首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 426 毫秒
1.
Cox HM  Pollock EL  Tough IR  Herzog H 《Peptides》2001,22(3):445-452
A functional study has been performed to characterise the Y receptors responsible for NPY, PYY and PP-stimulated responses in mouse colonic mucosal preparations. Electrogenic ion secretion was stimulated with VIP following which NPY, PYY and PP analogues were, to varying degrees, inhibitory. PYY(3-36), hPP, Gln(23)hPP and rPP were effective but less potent than full length PYY, NPY or their Pro(34)-substituted analogues, while the Y(5) agonist Ala(31), Aib(32)hNPY was the least active peptide tested. The Y(1) antagonists, BIBP3226 and BIBO3304 virtually abolished Pro(34)PYY and PYY responses while PYY(3-36) responses were selectively inhibited by the Y(2) antagonist, BIIE0246. A combination of BIBO3304 and BIIE0246 also partially attenuated hPP responses, leaving residual effects that were most probably Y(4)-mediated. Thus we conclude that Y(1), Y(2) and Y(4) receptors attenuate ion secretion in mouse colon.  相似文献   

2.
The physiological role of neuropeptide Y (NPY) and of specific NPY receptors in regulating the intestinal peristaltic reflex was examined in three-compartment flat-sheet preparations of rat colon. Graded muscle stretch or mucosal stimulation applied to the central compartment inhibited NPY release in the orad compartment where ascending contraction was measured. NPY and the Y1-receptor agonist [Leu31, Pro34]NPY inhibited, whereas the selective Y1-receptor antagonist BIBP 3226 augmented ascending contraction and substance P (SP) release in the orad compartment induced by muscle stretch or mucosal stimulation. Neither agonist nor antagonist had any effect on descending relaxation or VIP release in the caudad compartment. The Y2-receptor agonist NPY13-36 and antagonist BIIE 0246 had no effect on peptide release or mechanical response. The results indicate that suppression of a tonic inhibitory influence of NPY neurons on excitatory neurotransmitter release contributes substantially to the orad contractile phase of the peristaltic reflex. The effect of NPY on neurotransmitter release is mediated by Y1 receptors.  相似文献   

3.
Malmström RE 《Life sciences》2001,69(17):1999-2005
The effects of the first selective, non-peptide, NPY Y2 receptor antagonist (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6h)-oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamid (BIIE0246) were studied on splenic vascular responses evoked in the pig in vivo. BIIE0246 abolished the splenic vasoconstrictor response to the NPY Y2 receptor agonist N-acetyl[Leu25Leu31]NPY(24-36), but did not affect the response to the NPY Y1 receptor agonist [Leu31Pro34]NPY, which in turn was abolished by the selective NPY Y1 receptor antagonist (2R)-5-([amino(imino)methyl]amino)-2-[(2,2-diphenylacetyl)amino]-N-[(IR)-1-(4-hydroxyphenyl)ethyl]-pentanamide (H 409/22). Furthermore, the PYY-evoked splenic vasoconstrictor response was partially antagonized by BIIE0246 and subsequently almost abolished by the addition of H 409/22. It is concluded that BIIE0246 exerts selective (vs the NPY Y1 receptor) NPY Y2 receptor antagonism, and thus represents an interesting tool for classification of NPY receptors, in vivo. In addition, evidence for NPY Y2 receptor mediated vasoconstriction was presented. Furthermore, both NPY Y1 and Y2 receptors are involved in the splenic vasoconstrictor response to PYY.  相似文献   

4.
Xapelli S  Silva AP  Ferreira R  Malva JO 《Peptides》2007,28(2):288-294
In the present work we investigated the neuroprotective role of neuropeptide Y (NPY) after an excitotoxic insult in rat organotypic hippocampal slice cultures. Exposure of 2 week-old rat hippocampal slice cultures to 12muM kainate (KA) for 24h induced neuronal death in dentate gyrus (DG) granular cell layer, CA1 and CA3 pyramidal cell layers, as quantified by cellular propidium iodide (PI) uptake. The activation of Y(1) or Y(2) receptors 30min after starting the exposure to the excitotoxic insult with kainate resulted in neuroprotection by reducing the PI uptake in DG, CA1 and CA3 cell layers. The use of Y(1) or Y(2) receptors antagonists, BIBP3226 (1muM) or BIIE0246 (1muM), resulted in the loss of the neuroprotection induced by the activation of Y(1) or Y(2) receptors, respectively, in all hippocampal subfields. Taken together these results suggest that activation of NPY Y(1) or Y(2) receptors activates neuroprotective pathways that are able to rescue neurons from excitotoxic cell death.  相似文献   

5.
The involvement of Neuropeptide Y (NPY) in the pathophysiology of mood disorders has been suggested by clinical and preclinical evidence. NPY Y1 and Y2 receptors have been proposed to mediate the NPY modulation of stress responses and anxiety related behaviors. To further investigate the role of Y2 receptors in anxiety we studied the effect of BIIE0246, a selective Y2 receptor antagonist, in the elevated plus-maze test. Rats treated with 1.0 nmol BIIE0246 showed an increase in the time spent on the open arm of the maze. In addition, to study the effects of the Y2 antagonism on NPY protein level, NPY-like immunoreactivity was measured in different brain regions following treatment with BIIE0246, but no statistically significant effects were observed. These results suggest that BIIE0246 has an anxiolytic-like profile in the elevated plus-maze.  相似文献   

6.
In this in vitro study, we investigated the influence of neuropeptide Y (NPY) Y1 receptor activation or inhibition on the viability of cultured neuronal or glial cells following oxygen glucose deprivation (OGD). Viability of cultured cells was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. When compared to the vehicle-treated control group, treatment with NPY or [Leu31,Pro34]-NPY (Y1 agonist) reduced viability of cultured SK-N-MC (Y1-expressing) human neuronal cells at 24 h after 1 h of OGD, while BIBP3226 (Y1 antagonist) improved viability. Except at the highest concentration of NPY used in the study, treatment with NPY or NPY3-36 (Y2 agonist) did not influence viability of cultured SH-SY5Y (Y2-expressing) human neuronal cells at 24 h after 1 h of OGD. In addition, treatment with NPY, [Leu31,Pro34]-NPY, NPY3-36, or BIBP3226 did not affect viability of cultured primary astrocytes at 24 h after 4 h of OGD. The present results agree with those of a recent in vivo study. Activation of NPY-Y1 receptors may mediate ischemic pathophysiological processes, and inhibiting the Y1 receptors may be protective. The combination of OGD and cultured neuronal cells may be useful in future studies on the neuroprotective and harmful mechanisms of NPY-Y1 receptor inhibition and activation during ischemia, respectively.  相似文献   

7.
This investigation describes the relative potencies of four peptide agonists, namely, peptide YY (PYY), [Leu3l,Pro34]PYY (Pro34pYY), neuropeptide Y (NPY), and [Leu31,Pro34]NPY (Pro34NPY), as antisecretory agents in human, rat, and mouse gastrointestinal preparations. The inhibition of agonist responses by the Y1-receptor antagonist BIBP 3226 was also tested in each preparation. An unexpectedly pronounced preference for PYY and Pro34PYY was observed in functional studies of two human epithelial lines stably transfected with the rat Y1 receptor (Y1-7 and C1Y1-6). NPY and Pro34NPY were at least an order of magnitude less effective than PYY in these functional studies but were only marginally less potent in displacement binding studies using membrane preparations of the same clonal lines. The orders of agonist potency obtained in Y1-7 and C1Y1-6 epithelia were compared with those obtained from a single human colonic adenocarcinoma cell line (Colony-6, which constitutively expresses Y1 receptors) and also from mucosal preparations of rat and mouse descending colon. Similar peptide orders of potency were obtained in rat and mouse colonic mucosae and Colony-6 epithelia, all of which exhibited PYY preference (although less pronounced than with Y1-7 and C1Y1-6 epithelia) and significant sensitivity to the Y1 receptor antagonist, BIBP 3226. We have compared the pharmacology of these five mammalian epithelial preparations and provide cautionary evidence against the reliance upon agonist concentration-response relationships alone, in the characterization of NPY receptor types.  相似文献   

8.
The NPY Y1-receptor selective antagonist BIBP3226 exerts a dual control on the cytosolic free calcium concentration ([Ca2+]i) in NPY Y1 receptor-transfected Chinese Hamster Ovary Cells (CHO-Y1 cells). It is a potent inhibitor of the NPY-evoked increase in [Ca2+]i. This can be ascribed to its antagonistic properties for the NPY Y, receptor since its less active stereoisomer, BIBP3435, is much less potent. However, when its concentration exceeds 1 microM, BIBP3226 produces a large increase in [Ca2+]i on its own. This effect is mimicked by BIBP3435 and it also occurs in wild type CHO-K1 cells. These latter cells do not contain high affinity binding sites for [3H]NPY and [3H]BIBP3226 and, hence, no endogenous NPY Y1 receptors. It is concluded that, at moderately high concentrations, the NPY Y1 receptor antagonist BIBP3226 and its entantiomer BIBP3435 are able to increase the [Ca2+ ]i in CHO cells either by stimulating another receptor or by directly affecting cellular mechanisms that are involved in calcium homeostasis.  相似文献   

9.
The rat glucocorticoid-induced receptor (rGIR) is an orphan G protein-coupled receptor awaiting pharmacological characterization. Among known receptors, rGIR exhibits highest sequence similarity to the neuropeptide Y (NPY)-Y(2) receptor (38-40%). The pharmacological profile of rGIR was investigated using (125)I-PYY(3-36), a Y(2)-preferring radioligand and several NPY analogs. rGIR displayed a similar displacement profile as reported for the Y(2) receptor, in that the Y(2)-selective C terminus fragments of NPY and PYY (NPY(3-36) and PYY(3-36)) showed high affinity binding and activation of rGIR (low nanomolar range). The rank order potency for displacement was NPY(3-36)>PYY(3-36)=NPY>NPY(13-36)>Ac, Leu NPY(24-36)>[D-Trp(32)]-NPY>Leu(31), Pro(34)-NPY=hPP. NPY and Y(2)-selective agonists NPY(3-36) and PYY(3-36) led to significant activation of (35)S-GTPgammaS binding to rGIR transfected cells. BIIE0246, a specific Y(2) antagonist, displaced (125)I-PYY(3-36) binding to rGIR with high affinity (95nM). Activation of (35)S-GTPgammaS binding by Y(2)-selective agonist in rGIR transfected cells was also completely abolished by BIIE0246. Our data report, for the first time, an interaction of NPY ligands with rGIR expressed in vitro, and indicate similarities between GIR and the NPY-Y(2) receptor.  相似文献   

10.
Bovine chromaffin cells have been used in a variety of studies designed to reveal different aspects of neuropeptide Y (NPY) action. Pharmacological data have defined five NPY receptor subtypes, only one of which (Y3) has not been cloned. Some studies with bovine chromaffin cells have concluded that the effects of NPY on this cell type are mediated by the Y3 subtype. Previous work from our laboratory demonstrates that a Y1 subtype mediates the effect of NPY in this tissue. In the current studies we provide further evidence for the existence of the Y1 subtype in bovine chromaffin cells. BIBP3226, the selective Y1 antagonist, potently displaces [125I]NPY from its binding site IC50 = 1.91 x 10(-9) M. Moreover, [125I]BIBP3226 binds to bovine chromaffin cell membranes with high affinity (IC50 = 5.9 x 10(-8) M). Examination of BIBP3226 antagonism of NPY inhibition of forskolin stimulated cyclic AMP accumulation reveals that it is a competitive antagonist with a K(B) similar to the IC50 for [125I]BIBP3226 binding. Northern blot analysis using a porcine cDNA clone for the Y1 subtype demonstrates a 3.5-kb mRNA species in chromaffin cells. These data identify the bovine chromaffin cell NPY receptor as a Y1 subtype.  相似文献   

11.
The purpose of the present study was to determine whether the activation of NPY receptors alters catecholamines (CA) synthesis in the central nervous system and, if so, to identify the NPY receptor subtype(s) mediating this effect. Tyrosine hydroxylation, the rate-limiting step in CA synthesis, was assessed by measuring the accumulation of 3,4-dihydroxyphenyalanine (DOPA) by high pressure liquid chromatography coupled to electrochemical detection (HPLC-EC) in rat striatal dices following incubation of the tissue with the aromatic L-amino acid decarboxylase inhibitor m-hydroxybenzyl hydrazine (NSD 1015). Treatment with NSD 1015 resulted in an increase in DOPA accumulation that was increased even further following depolarization with a high potassium (KCl) buffer. PYY13-36 and NPY13-36 both produced a significant enhancement of the KCl-induced increase in DOPA accumulation. The effect of PYY13-36 was completely attenuated by the selective Y2 antagonist BIIE0246 suggesting that activation of Y2 receptors enhanced the synthesis of dopamine. In contrast to the effects of NPY13-36 and PYY13-36; NPY, PYY and PYY3-36 all produced a significant attenuation of the KCl-induced increase in DOPA accumulation. The Y1 antagonist BIBO3304 and the Y5-antagonist CGP71683A, both prevented the inhibitory effect of NPY converting it to a stimulatory effect. The enhancement of the NPY induced increase in DOPA accumulation observed by BIBO3304 was attenuated when examined in the presence of the Y2 antagonist BIIE0246. These results suggest that activation of NPY receptors can modulate the synthesis of CA in the rat striatum. The Y1 and Y5 receptor appear to be involved in attenuation, while Y2 receptors are involved in the stimulation of synthesis.  相似文献   

12.
In a rat endovascular middle cerebral artery occlusion (MCAO) stroke model, we previously showed that intracerebroventricular (ICV) injection of neuropeptide Y (NPY) or an Y1 receptor agonist, [Leu(31),Pro(34)]-NPY, increased the infarct volume, that an Y1 receptor antagonist, BIBP3226, reduced the infarct volume, and that an Y2 receptor agonist, NPY3-36, had no effect. In this study, we used electron paramagnetic resonance (EPR) spectroscopy to measure nitric oxide (NO) and examined how ICV administration of NPY or its receptor analogs would modulate the brain NO level between the bregma levels +2 and -4 mm during MCAO, since excessive NO mediates ischemic damage. The relative brain NO concentration was increased to 131.94 +/- 7.99% (mean +/- SEM; n = 8) at 15 min of MCAO. NPY treatment further increased the relative brain NO concentration to 250.94 +/- 50.48% (n = 8), whereas BIBP3226 significantly reduced the brain NO concentration to 69.63 +/- 8.84% (n = 8). [Leu(31),Pro(34)]-NPY (137.61 +/- 14.54%; n = 7) or NPY3-36 (129.23 +/- 21.77%; n = 8) did not affect the brain NO concentration at 15 min of MCAO. Our results suggest that the NPY-Y1 receptor activation mediates ischemic injury via NO overproduction and that inhibition of the Y1 receptor may confer protection via suppression of excessive NO production during ischemia.  相似文献   

13.
The aim of the study was to clarify the role of the Y(2) receptor in regulation of vagal control of the heart, using Y(2)((-/-)) receptor-knockout mice. Adult Y(2)((+/+),(-/-)) mice (50% C57BL/6-50% 129/SvJ background) were anaesthetised and artificially ventilated. Arterial blood pressure and pulse interval was recorded and both vagus nerves were cut. The cardiac end of the right vagus nerve was stimulated supra-maximally every 30 s (7 V, 2-2.5 Hz, 5 s). Neuropeptide Y (NPY) and a Y(2) receptor agonist, N-acetyl [Leu(28, 31)]NPY 24-36, were injected intravenously in both groups of mice. N-acetyl [Leu(28, 31)] NPY 24-36 was also administered to control mice in the presence of a Y(2) receptor antagonist, BIIE0246. Stimulation of the vagus nerve increased pulse interval (PI) by approximately 100 ms. NPY and N-acetyl [Leu(28, 31)] NPY 24-36 attenuated the increase in PI evoked by vagal stimulation in control mice only. The attenuation was reduced in the presence of BIIE0246. The results presented here show in Y(2)((-/-)) receptor-knockout mice that NPY and N-acetyl [Leu(28, 31)] NPY 24-36 have no effect on PI evoked by vagal stimulation. These findings demonstrate that NPY attenuates parasympathetic activity to the heart via the Y(2) receptor.  相似文献   

14.
Neuropeptide Y (NPY) and melanocortin (MC) peptides have opposite effects on food intake: NPY-like peptides and MC receptor antagonists stimulate feeding and increase body weight, whereas melanocortins and NPY antagonists inhibit food intake. In this study we tested whether the orexigenic effect of the selective MC4 receptor antagonist HS014 (1 nmol) could be inhibited by three different NPY antagonists, (R)-N2-(diphenylacetyl)-N-[(4-hydroxy-phenyl)methyl]D-argininam ide (BIBP3226), (R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N2(diphenyl acetyl)-argininamidetrifluoroacetate (BIBO3304), and decapeptide [D-Tyr(27,36)D-Thr32]NPY(27-36), after icv administration in freely feeding male rats. All three NPY receptor antagonists inhibited the orexigenic effects of HS014 partially and with markedly different potency. [D-Tyr(27,36)D-Thr32]NPY(27-36) was active only in subconvulsive dose. The NPY Y1 selective antagonist BIBP3226 was more effective in inhibiting the effect of HS014 than BIBO3304 despite in vitro data indicating that BIBP3226 is about 10 times less potent than BIBO3304 at NPY Y1 receptor. An enantiomer of BIBO3304, BIBO3457, failed to inhibit HS014-induced feeding, indicating that the effects of BIBO3304 were stereoselective. These results suggest that stimulation of food intake caused by weakening of melanocortinergic tone at the MC4 receptor is partially but not exclusively related to NPY Y1 receptor activation.  相似文献   

15.
16.
We investigated the mitogenic effect, measured as [3H]thymidine incorporation, of neuropeptide Y (NPY) on smooth muscle cells (SMCs) from human subcutaneous arteries (diameter: 0.4 mm). NPY stimulated DNA synthesis in a concentration-dependent manner, Emax 32 +/- 5% relative to control. The effect was potently antagonised by the NPY Y1 receptor antagonist BIBP3226 ((R)-N2-(diphenylacetyl)-N-[(4-hydroxy-phenyl)methyl]-D-arginine-a mide), indicating the effect to be mediated via the NPY Y1 receptor. Noradrenaline (NA) also induced mitogenesis, Emax 35 +/- 10% relative to control. When added together, NPY and NA potentiated the [3H]thymidine incorporation, Emax 109 +/- 38% relative to control. Also, this effect seems to be mediated by the NPY Y1 receptor, since BIBP3226 blocked the effect (44 +/- 9% relative to control). The mitogenic effect of NPY and NA, two important transmitters of the sympathetic nervous system, might have clinical consequences on conditions with elevated sympathetic nerve activity.  相似文献   

17.
We investigated the role of endogenous neuropeptide Y (NPY) system in nicotine-mediated improvement of learning and memory in rat model of Alzheimer's disease (AD). Intracerebroventricular (icv) colchicine treatment induced AD-like condition in rats and showed increased escape latency (decreased learning), and amnesic condition in probe test in Morris water maze. In these rats, nicotine (0.5mg/kg, intraperitoneal), NPY (100 ng/rat, icv) or NPY Y1 receptor agonist [Leu(31), Pro(34)]-NPY (0.04 ng/rat, icv) decreased escape latency by 54.76%, 55.81% and 44.18%, respectively, on day 4 of the acquisition. On the other hand, selective NPY Y1 receptor antagonist, BIBP3226 (icv) produced opposite effect (44.18%). In the probe test conducted at 24h time point, nicotine, NPY or [Leu(31), Pro(34)]-NPY increased the time spent by 72.72%, 44.11% and 26.47%, respectively; while BIBP3226 caused reduction (8.82%). It seems that while NPY or [Leu(31), Pro(34)]-NPY potentiated, BIBP3226 attenuated the learning and memory enhancing effects of nicotine. Brains of colchicine treated rats showed significant reduction in NPY-immunoreactivity in the nucleus accumbens shell (cells 62.23% and fibers 50%), bed nucleus of stria terminalis (fibers 71.58%), central nucleus of amygdala (cells 74.33%), arcuate nucleus (cells 70.97% and fibers 69.65%) and dentate gyrus (cells 58.54%). However, in these rats nicotine treatment for 4 days restored NPY-immunoreactivity to the control level. We suggest that NPY, perhaps acting via NPY Y1 receptors, might interact with the endogenous cholinergic system and play a role in improving the learning and memory processes in the rats with AD-like condition.  相似文献   

18.
Wilson JX 《FEBS letters》2002,518(1-3):5-9
The neuropeptide Y (NPY) receptor Y2 antagonist BIIE0246 has sub-nanomolar affinity for the human Y2 (hY2) receptor but binds very poorly to chicken Y2 (chY2) with micromolar affinity. Sequence comparisons identified several amino acids for investigation by mutagenesis. Reciprocal mutagenesis between hY2 and chY2 revealed that three of these, individually and in combination, are important for BIIE0246 binding, namely positions Gln(135) in transmembrane (TM) 3, Leu(227) in TM5, and Leu(284) in TM6. Mutagenesis of hY2 to the corresponding amino in chY2 (generating hY2[Q135H,L227Q,L284F]) made the affinity of BIIE0246 as low as for chY2. Introduction into chY2 of the three human residues resulted in antagonist affinity almost as high as for hY2. To distinguish between direct and indirect effects, each of the three residues in hY2 was replaced with alanine. BIIE0246 bound with 28-fold lower affinity to hY2[L227A], suggesting the Leu(227) interacts directly with the antagonist. The other two alanine mutants bound with unaltered affinity, suggesting that the corresponding chY2 residues abolish binding through steric hindrance or charge repulsion. Thus, three amino acid residues can in an additive manner completely account for the difference in antagonist binding between the hY2 and chY2 receptors. These results will be useful for construction of three-dimensional models of the widely divergent NPY receptor subtypes.  相似文献   

19.
Desensitization of G protein-coupled receptors (GPCRs) involves receptor phosphorylation and reduction in the number of receptors at the cell surface. The neuropeptide Y (NPY) Y(1) receptor undergoes fast desensitization. We examined agonist-induced signaling and internalization using NPY Y(1) receptors fused to green fluorescent protein (EGFP). When expressed in HEK293 cells, EGFP-hNPY Y(1) receptors were localized at the plasma membrane, desensitized rapidly as assessed using calcium responses, and had similar properties compared to hNPY Y(1) receptors. Upon agonist challenge, the EGFP signal decreased rapidly (t(1/2) = 107 +/- 3 s) followed by a slow recovery. This decrease was blocked by BIBP3226, a Y(1) receptor antagonist, or by pertussis toxin, in agreement with Y(1) receptor activation. Internalization of EGFP-hNPY Y(1) receptors to acidic endosomal compartments likely accounts for the decrease in the EGFP signal, being absent after pretreatment with monensin. Concanavalin A and hypertonic sucrose, which inhibit clathrin-mediated endocytosis, blocked the decrease in fluorescence. After agonist, intracellular EGFP signals were punctate and co-localized with transferrin-Texas Red, a marker of clathrin-associated internalization and recycling, but not with LysoTracker Red, a lysosomal pathway marker, supporting receptor trafficking to recycling endosomes rather than the late endosomal/lysosomal pathway. Pulse-chase experiments revealed no receptor degradation after internalization. The slow recovery of fluorescence was unaffected by cycloheximide or actinomycin D, indicating that de novo synthesis of receptors was not limiting. Use of a multicompartment model to fit our fluorescence data allows simultaneous determination of internalization and recycling rate constants. We propose that rapid internalization of receptors via the clathrin-coated pits recycling pathway may largely account for the rapid desensitization of NPY Y(1) receptors.  相似文献   

20.
Summary An intracerebroventricular (icv) injection of neuropeptide Y (NPY) or [Leu31, Pro34]-NPY (non-Y2 receptor agonist) given during middle cerebral artery occlusion (MCAO) increases the infarct volume and nitric oxide (NO) overproduction in the rat brain. An icv injection of NPY3-36 (non-Y1 receptor agonist) has no effects, while BIBP3226 (selective Y1 receptor antagonist) reduces the infarct volume and NO overproduction. This study examined the effects of NPY or its receptor analog on the immunoreactivity (ir) for three isoforms of NO synthase (NOS) following 1h of MCAO and 3h of reperfusion. Focal ischemia/reperfusion led to increased ir for neuronal NOS (nNOS) within the ipsilateral caudate putamen and insular cortex. NPY or [Leu31, Pro34]-NPY enhanced but BIBP3226 suppressed such increase in the nNOS-ir. Focal ischemia/reperfusion also led to an ipsilateral increase in extent and/or intensity of the ir for endothelial NOS (eNOS) in the caudate putamen and/or parietal cortex. NPY or [Leu31, Pro34]-NPY suppressed but BIBP3226 enhanced such change in the eNOS-ir. NPY3-36 did not consistently influence the nNOS-ir or eNOS-ir following MCAO. Specific ir for inducible NOS was undetectable. These opposing effects of NPY-Y1 receptor activation or inhibition on nNOS and eNOS may lead to harmful or beneficial consequences following ischemia/reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号