首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The affinity and specificity of a ligand for its DNA site is a function of the conformational changes between the isolated and complexed states. Although the structures of a hydroxypyrrole-imidazole-pyrrole polyamide dimer with 5'-CCAGTACTGG-3' and the trp repressor recognizing the sequence 5'-GTACT-3' are known, the baseline conformation of the DNA site would contribute to our understanding of DNA recognition by these ligands. The 0.74 A resolution structure of a B-DNA double helix, 5'-CCAGTACTGG-3', has been determined by X-ray crystallography. Six of the nine phosphates, two of four bound calcium ions and networks of water molecules hydrating the oligonucleotide have alternate conformations. By contrast, nine of the ten bases have a single, unique conformation with hydrogen atoms visible in most cases. The polyamide molecules alter the geometry of the phosphodiester backbone, and the water molecules mediating contacts in the trp repressor/operator complex are conserved in the unliganded DNA. Furthermore, the multiple conformational states, ions and hydration revealed by this ultrahigh resolution structure of a B-form oligonucleotide are potentially general considerations for understanding DNA-binding affinity and specificity by ligands.  相似文献   

2.
3.
Aghajari N  Roth M  Haser R 《Biochemistry》2002,41(13):4273-4280
The psychrophilic Pseudoalteromonas haloplanctis alpha-amylase is shown to form ternary complexes with two alpha-amylase inhibitors present in the active site region, namely, a molecule of Tris and a trisaccharide inhibitor or heptasaccharide inhibitor, respectively. The crystal structures of these complexes have been determined by X-ray crystallography to 1.80 and 1.74 A resolution, respectively. In both cases, the prebound inhibitor Tris is expelled from the active site by the incoming oligosaccharide inhibitor substrate analogue, but stays linked to it, forming well-defined ternary complexes with the enzyme. These results illustrate competition in the crystalline state between two inhibitors, an oligosaccharide substrate analogue and a Tris molecule, bound at the same time in the active site region. Taken together, these structures show that the enzyme performs transglycosylation in the complex with the pseudotetrasaccharide acarbose (confirmed by a mutant structure), leading to a well-defined heptasaccharide, considered as a more potent inhibitor. Furthermore, the substrate-induced ordering of water molecules within a channel highlights a possible pathway used for hydrolysis of starch and related poly- and oligosaccharides.  相似文献   

4.
5.
A detailed analysis of the DNA-binding sites of 26 proteins is presented using data from the Nucleic Acid Database (NDB) and the Protein Data Bank (PDB). Chemical and physical properties of the protein-DNA interface, such as polarity, size, shape, and packing, were analysed. The DNA-binding sites shared common features, comprising many discontinuous sequence segments forming hydrophilic surfaces capable of direct and water-mediated hydrogen bonds. These interface sites were compared to those of protein-protein binding sites, revealing them to be more polar, with many more intermolecular hydrogen bonds and buried water molecules than the protein-protein interface sites. By looking at the number and positioning of protein residue-DNA base interactions in a series of interaction footprints, three modes of DNA binding were identified (single-headed, double-headed and enveloping). Six of the eight enzymes in the data set bound in the enveloping mode, with the protein presenting a large interface area effectively wrapped around the DNA.A comparison of structural parameters of the DNA revealed that some values for the bound DNA (including twist, slide and roll) were intermediate of those observed for the unbound B-DNA and A-DNA. The distortion of bound DNA was evaluated by calculating a root-mean-square deviation on fitting to a canonical B-DNA structure. Major distortions were commonly caused by specific kinks in the DNA sequence, some resulting in the overall bending of the helix. The helix bending affected the dimensions of the grooves in the DNA, allowing the binding of protein elements that would otherwise be unable to make contact. From this structural analysis a preliminary set of rules that govern the bending of the DNA in protein-DNA complexes, are proposed.  相似文献   

6.
The geometry of the binary and ternary complexes of two black-eyed pea inhibitors with trypsin and chymotrypsin has been established by distance measurements using the technique of singlet-singlet energy transfer. Triangulation of measured distances in the ternary double-headed complex of the trypsin-chymotrypsin inhibitor (BEPCI) with trypsin and chymotrypsin limits the possible structural models for this complex to those in which the center to center distance between trypsin and chymotrypsin is about 64 A, the distance from the center of trypsin to the single fluorescently labeled tyrosyl residue of the BEPCI dimer is about 33 A, and the distance between the chymotrypsin center and the labeled tyrosine of the inhibitor is about 43 A. Energy transfer results for the trypsin inhibitor (BEPTI) complexes show conclusively that the weak trypsin site is structurally analogous to the strong chymotrypsin binding site of BEPCI. The weak chymotrypsin binding site of BEPTI is structurally analogous to the strong trypsin sites of BEPCI and BEPTI. Corresponding distances in binary and ternary complexes are the same, indicating that little or no structural rearrangement occurs when the ternary complexes are formed. Complex formation was shown to involve tryptophan and tryosine residues of both trypsin and chymotrypsin as judged by absorption and circular dichroism difference spectroscopy. In addition, circular dichroism difference spectra revealed some disulfide contributions.  相似文献   

7.
D J Weber  G P Mullen  A S Mildvan 《Biochemistry》1991,30(30):7425-7437
The dinucleoside phosphodiester dTdA is a slow substrate of staphylococcal nuclease (kcat = 3.8 X 10(-3) s-1) that forms binary E-S and ternary E-M-S complexes with Ca2+, Mn2+, Co2+, and La3+. The enzyme enhances the paramagnetic effects of Co2+ on 1/T1 and 1/T2 of the phosphorus and on 1/T1 of six proton resonances of dTdA, and these effects are abolished by binding of the competitive inhibitor 3',5'-pdTp. From paramagnetic effects of Co2+ on 1/T2 of phosphorus, koff of dTdA from the ternary E-Co(2+)-dTdA complex is greater than or equal to 4.8 X 10(4) s-1 and kon greater than or equal to 1.4 X 10(6) M-1 s-1, indicating the 1/T1 values to be in fast exchange. From paramagnetic effects of enzyme-bound Co2+ on 1/T1 of phosphorus and protons, with use of a correlation time of 1.6 ps on the basis of 1/T1 values at 250 and 600 MHz, 7 metal-nucleus distances and 9 lower-limit metal-nucleus distances are calculated. The long Co2+ to 31P distance of 4.1 +/- 0.9 A, which is intermediate between that expected for direct phosphoryl coordination (3.31 +/- 0.02 A) and a second sphere complex with an intervening water ligand (4.75 +/- 0.02 A), suggests either a distorted inner sphere complex or the rapid averaging of 18% inner sphere and 82% second sphere complexes and may explain the reduced catalytic activity with small dinucleotide substrates. Seventeen interproton distances and 108 lower limit interproton distances in dTdA in the ternary E-La(3+)-dTdA complex were determined by NOESY spectra at 50-, 100-, and 200-ms mixing times. While metal-substrate and interproton distances alone did not yield a unique structure, the combination of both sets of distances yielded a very narrow range of conformations for enzyme-bound dTdA, which was highly extended, with no base stacking, with high-anti glycosidic torsional angles for dT (64 degrees less than or equal to chi less than or equal to 73 degrees) and dA (66 degrees less than or equal to chi less than or equal to 68 degrees) and predominantly C-2'-endo sugar puckers for both nucleosides. Although the individual nucleosides are like those of B-DNA, their unstacked conformation, which is inappropriate for base pairing, as well as the conformational angles alpha and gamma of dA and zeta of dT, rule out B-DNA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The cyclin-dependent kinase inhibitor (CKI) p27Kip1 plays a critical role in cell cycle regulation by binding and inhibiting (or activating) various cyclin-dependent kinase (Cdk)/cyclin complexes. Thermal denaturation monitored by circular dichroism (CD) and isothermal titration calorimetry (ITC) were used to determine the relative stabilities and affinities of p27-KID (p27 kinase inhibitory domain) complexes with activated Cdk2 (phosphorylated at Thr160; P-Cdk2) and non-activated forms of Cdk2 and/or cyclin A. Phosphorylation of residue Thr160 only slightly increases the thermal stability of Cdk2, and its binary complexes with cyclin A and p27-KID. The p27-KID/P-Cdk2/cyclin A or p27-KID/Cdk2/cyclin A ternary complexes exhibited significantly higher thermal stabilities compared to the binary complexes (P-Cdk2/cyclin A or Cdk2/cyclin A). Differences in T(m) values between the binary and ternary complexes with P-Cdk2 and Cdk2 were +25.9 and +20.4 degrees C, respectively. These results indicate that the ternary complex with phosphorylated Cdk2 is stabilized to a larger extent than the non-phosphorylated complex. The free energy of association (deltaG(A)) for formation of the two ternary complexes was more favorable than for the binary complexes, indicating that a significantly smaller population of free components existed when all three components were present. These data indicate that p27-KID, which is intrinsically disordered in solution, acts as a thermodynamic tether when bound within the ternary complexes. It is proposed that thermodynamic tethering may be a general phenomena associated with intrinsically unstructured proteins (IUPs) which often function by binding to multiple partners in multi-protein assemblies.  相似文献   

9.
Y Doi 《Biochemistry》1992,31(41):10061-10069
One of the two actin molecules in the ternary actin-gelsolin complex was selectively cross-linked to gelsolin when benzophenonemaleimide-actin (BPM-actin) was used [Doi, Y., Banba, M., & Vertut-Doi (1991a) Biochemistry 30, 5769-5777]. Here, we examine the interaction between gelsolin and BPM-actin dimer in which BPM-actin is covalently conjugated to unlabeled actin by p-phenylenedimaleimide (pPDM). BPM-actin dimer having an apparent molecular mass of 115 kDa is photo-cross-linked to gelsolin (90 kDa) more effectively than BPM-actin monomer in the presence of Ca2+, forming a cross-linked actin dimer-gelsolin (1:1) complex with a molecular mass of 210 kDa. The tight direct association of the dimer to gelsolin is shown by the titration of gelsolin with the fluorescently labeled dimer and by the higher concentration of phosphatidylinositol 4,5-bisphosphate required to inhibit the formation of BPM-dimer complex with gelsolin than that of BPM-monomer complex. However, an attempt to cross-link the two actin molecules in the ternary actin-gelsolin (2:1) complex by pPDM fails. The results argue that the topography of the two actin molecules in the actin-gelsolin (2:1) complex is similar, but not identical, to that of the barbed end of an actin filament.  相似文献   

10.
11.
An extensive analysis of structural databases is carried out to investigate the relative flexibility of B-DNA and A-RNA duplexes in crystal form. Our results show that the general anisotropic concept of flexibility is not very useful to compare the deformability of B-DNA and A-RNA duplexes, since the flexibility patterns of B-DNA and A-RNA are quite different. In other words, ‘flexibility’ is a dangerous word for describing macromolecules, unless it is clearly defined. A few soft essential movements explain most of the natural flexibility of A-RNA, whereas many are necessary for B-DNA. Essential movements occurring in naked B-DNAs are identical to those necessary to deform DNA in DNA–protein complexes, which suggest that evolution has designed DNA–protein complexes so that B-DNA is deformed according to its natural tendency. DNA is generally more flexible, but for some distortions A-RNA is easier to deform. Local stiffness constants obtained for naked B-DNAs and DNA complexes are very close, demonstrating that global distortions in DNA necessary for binding to proteins are the result of the addition of small concerted deformations at the base-pair level. Finally, it is worth noting that in general the picture of the relative deformability of A-RNA and DNA derived from database analysis agrees very well with that derived from state of the art molecular dynamics (MD) simulations.  相似文献   

12.
A hairpin pyrrole polyamide conjugated to a Hoechst 33258 (Ht) analogue, PyPyPy-gamma-PyPyPy-gamma-Ht, was synthesized on solid-phase by adaptation of an Fmoc technique using a series of PyBOP/HOBt mediated coupling reactions. Sequence selectivity and complex stabilities were characterized by spectrofluorometric titrations and thermal melting studies. The polyamide of the conjugate was observed to bind in a hairpin motif forming 1:1 conjugate:dsDNA complexes. The conjugate is able to recognize nine contiguous A/T bps, discriminating from the sequences containing fewer than nine contiguous A/T bps.  相似文献   

13.
A growing body of Alzheimer's disease (AD) research is concerned with understanding the interaction between amyloid-β (Aβ) peptides and metal ions (e.g., Cu, Zn, and Fe) and determining the biological relevance of the metal-Aβ complexes to essential metal homeostasis and neuronal cell loss. Previously, many studies have dealt with the interaction between Aβ and "single" but not "multiple" metal ions in terms of binding affinity and coordination chemistry. In the present work, we found that Zn(II) ions modified the configuration of Aβ-Cu(II) by forming Zn(II)-Aβ-Cu(II) ternary complexes. As a result, the catalytic activity of Aβ-Cu(II) against a biological ascorbic acid species was repressed by Zn(II) binding. The formation of the ternary complex can therefore explain the protective role of Zn(II) in AD.  相似文献   

14.
We have used rapid-mix flow cytometry to analyze the early subsecond dynamics of the disassembly of ternary complexes of G protein-coupled receptors (GPCRs) immobilized on beads to examine individual steps associated with guanine nucleotide activation. Our earlier studies suggested that the slow dissociation of Galpha and Gbetagamma subunits was unlikely to be an essential component of cell activation. However, these studies did not have adequate time resolution to define precisely the disassembly kinetics. Ternary complexes were assembled using three formyl peptide receptor constructs (wild type, formyl peptide receptor-Galpha(i2) fusion, and formyl peptide receptor-green fluorescent protein fusion) and two isotypes of the alpha subunit (alpha(i2) and alpha(i3)) and betagamma dimer (beta(1)gamma(2) and beta(4)gamma(2)). At saturating nucleotide levels, the disassembly of a significant fraction of ternary complexes occurred on a subsecond time frame for alpha(i2) complexes and tau(1/2)< or =4s for alpha(i3) complexes, time scales that are compatible with cell activation. beta(1)gamma(2) isotype complexes were generally more stable than beta(4)gamma(2)-associated complexes. The comparison of the three constructs, however, proved that the fast step was associated with the separation of receptor and G protein and that the dissociation of the ligand or of the alpha and betagamma subunits was slower. These results are compatible with a cell activation model involving G protein conformational changes rather than disassembly of Galphabetagamma heterotrimer.  相似文献   

15.
Indole-3-acetic acid and indole-3-propionic acid, two potent natural plant growth hormones, have attracted attention as promising prodrugs in cancer therapy. Copper is known to be a cofactor essential for tumor angiogenesis. We have previously reported that taurine, l-glutamine, and quinoline-2-carboxaldehyde Schiff base copper complexes inhibit cell proliferation and proteasome activity in human cancer cells. In the current study, we synthesized two types of copper complexes, dinuclear complexes and ternary complexes, to investigate whether a certain structure could easily carry copper into cancer cells and consequently inhibit tumor proteasome activity and induce apoptosis. We observed that ternary complexes binding with 1,10-phenanthroline are more potent proteasome inhibitors and apoptosis inducers than dinuclear complexes in PC-3 human prostate cancer cells. Furthermore, the ternary complexes potently inhibit proteasome activity before induction of apoptosis in MDA-MB-231 human breast cancer cells, but not in nontumorigenic MCF-10A cells. Our results suggest that copper complexes binding with 1,10-phenanthroline as the third ligand could serve as potent, selective proteasome inhibitors and apoptosis inducers in tumor cells, and that the ternary complexes may be good potential anticancer drugs.  相似文献   

16.
17.
C M Cohen  S F Foley 《Biochemistry》1984,23(25):6091-6098
Ternary complex formation between the major human erythrocyte membrane skeletal proteins spectrin, protein 4.1, and actin was quantified by measuring cosedimentation of spectrin and band 4.1 with F-actin. Complex formation was dependent upon the concentration of spectrin and band 4.1, each of which promoted the binding of the other to F-actin. Simultaneous measurement of the concentrations of spectrin and band 4.1 in the sedimentable complex showed that a single molecule of band 4.1 was sufficient to promote the binding of a spectrin dimer to F-actin. However, the molar ratio of band 4.1/spectrin in the complex was not fixed, ranging from approximately 0.6 to 2.2 as the relative concentration of added spectrin to band 4.1 was decreased. A mole ratio of 0.6 band 4.1/spectrin suggests that a single molecule of band 4.1 can promote the binding of more than one spectrin dimer to an actin filament. Saturation binding studies showed that in the presence of band 4.1 every actin monomer in a filament could bind at least one molecule of spectrin, yielding ternary complexes with spectrin/actin mole ratios as high as 1.4. Electron microscopy of such complexes showed them to consist of actin filaments heavily decorated with spectrin dimers. Ternary complex formation was not affected by alteration in Mg2+ or Ca2+ concentration but was markedly inhibited by KCl above 100 mM and nearly abolished by 10 mM 2,3-diphosphoglycerate or 10 mM adenosine 5'-triphosphate. Our data are used to refine the molecular model of the red cell membrane skeleton.  相似文献   

18.
19.
Telomeres are the specialized protein--DNA complexes that cap and protect the ends of linear eukaryotic chromosomes. The extreme 3' end of the telomeric DNA in Oxytricha nova is bound by a two-subunit sequence-specific and 3' end-specific protein called the telomere end-binding protein (OnTEBP). Here we describe the crystal structure of the alpha-subunit of OnTEBP in complex with T4G4 single-stranded telomeric DNA. This structure shows an (alpha--ssDNA)2 homodimer with a large approximately 7,000 A2 protein--protein interface in which the domains of alpha are rearranged extensively from their positions in the structure of an alpha--beta--ssDNA ternary complex. The (alpha--ssDNA)2 complex can bind two telomeres on opposite sides of the dimer and, thus, acts as a protein mediator of telomere--telomere associations. The structures of the (alpha--ssDNA)2 dimer presented here and the previously described alpha--beta--ssDNA complex demonstrate that OnTEBP forms multiple telomeric complexes that potentially mediate the assembly and disassembly of higher order telomeric structures.  相似文献   

20.
Quinolone antibacterial drugs target both DNA gyrase (Gyr) and topoisomerase IV (Topo IV) and form topoisomerase-quinolone-DNA ternary complexes. The formation of ternary complexes results in the inhibition of DNA replication and leads to the generation of double-strand breaks and subsequent cell death. Here, we have studied the consequences of collisions between the UvrD helicase and the ternary complexes formed with either Gyr, Topo IV, or a mutant Gyr, Gyr (A59), which does not wrap the DNA strand around itself. We show (i) that Gyr-norfloxacin (Norf)-DNA and Topo IV-Norf-DNA, but not Gyr (A59)-Norf-DNA, ternary complexes inhibit the UvrD-catalyzed strand-displacement activity, (ii) that a single-strand break is generated at small portions of the ternary complexes upon their collisions with UvrD, and (iii) that the majority of Topo IV-Norf-DNA ternary complexes become nonreversible when UvrD collides with the Topo IV-Norf-DNA ternary complexes, whereas the majority of Gyr-Norf-DNA ternary complexes remain reversible after their collision with the UvrD helicase. These results indicated that different DNA repair mechanisms might be involved in the repair of Gyr-Norf-DNA and Topo IV-Norf-DNA ternary complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号