首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PHLPP2 is a member of the PHLPP family of phosphatases, known to suppress cell growth by inhibiting proliferation or promoting apoptosis. Oncogenic kinases Akt, S6K, and PKC, and pro-apoptotic kinase Mst1, have been recognized as functional targets of the PHLPP family. However, we observed that, in T-leukemia cells subjected to metabolic stress from glucose limitation, PHLPP2 specifically targets the energy-sensing AMP-activated protein kinase, pAMPK, rather than Akt or S6K. PHLPP2 dephosphorylates pAMPK in several other human cancer cells as well. PHLPP2 and pAMPK interact with each other, and the pleckstrin homology (PH) domain on PHLPP2 is required for their interaction, for dephosphorylating and inactivating AMPK, and for the apoptotic response of the leukemia cells to glucose limitation. Silencing PHLPP2 protein expression prolongs the survival of leukemia cells subjected to severe glucose limitation by promoting a switch to AMPK-mediated fatty acid oxidation for energy generation. Thus, this study reveals a novel role for PHLPP2 in suppressing a survival response mediated through AMPK signaling. Given the multiple ways in which PHLPP phosphatases act to oppose survival signaling in cancers and the pivotal role played by AMPK in redox homeostasis via glucose and fatty acid metabolism, the revelation that AMPK is a target of PHLPP2 could lead to better therapeutics directed both at cancer and at metabolic diseases.Subject terms: Cancer metabolism, Stress signalling  相似文献   

2.
3.
4.
Akt/protein kinase B controls cell growth, proliferation, and survival. We recently discovered a novel phosphatase PHLPP, for PH domain leucine-rich repeat protein phosphatase, which terminates Akt signaling by directly dephosphorylating and inactivating Akt. Here we describe a second family member, PHLPP2, which also inactivates Akt, inhibits cell-cycle progression, and promotes apoptosis. These phosphatases control the amplitude of Akt signaling: depletion of either isoform increases the magnitude of agonist-evoked Akt phosphorylation by almost two orders of magnitude. Although PHLPP1 and PHLPP2 both dephosphorylate the same residue (hydrophobic phosphorylation motif) on Akt, they differentially terminate Akt signaling by regulating distinct Akt isoforms. Knockdown studies reveal that PHLPP1 specifically modulates the phosphorylation of HDM2 and GSK-3alpha through Akt2, whereas PHLPP2 specifically modulates the phosphorylation of p27 through Akt3. Our data unveil a mechanism to selectively terminate Akt-signaling pathways through the differential inactivation of specific Akt isoforms by specific PHLPP isoforms.  相似文献   

5.
Li X  Yang H  Liu J  Schmidt MD  Gao T 《EMBO reports》2011,12(8):818-824
PHLPP1 (PH domain leucine-rich-repeats protein phosphatase) is a Ser/Thr protein phosphatase that acts as a tumour suppressor by negatively regulating Akt. Here, we show that PHLPP1 is recruited to the cell membrane by binding to a scaffolding protein: Scribble. Knockdown of Scribble (Scrib) results in redistribution of PHLPP1 from the membrane to the cytoplasm and an increase in Akt phosphorylation, whereas overexpression of Scrib has the opposite effect. Furthermore, PHLPP1-dependent inhibition of cell proliferation is facilitated by the formation of a Scrib, PHLPP1 and Akt trimeric complex. Thus, our findings identify a functional interaction between PHLPP1 and Scrib in negatively regulating Akt signalling.  相似文献   

6.
PHLPP1 (PH domain leucine-rich repeat protein phosphatase 1) is a protein-serine/threonine phosphatase and a negative regulator of the PI3-kinase/Akt pathway. Although its function as a suppressor of tumor cell growth has been established, the mechanism of its regulation is not completely understood. In this study, by utilizing the tandem affinity purification approach we have identified WDR48 and USP12 as novel PHLPP1-associated proteins. The WDR48·USP12 complex deubiquitinates PHLPP1 and thereby enhances its protein stability. Similar to PHLPP1 function, WDR48 and USP12 negatively regulate Akt activation and thus promote cellular apoptosis. Functionally, we show that WDR48 and USP12 suppress proliferation of tumor cells. Importantly, we found a WDR48 somatic mutation (L580F) that is defective in stabilizing PHLPP1 in colorectal cancers, supporting a WDR48 role in tumor suppression. Together, our results reveal WDR48 and USP12 as novel PHLPP1 regulators and potential suppressors of tumor cell survival.  相似文献   

7.
8.
The involvement of miR-204 in lung cancer development is unclear. In our study, we analyzed the expression of miR-204 in tumor- and adjacent-tissue samples from 141 patients with non-small cell lung cancer (NSCLC). MiR-204 expression was decreased in tumor samples compared with non-cancerous tissue-derived controls. Moreover, miR-204 expression negatively correlated with homeobox protein SIX1 expression, tumor size and metastasis. MiR-204 silencing in miR-204-positive NSCLC cell lines promoted cell invasion and proliferation. Concomitantly, MiR-204 overexpression resulted in reduced cell proliferation and invasion, upregulated E-cadherin and downregulated N-cadherin and Vimentin expression. SIX1 was identified as a potential target of miR-204, and SIX1 silencing partially compromised the invasive and proliferative capacity of miR-204-deficient cells. Thus, miR-204 may be involved in the NSCLC development.  相似文献   

9.
miR-3940-5p level was lower in non–small cell lung cancer (NSCLC) tumor tissues than that in the matched tumor-adjacent tissues and correlated with clinicopathological features. Cyclin D1 (CCND1), a key driver of malignant transformation in NSCLC, was overexpressed in many cancers, including NSCLC. The ubiquitin specific peptidase-28 (USP28) was also overexpressed in NSCLC and associated with poor prognosis of NSCLC patients. We searched for miR-3940-5p targets by using TargetScan and miRanda online tools and found that CCND1 and USP28 were potential targets of miR-3940-5p. Based on these findings, we speculated that miR-3940-5p might target CCND1 and USP28 to inhibit NSCLC growth. We determined the expression of miR-3940-5p, CCND1, and USP28 by quantitative real-time polymerase chain reaction and Western blot assays, respectively, and found downregulation of miR-3940-5p and upregulation of CCND1 and USP28 in NSCLC tissues and cell lines. Cell proliferation and apoptosis assays showed that miR-3940-5p suppressed proliferation and promoted apoptosis in NSCLC cells, and silencing CCND1 and USP28 both recapitulated the effects of miR-3940-5p on NSCLC cells. Furthermore, we verified that CCND1 and USP28 were direct targets of miR-3940-5p and also found that the effects of NSCLC cell proliferation and apoptosis by miR-3940-5p were attenuated by overexpression of CCND1 or USP28. The animal experiments also showed that overexpression of miR-3940-5p inhibited the growth of NSCLC tumors in vivo. These results confirmed our speculation that miR-3940-5p inhibits proliferation and induces apoptosis in NSCLC cells by targeting CCND1 and USP28. These findings facilitate a better understanding of the molecular mechanisms underlying NSCLC initiation and progression and provide promising diagnostic markers and therapeutic targets for NSCLC.  相似文献   

10.
Precise balance between phosphorylation, catalyzed by protein kinases, and dephosphorylation, catalyzed by protein phosphatases, is essential for cellular homeostasis. Deregulation of this balance leads to pathophysiological states that drive diseases such as cancer, heart disease, and diabetes. The recent discovery of the PHLPP (pleckstrin homology domain leucine-rich repeat protein phosphatase) family of Ser/Thr phosphatases adds a new player to the cast of phosphate-controlling enzymes in cell signaling. PHLPP isozymes catalyze the dephosphorylation of a conserved regulatory motif, the hydrophobic motif, on the AGC kinases Akt, PKC, and S6 kinase, as well as an inhibitory site on the kinase Mst1, to inhibit cellular proliferation and induce apoptosis. The frequent deletion of PHLPP in cancer, coupled with the development of prostate tumors in mice lacking PHLPP1, identifies PHLPP as a novel tumor suppressor. This minireview discusses the structure, function, and regulation of PHLPP, with particular focus on its role in disease.  相似文献   

11.
Clusterin (CLU) is a chaperone-like protein with multiple functions. sCLU is frequently upregulated in prostate tumor cells after chemo- or radiotherapy and after surgical or pharmacological castration. Moreover, CLU has been documented to modulate the cellular homolog of murine thymoma virus akt8 oncogene (AKT) activity. Here, we investigated how CLU overexpression influences phosphatidylinositol 3′-kinase (PI3K)/AKT signaling in human normal and cancer epithelial prostate cells. Human prostate cells stably transfected with CLU were broadly profiled by reverse phase protein array (RPPA), with particular emphasis on the PI3K/AKT pathway. The effect of CLU overexpression on normal and cancer cell motility was also tested. Our results clearly indicate that CLU overexpression enhances phosphorylation of AKT restricted to isoform 2. Mechanistically, this can be explained by the finding that the phosphatase PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1), known to dephosphorylate AKT2 at S474, is markedly downregulated by CLU, whereas miR-190, a negative regulator of PHLPP1, is upregulated. Moreover, we found that phosphatase and tensin homolog (PTEN) was heavily phosphorylated at the inhibitory site S380, contributing to the hyperactivation of AKT signaling. By keeping AKT2 phosphorylation high, CLU dramatically enhances the migratory behavior of prostate epithelial cell lines with different migratory and invasive phenotypes, namely prostate normal epithelial 1A (PNT1A) and prostatic carcinoma 3 (PC3) cells. Altogether, our results unravel for the first time a circuit by which CLU can switch a low migration phenotype toward a high migration phenotype, through miR-190-dependent downmodulation of PHLPP1 expression and, in turn, stabilization of AKT2 phosphorylation.  相似文献   

12.
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have been suggested to play an essential role in tumorigenesis. In this study, we show that miR-152 is significantly downregulated in non-small cell lung cancer (NSCLC) tissues and cell lines. Restoration of miR-152 significantly reduces proliferation, colony formation, migration and invasion of NSCLC cells. In addition, ADAM metallopeptidase domain 17 (ADAM17) is identified as a target of miR-152 in NSCLC cells, and miR-152-induced suppression of cell proliferation, colony formation, migration and invasion is partially mediated by silencing of ADAM17 expression. Furthermore, ADAM17 inversely correlates with miR-152 in NSCLC tissues. Collectively, our findings indicate that miR-152 acts as tumor suppressor in NSCLC partially via targeting ADAM17.  相似文献   

13.
Non-small cell lung cancer (NSCLC) is one of the most common causes for lung cancer and cancer-related death. The imbalance between cell proliferation and apoptosis was suggested to play an important role in cancer pathogenesis and PKCε is one of the widely recognized targets. Here, we demonstrate that miR-143 is aberrantly downregulated in NSCLC tissue and negatively correlates with expression of PKCε. We show that miR-143 specifically targets the 3′-UTR of PKCε and regulates its expression. Treatment with miR-143 inhibitor mimics cell proliferation and apoptosis imbalance in NSCLC, while inhibition of PKCε can reverse it. Our findings suggest that targeting PKCε overexpression in NSCLC should be beneficial for lung cancer therapy.  相似文献   

14.
Dysexpression of microRNAs has been found in many tumors, including lung cancer. The hedgehog (Hh) signaling pathway plays an important role during normal development, and the abnormal regulation of its members has also been related to many tumors. However, little is known about the relationship between microRNA and the Hh pathway. In this paper, we report microRNA-212 (miR-212) playing a role in non-small cell lung cancer (NSCLC) and targeting PTCH1, a receptor of the Hh pathway. We found that miR-212 was up-regulated when cells were treated with 4ß-12-O-tetradecanoylphorbol-13-acetate (TPA). We ectopically expressed miR-212 in NSCLC cell lines to examine the influence of miR-212 overexpression. The results showed that overexpression of miR-212 in NSCLC cells promoted cell cycle progression and cell proliferation, migration, and invasion. The promoting effects of miR-212 on cell proliferation, migration, and invasion were partially reversed by the miR-212 inhibitor anti-miR-212. These results suggested that miR-212 might have tumor-promoting properties. Potential targets of miR-212 were predicted, and we showed tumor suppressor PTCH1 was a functional target of miR-212. PTCH1 may be responsible for the effect of miR-212 on cell proliferation. Altogether, our results indicated that miR-212 was involved in tumorigenesis, and the oncogenic activity of miR-212 in NSCLC cells was due, in part, to suppression of PTCH1.  相似文献   

15.
Osteosarcoma is the most common primary malignancy to arise from bone. The pathogenesis of osteosarcoma is unclear, and new therapy molecular target is needed. The miRNAs researched suggested that miRNAs are involved in the pathogenesis of osteosarcoma. MiR-141, which belong to miR-200 family, take a part in tumorigenesis. However, the role of miR-141 in the pathogenesis of osteosarcoma remained unclear. In this study, we focused on the miR-141 in osteosarcoma and found that the expression of miR-141 is lower in osteosarcoma. Overexpression of miR-141 not only inhibits osteosarcoma cell proliferation but also induces cell apoptosis. It is estimated that miR-141 played its role via ZEB1 and ZEB2. In all, miR-141 played a osteosarcoma-suppressing role via ZEB1 and ZEB2. Our finding may elucidate the miRNAs mechanism in osteosarcoma and provide a new molecule target for osteosarcoma therapy.  相似文献   

16.
MicroRNA-567 (miR-567) plays a decisive role in cancers whereas its role in non-small cell lung cancer (NSCLC) is still unexplored. This study was therefore planned to explore the regulatory function of miR-567 in A549 NSCLC cells and investigate its possible molecular mechanism that may help in NSCLC treatment. In the current study, miR-567 expression was examined by quantitative real time-polymerase chain reaction (qRT-PCR) in different NSCLC cell lines in addition to normal cell line. A549 NSCLC cells were transfected by miR-567 mimic, miR-567 inhibitor, and negative control siRNA. Cell proliferation was evaluated by MTT and 5-bromo-2′deoxyuridine assays. Cell cycle distribution and apoptosis were studied by flow cytometry. Bioinformatics analysis programs were used to expect the putative target of miR-567. The expression of cyclin-dependent kinase 8 (CDK8) gene at mRNA and protein levels were evaluated by using qRT-PCR and western blotting. Our results found that miR-567 expressions decreased in all the studied NSCLC cells as compared to the normal cell line. A549 cell proliferation was suppressed by miR-567 upregulation while cell apoptosis was promoted. Also, miR-567 upregulation induced cell cycle arrest at sub-G1 and S phases. CDK8 was expected as a target gene of miR-567. MiR-567 upregulation decreased CDK8 mRNA and protein expression while the downregulation of miR-567 increased CDK8 gene expression. These findings revealed that miR-567 may be a tumor suppressor in A549 NSCLC cells through regulating CDK8 gene expression and may serve as a novel therapeutic target for NSCLC treatment.  相似文献   

17.
Circular RNA (circRNA) is a key regulator in the development and progression of human cancers. Previous studies confirmed circRNA-0008717 (circABCB10) as an oncogene in osteosarcoma, but the regulatory effect of circABCB10 in nonsmall cell lung cancer (NSCLC) is still unclear. In the current study, we examined the expression of circABCB10 in different NSCLC cell lines. Bioinformatics analysis, Cell Counting Kit-8 assays, Transwell migration, fluorescein reporting experiments, and xenografts in mice were used to detect the effect of circABCB10 on NSCLC cell proliferation and migration in vitro and tumor growth in vivo. The results showed that the expression of circABCB10 in NSCLC cell lines was increased. Downregulation of circABCB10 suppressed NSCLC cell proliferation and migration by promoting microRNA miR-1252 expression and suppressing Forkhead box 2 (FOXR2). Fluorescein reporting experiments confirmed that circABCB10 expression increased FOXR2 levels by sponging miR-1252, and in vivo experiments found that knockdown of circABCB10 decreased tumor growth. These data suggested that circABCB10 acted as a tumor promoter through a novel miR-1252/FOXR2 axis, providing potential biomarkers and therapeutic targets for the management of NSCLC.  相似文献   

18.
Long noncoding RNAs (lncRNAs) have been shown to have critical regulatory roles in tumorigenesis. lncRNA LINC01561 (LINC01561) is a newly identified tumor-related lncRNA and its dysregulation has been demonstrated in several tumors. However, whether LINC01561 is involved in the progression of non-small-cell lung carcinoma (NSCLC) and its underlying mechanisms remain unknown. In this study, we first provided evidence that LINC01561 expressions were distinctly upregulated in NSCLC tissues and cell lines. Combining with bioinformatics assays and mechanism experiments, our group demonstrated that LINC01561 was activated by SOX2 in NSCLC. Clinical research revealed that upregulation of LINC01561 was related to poorer clinicopathologic features and shorter survival time. Functionally, suppression of LINC01561 exhibited tumor-suppressive functions through impairing cell proliferation, migration, and invasion as well as inducing apoptosis. Moreover, we verified that LINC01561 could directly bind to miR-760, isolating miR-760 from its target gene SHC SH2 domain-binding protein 1 (SHCBP1). We also found that SHCBP1 was lowly expressed in NSCLC and served as a tumor promoter. A functional study indicated that LINC01561 regulated SHCBP1 expression by competitively binding to miR-760. In summary, our findings indicated that SOX2-induced overexpression of LINC01561 promoted the proliferation and metastasis by acting as a competing endogenous RNA to modulate SHCBP1 by sponging miR-760.  相似文献   

19.
Circular RNAs (circRNAs) have an important function in human diseases, especially in cancer. circRNA hsa_circ_0014130 (circPIP5K1A), a particularly abundant circRNA, participates in the tumorigenesis of non-small cell lung cancer (NSCLC), although the underlying regulatory mechanism remains unclear. Here, we investigated the circPIP5K1A role in NSCLC. Expression of circPIP5K1A in NSCLC cell lines was explored with quantitative real-time PCR. The effect of circPIP5K1A on NSCLC was evaluated with circPIP5K1A silencing, miR-600 mimic transfection, and hypoxia-inducible factor (HIF)-1α overexpression, followed by assessment of cell proliferation, metastasis, and tumorigenesis in nude mice. The subcellular localization of circPIP5K1A was evaluated via fluorescence in situ hybridization (FISH), and correlation between circPIP5K1A, miR-600, and HIF-1α was assessed by luciferase assay. The data demonstrated that circPIP5K1A expression was increased in NSCLC cells. FISH showed that circPIP5K1A localized to the cytoplasm. The circPIP5K1A knockdown suppressed NSCLC cell metastasis and proliferation by promoting expression of miR-600. Overexpression of miR-600 inhibited HIF-1α-mediated metastasis and proliferation of NSCLC cell by downregulating the endothelial mesenchymal transition-related proteins, Snail and vimentin, and upregulating E-cadherin. In vivo experiments illustrated that circPIP5K1A silence suppressed tumor growth and pulmonary metastasis. The circPIP5K1A may function as an miR-600 sponge to facilitate NSCLC proliferation and metastasis by promoting HIF-1α. A bifluorescein reporter experiment confirmed that miR-600 was the circPIP5K1A target, and miR-600 interacted with the 3′ untranslated region of HIF-1α. These results show that circPIP5K1A acted as a tumor promoter through a novel circPIP5K1A/miR-600/HIF-1α axis, which provides candidate markers and therapeutic targets for NSCLC.  相似文献   

20.
Lung cancer is the major cause of cancer death globally. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression. Aberrant expression of microRNA (miRNA) has been implicated in cancer initiation and progression. In this study, we demonstrated that the expression of miR-429 are often upregulated in non-small cell lung cancer (NSCLC) compared with normal lung tissues, and its expression level is also increased in NSCLC cell lines compared with normal lung cells. Overexpression of miR-429 in A549 NSCLC cells significantly promoted cell proliferation, migration and invasion, whereas inhibition of miR-429 inhibits these effects. Furthermore, we demonstrated that miR-429 down-regulates PTEN, RASSF8 and TIMP2 expression by directly targeting the 3′-untranslated region of these target genes. Taken together, our results suggest that miR-429 plays an important role in promoting the proliferation and metastasis of NSCLC cells and is a potential target for NSCLC therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号