approximately 37%. The polysulfated glycans HM2602 and pentosan polysulfate (SP-54), both capable of blocking LRP/LR, reduced the invasive potential by 20% and 35%, respectively. Adhesion of HT1080 cells to laminin-1 was significantly impeded by scFv iS18 and immunoglobulin G1-iS18 by 60% and 68%, respectively, and by SP-54 and HM2602 by 80%, suggesting that the reduced invasive capacity achieved by these tools is due to the perturbation of the LRP/LR-laminin interaction on the cell surface. Our in vitro data suggest that reagents directed against LRP/LR or LRP mRNA such as antibodies, polysulfated glycans, or small interfering RNAs, previously shown to encompass an anti-prion activity by blocking or downregulating the prion receptor LRP/LR, might also be potential cancer therapeutics blocking metastasis by interfering with the LRP/LR-laminin interaction in neoplastic tissues.  相似文献   

8.
1. Prion diseases are a group of rare, fatal neurodegenerative diseases, also known as transmissible spongiform encephalopathies (TSEs), that affect both animals and humans and include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep, chronic wasting disease (CWD) in deer and elk, and Creutzfeldt–Jakob disease (CJD) in humans. TSEs are usually rapidly progressive and clinical symptoms comprise dementia and loss of movement coordination due to the accumulation of an abnormal isoform (PrPSc) of the host-encoded prion protein (PrPc). 2. This article reviews the current knowledge on PrPc and PrPSc, prion replication mechanisms, interaction partners of prions, and their cell surface receptors. Several strategies, summarized in this article, have been investigated for an effective antiprion treatment including development of a vaccination therapy and screening for potent chemical compounds. Currently, no effective treatment for prion diseases is available. 3. The identification of the 37 kDa/67 kDa laminin receptor (LRP/LR) and heparan sulfate as cell surface receptors for prions, however, opens new avenues for the development of alternative TSE therapies.  相似文献   

9.
Even though the involvement of the 67-kDa laminin receptor (67LR) in tumor invasiveness has been clearly demonstrated, its molecular structure remains an open problem, since only a full-length gene encoding a 37-kDa precursor protein (37LRP) has been isolated so far. A pool of recently obtained monoclonal antibodies directed against the recombinant 37LRP molecule was used to investigate the processing that leads to the formation of the 67-kDa molecule. In soluble extracts of A431 human carcinoma cells, these reagents recognize the precursor molecule as well as the mature 67LR and a 120-kDa molecule. The recovery of these proteins was found to be strikingly dependent upon the cell solubilization conditions: the 67LR is soluble in NP-40-lysis buffer whereas the 37LRP is NP-40-insoluble. Inhibition of 67LR formation by cerulenin indicates that acylation is involved in the processing of the receptor. It is likely a palmitoylation process, as indicated by sensitivity of NP-40-soluble extracts to hydroxylamine treatment. Immunoblotting assays performed with a polyclonal serum directed against galectin3 showed that both the 67- and the 120-kDa proteins carry galectin3 epitopes whereas the 37LRP does not. These data suggest that the 67LR is a heterodimer stabilized by strong intramolecular hydrophobic interactions, carried by fatty acids bound to the 37LRP and to a galectin3 cross-reacting molecule. J. Cell. Biochem. 69:244–251, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
The non-integrin laminin receptor (LAMR1/RPSA) and galectin-3 (Gal-3) are multi-functional host molecules with roles in diverse pathological processes, particularly of infectious or oncogenic origins. Using bimolecular fluorescence complementation and confocal imaging, we demonstrate that the two proteins homo- and heterodimerize, and that each isotype forms a distinct cell surface population. We present evidence that the 37 kDa form of LAMR1 (37LRP) is the precursor of the previously described 67 kDa laminin receptor (67LR), whereas the heterodimer represents an entity that is distinct from this molecule. Site-directed mutagenesis confirmed that the single cysteine (C173) of Gal-3 or lysine (K166) of LAMR1 are critical for heterodimerization. Recombinant Gal-3, expressed in normally Gal-3-deficient N2a cells, dimerized with endogenous LAMR1 and led to a significantly increased number of internalized bacteria (Neisseria meningitidis), confirming the role of Gal-3 in bacterial invasion. Contact-dependent cross-linking determined that, in common with LAMR1, Gal-3 binds the meningococcal secretin PilQ, in addition to the major pilin PilE. This study adds significant new mechanistic insights into the bacterial–host cell interaction by clarifying the nature, role and bacterial ligands of LAMR1 and Gal-3 isotypes during colonization.  相似文献   

11.
Glioma is one of the most common brain tumors and one of the most aggressive cancers. Although extensive progress has been made regarding to the diagnosis and treatment, the mortality in glioma patients is still high. Therefore, finding new therapeutic targets to the glioma is critical to the advancement in cancer treatment. Recently, the 37‐kDa laminin receptor precursor (37LRP) was reported to play important roles in occurrence of some types of cancer, indicating that this molecule may function as a key regulator in the tumor migration and metastasis. However, there is still no report to elucidate the correlation between 37LRP expression and glioma genesis and development. In this study, we found the higher expression of 37LRP in the glioma cells compared with the normal brain cells. We also indicated that the downregulation of 37LRP could affect the glioma biomarker expression and also weaken the proliferative, migratory, and metastatic capacity of glioma cells in vitro. Furthermore, 37LRP silencing inhibited the glioma tumor growth in vivo. Collectively, these data demonstrated that 37LRP regulates the metastasis of glioma cells in vitro and tumor growth in vivo, suggesting that 37LRP may function as a potential molecular target in the glioma treatment.  相似文献   

12.
The 67 kDa laminin receptor (67LR), one of several cell surface laminin-binding proteins, is involved in the interactions between cancer cells and laminin during tumor invasion and metastasis. A 37 kDa polypeptide (37LRP), previously identified as the 67LR precursor, is abundantly present in the cytoplasm and has been implicated in polysome formation. To better understand the cellular localization of the 67LR and its precursor, transmission electron microscopic studies of human melanoma A2058 cells were carried out using immunogold labeling and a variety of antibodies: (a) affinity purified antibodies directed against 37LRP cDNA-derived synthetic peptides; (b) anti-67LR monoclonal antibodies raised against intact human small cell lung carcinoma cells; and (c) monoclonal antibodies against the subunits of the integrin laminin receptor, α6β1. Double-labeling immunocyto-chemistry revealed that anti-67LR monoclonal antibodies as well as anti-37 LRP antibodies recognized antigens that were localized in the cytoplasm in electron dense structures. As expected, cell membrane labeling was also observed. Surprisingly, α6 and β1 integrin subunits were detected in the same cytoplasmic structures positive for the 67LR and the 37LRP. After addition of soluble laminin to A2058 cells in suspension, the number of labeled cytoplasmic structures increased especially in the vicinity of the plasma membrane, and were exported onto the cell surface. Neither fibronectin nor BSA induced such an effect. The data demonstrate that the 67 LR and the 37 LRP antibodies detect colocalized antigens that are in cytoplasmic structures with α6β1 integrin. These laminin binding protein rich structures could potentially form a supply of receptors that are exported to the surface upon exposure of the cells to laminin, with a consequent increase in the number of binding sites for the ligand. This system could define a mechanism through which cancer cells modulate their interaction with laminin.  相似文献   

13.
探讨细胞膜表面 6 7kD层粘连蛋白受体 (6 7kDlamininreceptor ,6 7LR)在肝癌细胞侵袭转移中的作用 ,从肝癌细胞中提取RNA ,通过RT PCR扩增 6 7LR的前体——— 37kD层粘连蛋白受体前体(37kDlamininreceptorprecursor,37LRP)基因并定向克隆到真核表达载体pcDNA3.1 myc His(- )A ,采用脂质体将重组质粒转染到HepG2肝癌细胞中 ,通过G4 1 8筛选和RT PCR、流式细胞术鉴定 ,获得了细胞膜表面 6 7LR高表达 (阳性率为 6 9.2 % )和低表达 (阳性率为 1 1 .7% )的细胞克隆 ,采用体外细胞侵袭实验测定不同细胞的侵袭能力 ,发现膜表面 6 7LR高表达的细胞侵袭能力明显高于低表达及不表达细胞 ,说明 6 7LR在肝癌细胞侵袭转移过程中可能具有重要意义  相似文献   

14.
(-)-Epigallocatechin-3-O-gallate (EGCG), a major green tea polyphenol, has previously exhibited a suppressive effect on the expression of the high-affinity IgE receptor (FcepsilonRI). This effect has been shown to be elicited by interaction with the plasma membrane microdomain lipid rafts. Recently, we have identified the 67 kDa laminin receptor (67LR) as a cell surface EGCG receptor that mediates an anti-cancer action. Here we show that the 67LR is highly associated with lipid rafts on human basophilic KU812 cells. Experiments using 67LR-enhanced and -reduced cells revealed that the EGCG's ability to downregulate FcepsilonRI expression correlated with the amount of 67LR. Thus, these results suggest that the lipid raft-associated 67LR plays an important role in mediating the FcepsilonRI-suppressive action of EGCG.  相似文献   

15.
Although the function of laminin in the basement membrane is known, the function of soluble “neuronal” laminin is unknown. Since laminin is neuroprotective, we determined whether the soluble laminin-1 induces signaling for neuroprotection via its 67KDa laminin-1 receptor (67LR). Treatment of Neuroscreen-1 (NS-1) cells with laminin-1 or YIGSR peptide, which corresponds to a sequence in laminin-1 β1 chain that binds to 67LR, induced a decrease in the cell-surface expression of 67LR and caused its internalization. Furthermore, intracellular cAMP-elevating agents, dibutyryl-cAMP, forskolin, and rolipram, also induced this internalization. Both soluble laminin-1 and YIGSR induced a sustained elevation of intracellular cAMP under defined conditions, suggesting a causal role of cAMP in the endocytosis of 67LR. This endocytosis was not observed in cells deficient in protein kinase A (PKA) nor in cells treated with either SQ 22536, an inhibitor for adenylyl cyclase, or ESI-09, an inhibitor for the exchange protein directly activated by cAMP (Epac). In addition, when internalization occurred in NS-1 cells, 67LR and adenylyl cyclase were localized in early endosomes. Under conditions in which endocytosis had occurred, both laminin-1 and YIGSR protected NS-1 cells from cell death induced by serum withdrawal. However, under conditions in which endocytosis did not occur, neither laminin-1 nor YIGSR protected these cells. Conceivably, the binding of laminin-1 to 67LR causes initial signaling through PKA and Epac, which causes the internalization of 67LR, along with signaling enzymes, such as adenylyl cyclase, into early endosomes. This causes sustained signaling for protection against cell death induced by serum withdrawal.  相似文献   

16.
The 37-kDa laminin receptor precursor/67-kDa laminin receptor (LRP/LR, also known as ribosomal protein SA, RPSA) has been reported to be involved in cancer development and prion internalization. Previous studies have shown that the LRP/LR is expressed in a wide variety of tissues. In particular, expression of LRP/LR mRNA may be closely related to the degree of PrPSc propagation. This study presents a detailed investigation of the LRP/LR mRNA expression levels in eleven normal ovine tissues. Using real-time quantitative PCR, the highest LRP/LR expression was found in neocortex (p < 0.05). Slightly lower levels were found in the heart and obex. Intermediate levels were seen in hippocampus, cerebellum, spleen, thalamus, mesenteric lymph node, and the lowest levels were present in liver, kidney, and lung. In general, the LRP/LR mRNA levels were much higher in neuronal tissues than in peripheral tissues. The observation that differences in LRP/LR mRNA expression levels are consistent with the corresponding variation in PrPSc accumulation suggests that the 37-kDa/67-kDa laminin receptor may be involved in the regulation of PrPSc propagation.  相似文献   

17.
Recently, we have reported that (-)-epigallocatechin-3-O-gallate (EGCG) acts as an inhibitor of degranulation. However, the inhibitory mechanism for degranulation is still poorly understood. Here we show that suppression of exocytosis-related myosin II regulatory light chain phosphorylation and alteration of actin remodeling are involved in the inhibitory effect of EGCG on the calcium ionophore-induced degranulation from human basophilic KU812 cells. Surface plasmon resonance assay also revealed that EGCG binds to the cell surface, and the disruption of lipid rafts resulted in reduction of EGCG's ability. We have previously identified the raft-associated 67kDa laminin receptor (67LR) as an EGCG receptor on the cell surface. Treatment of the cells with anti-67LR antibody or RNA interference-mediated downregulation of 67LR expression abolished the effects of EGCG. These findings suggest that EGCG-induced inhibition of the degranulation includes the primary binding of EGCG to the cell surface 67LR and subsequent modulation of cytoskeleton.  相似文献   

18.
Biosynthesis of the 67 kDa high affinity laminin receptor.   总被引:8,自引:0,他引:8  
High affinity interactions between cells and laminin are mediated, at least in part, by the 67 kDa laminin receptor (67 LR). A 37 kDa nascent polypeptide (37 LRP), predicted by a full length cDNA clone and obtained by in vitro translation of hybrid-selected laminin receptor mRNA, has been immunologically identified in cancer cell extracts as the putative precursor of the 67 LR. In this study, we used affinity purified antibodies developed against cDNA-deduced 37 LRP synthetic peptides in pulse chase experiments and demonstrated a precursor-product relationship between the 37 LRP and the 67 LR. Immunoblot, pulse chase and immunofluorescence experiments showed that transient transfection of the full length 37 LRP cDNA clone induced a dramatic increase in the synthesis of the 37 LRP but not of the mature 67 LR. We propose that the 67 LR results from the association of two gene products: the 37 LRP and a polypeptide yet to be identified.  相似文献   

19.
The 37-kDa/67-kDa laminin receptor (LRP/LR) was identified as a cell surface receptor for prion proteins. The laminin receptor mutant LRP102-295∷FLAG interfered with PrPSc propagation in murine neuronal cells presumably acting as a decoy in a transdominant negative fashion by trapping PrP molecules in the extracellular matrix. Here, we generated hemizygous transgenic mice expressing LRP102-295∷FLAG in the brain. Scrapie-infected transgenic mice exhibit a significantly prolonged incubation time in comparison to scrapie-infected wild-type (FVB) mice. At the terminal stage, transgenic mice revealed significantly reduced proteinase-K-resistant PrP levels by 71% compared to wild-type mice. Our results recommend the laminin receptor decoy mutant as an alternative therapeutic tool for treatment of transmissible spongiform encephalopathies.  相似文献   

20.
Amano T  Kwak O  Fu L  Marshak A  Shi YB 《Cell research》2005,15(3):150-159
The matrix metalloproteinase (MMP) stromelysin-3 (ST3) has long been implicated to play an important role in extracellular matrix (ECM) remodeling and cell fate determination during normal and pathological processes. However,like other MMPs, the molecular basis of ST3 function in vivo remains unclear due to the lack of information on its physiological substrates. Furthermore, ST3 has only weak activities toward all tested ECM proteins. Using thyroid hormone-dependent Xenopus laevis metamorphosis as a model, we demonstrated previously that ST3 is important for apoptosis and tissue morphogenesis during intestinal remodeling. Here, we used yeast two-hybrid screen with mRNAs from metamorphosing tadpoles to identify potential substrate of ST3 during development. We thus isolated the 37 kd laminin receptor precursor (LR). We showed that LR binds to ST3 in vitro and can be cleaved by ST3 at two sites,distinct from where other MMPs cleave. Through peptide sequencing, we determined that the two cleavage sites are in the extracellular domain between the transmembrane domain and laminin binding sequence. Furthermore, we demonstrated that these cleavage sites are conserved in human LR. These results together with high levels of human LR and ST3 expression in carcinomas suggest that LR is a likely in vivo substrate of ST3 and that its cleavage by ST3 may alter cell-extracellular matrix interaction, thus, playing a role in mediating the effects of ST3 on cell fate and behavior observed during development and pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号