首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
It is well established that normal patterns of epithelial cell proliferation and metabolism, and of fiber cell differentiation and maturation are essential for the maintenance of transparency in the ocular lens. Several factors, including exposure to high levels of sugars, have been known to result in the compromise of lens transparency. For example, initiation of lens cell damage by galactose induces lens epithelial cells to proliferate. Elevated levels of c-myc mRNA have usually been correlated with rapid cell growth and increased entry of cells into the S phase. Therefore, changes in c-myc mRNA levels may provide an early indication of the stimulation of lens epithelial cells to proliferate and differentiate, which has been postulated to be an early and important event in response to lens cell injury by galactose. By Northern blot hybridization analysis we quantitated c-myc mRNA levels in the lens capsule epithelia of rats (1) exposed to galactose, and (2) undergoing a partial recovery from the galactose-induced cell damage. At the onset of lens cell damage, we find c-myc mRNA to elevate to 6-fold by 24 hr, and by 48 hr decreases to about 3-fold the normal levels. During recovery, c-myc mRNA continues to be expressed at high levels approaching a 10-fold increase by day 12, then decreasing to levels of about 8-fold the control by day 30. The 24 h transitory elevation in c-myc mRNA in lens epithelial cells is in accord with our previous observations on the 24 h increase in MP26, crystallin and aldose reductase mRNAs following a high influx of galactose. Therefore, the elevation in c-myc mRNA as well suggest that galactose appears to cause lens cells to undergo an early transitory period of gene induction following the exposure of lens cells to galactose.  相似文献   

3.
4.
Dulcitol-1(6)-14C was administered to leaves of E. japonica and samples were taken for time periods ranging from 0·5 to 24 hr. For each time period the absolute activity of the glucose, galactose and dulcitol pools was determined. Such studies demonstrated that dulcitol is converted to glucose and galactose. The initial product was glucose, some of which was converted to galactose, glacturonic acid and glucuronic acid. Fractionation of a leaf sample into its pectin, lignin, hemicellulose and α-cellulose components, with subsequent hydrolysis, showed that the dulcitol pool is used in the synthesis of structural carbohydrates. The activity of these fractions was shown to reside in dulcitol, glucose, galactose, galacturonic acid and glucuronic acid residues.  相似文献   

5.
Aldose reductase (AR), an enzyme which converts glucose to sorbitol, has been implicated in the pathogenesis of diabetic cataracts and retinopathy. The normal physiological role of this enzyme in ocular tissue, however, remains unclear. In a developmental study in the rat using in situ and Northern hybridization analyses, we have found that there is a high level of AR mRNA expression in optic cup and lens as early as embryonic day 13. Serial sections through whole embryos at this stage showed that the eye was the only site of AR mRNA hybridization. Levels of AR mRNA declined in the retina as differentiation proceeded and were very sparse there postnatally. As lens development progressed, epithelial AR mRNA levels remained high, especially in the germinative zone, which is the source of the cells that will become lens fibers, and in the bow region, where these cells undergo a dramatic morphogenetic differentiation into lens fibers. AR mRNA was undetectable in terminally differentiated lens fibers. Since it has been suggested that AR-catalyzed sorbitol production could be an osmoprotective device of lens epithelium during systemic hyperosmolar stress, AR mRNA levels from dehydrated hyperosmolar rats were compared with euvolemic control values, and no difference was found. In summary, AR appears to be of particular importance in the development of the eye, with its retinal role receding relative to lens as differentiation is completed. A continued high level of expression in lens epithelium in adulthood may be explained by the fact that lens tissue, unlike retina, normally continues to proliferate and differentiate after birth. The temporal and spatial pattern of distribution of AR mRNA is strongly suggestive of a role for this enzyme in lens fiber morphogenesis.  相似文献   

6.
During the study of aerobic dissimilation of galactose by yeasts, polyhydric products were isolated in crystalline form from the fermented broths and identified. Yeast species may be divided into two groups on basis of sugar alcohol production: type I yeasts form the same end products from galactose as from glucose; type II yeasts produce dulcitol from galactose with or without other sugar alcohols but they produce no dulcitol from glucose. Isolation of dulcitol from microorganism has not been previously described.  相似文献   

7.
Increasing specialization for δ-crystallin synthesis is a prominent feature of the differentiation of chick lens epithelial cells into lens fiber cells and can be studied in cultured embryonic lens epithelia. Quantitation of δ-crystallin mRNA by molecular hybridizaton to a [3H]DNA complementary to δ-crystallin mRNA demonstrates that differentiation, both in ovo and in tissue culture, is associated with the accumulation of δ-crystallin mRNA. In the cultures, there is an overall stimulation of protein synthesis, including δ-crystallin mRNA during the first 5 hr in vitro. Between 5 and 24 hr in vitro there is a differential stimulation of δ-crystallin synthesis and an accumulation of δ-crystallin mRNA that can quantitatively account for this stimulation.  相似文献   

8.
9.
Aldose reductase (AR; E.C. 1. 1. 1. 21) has been implicated in a variety of diabetic complications. To investigate the expression of this enzyme in target tissues susceptible to such complications, mRNA encoding AR was characterized by Northern blot hybridization in various tissues and cultured cell preparations. The size of mRNA for AR (approximately 1500 bases) was in good agreement with the size determined by sequence analysis. A cDNA probe for AR from rat lens hybridized to the same size species of RNA isolated from cultured dog lens epithelial cells, cultured human retinal capillary pericytes (mural cells), and Y 79 human retinoblastoma cells. In rat tissues, a substantial amount of mRNA was expressed not only in lens, but also in retina, sciatic nerve and kidney medulla. AR mRNA seemed to be less abundant in rat skeletal muscle and brain, and was scarcely present in liver. Furthermore, Southern blot analysis of rat genomic DNA indicated that there are multiple sequences related to that for AR, probably indicating the existence of a multi-gene family.  相似文献   

10.
The levels of delta- and beta-crystallin mRNAs were examined by cDNA hybridization in the embryonic and posthatched chicken eye lens. Four different cloned beta-crystallin cDNAs were used, allowing discrimination among different members of the beta-crystallin family. Each crystallin mRNA displayed a characteristic temporal and spatial pattern in the developing lens. delta-Crystallin mRNA accumulated rapidly during early embryonic development; by contrast, the beta-crystallin mRNAs began to accumulate rapidly near the end of embryogenesis. Both delta- and beta-crystallin mRNAs increased in the lens for the first month after hatching and began to decrease 3 months after hatching. The levels of the delta- and the different beta-crystallin mRNAs were also differentially regulated in cultured embryonic lens epithelia. The most fiber cell specific crystallin gene product in the differentiating lens was the beta 35 mRNA. These experiments provide a quantitative basis for exploring the differential expression of the delta- and beta-crystallin gene families in the chicken lens.  相似文献   

11.
12.
The effects of androgen withdrawal and replacement on the concentrations of androgen receptor (AR) protein and AR mRNA were investigated in rat ventral prostate and seminal vesicles and in cultured human hepatoma (HepG2) cells. AR mRNA concentrations were determined by Northern blotting with single stranded AR cRNA as the hybridization probe, whereas antibodies raised against two synthetic 17-amino acid long peptides corresponding to the N-terminal and steroid-binding regions of the AR were employed in immunological receptor assays. AR mRNA levels in both prostate and seminal vesicles increased about 2-fold within 24 h after castration and continued to rise within the next 48 h to values that were 9- to 11-fold higher than those in intact controls. Administration of pharmacological doses of testosterone (400 micrograms steroid/day) to 1-day castrated animals for 24-48 h brought about a decrease in AR mRNA levels in accessory sex organs to levels in intact controls. Similar results were obtained in cultured HepG2 cells where a switch to serum- and steroid-free medium elicited a rapid increase (approximately 4-fold in 10 h) in the AR mRNA level, which was prevented by inclusion of 10(-7) M testosterone in culture medium. Similar, but quantitatively less marked, changes occurred in the AR protein concentration in prostate, seminal vesicles, and HepG2 cells, as determined by immunoblotting using antibodies against AR peptides. In addition, immunohistochemical studies showed that AR is a nuclear protein of the prostatic epithelial cells in both intact and castrated rats, and suggested that short term castration increases the concentration of nuclear AR in the prostate. Taken together, these data indicate that androgens down-regulate the concentration of AR protein and AR mRNA in a variety of target tissues.  相似文献   

13.
14.
15.
The regulation of angiotensinogen gene expression in response to adrenalectomy and dexamethasone treatment was examined in multiple rat tissues. Angiotensinogen mRNA as quantitated by slot blot hybridization utilizing an angiotensinogen cRNA probe was most abundant in the liver with levels in the brain, kidney, and adrenal of 50, 25, and 10%, respectively. No angiotensinogen mRNA was detected in testes or heart. Although no change in the quantity of angiotensinogen mRNA was found following adrenalectomy and maintenance on 0.9% saline, dexamethasone treatment of both normal and adrenalectomized rats resulted in a time-dependent and tissue-specific accumulation of angiotensinogen mRNA. In normal animals, the hepatic response to treatment was a 4.5-fold increase in angiotensinogen mRNA by 8 h which remained 2.4-fold above basal levels by 24 h. Angiotensinogen mRNA levels in the brains of normal rats treated with dexamethasone increased only 60% by 6 h and returned to basal levels by 24 h. In contrast to the increases seen in brain and liver, angiotensinogen mRNA derived from kidney did not significantly change following dexamethasone treatment. In adrenalectomized animals, the hepatic response to dexamethasone was similar to normal animals with a 3.7-fold increase by 6 h. The accumulation in brain was greater in these animals compared to normals and increased 3-fold by 8 h. Finally, dexamethasone did not significantly increase levels in the kidney. These results clearly demonstrate glucocorticoid regulation of angiotensinogen mRNA levels in liver and brain. In contrast, the kidney, an organ known to contain glucocorticoid receptors, does not respond with increased angiotensinogen mRNA levels following glucocorticoid stimulation. These studies provide the first evidence for tissue-specific differences in the control of angiotensinogen mRNA.  相似文献   

16.
17.
Effects of estradiol on prostate epithelial cells in the castrated rat.   总被引:3,自引:0,他引:3  
There is evidence that estrogens can modulate the activity of prostate epithelial cells. To determine whether estradiol can have a direct influence on rat prostate, this study examined the effects of estradiol-17beta (E(2)) administered alone or in combination with dihydrotestosterone (DHT) to castrated rats for 3 weeks on prostate binding protein (PBP) C1 mRNA expression and androgen receptor (AR) localization. PBP C1 mRNA levels were measured by semi-quantitative in situ hybridization using a (35)S-labeled cDNA probe. In intact animals, strong hybridization signal could be observed in prostate sections after 12 hr of exposure to Kodak X-Omat films. In castrated rats, no PBP C1 mRNA could be detected even with longer exposure times, an effect that was prevented by administration of DHT. E(2) administered alone induced a detectable hybridization signal, and the concomitant administration of E(2) and DHT induced an increase in PBP C1 mRNA that significantly exceeded that obtained in animals that received only DHT. In prostate epithelial cells of intact animals, AR immunostaining was restricted to the nucleus. In castrated animals the alveoli were decreased in size and the epithelial cells were atrophied. AR staining was weak and was detected in both cytoplasm and nucleus. DHT administration completely obviated the effect of castration on epithelial cell histology and on AR immunostaining distribution and intensity. Interestingly, E(2) administration alone induced moderate hypertrophy of epithelial cells compared to the histological appearance of cells in untreated castrated rats. Moreover, in E(2)-treated animals the nuclear staining was much stronger than that detected in untreated castrated rats, whereas the cytoplasmic staining was not modified by the treatment. In animals that received both DHT and E(2), the staining was similar to that seen in DHT-treated rats. These results suggest that E(2) can influence the activity of rat prostate epithelial cells by mechanisms that remain to be fully clarified.  相似文献   

18.
1. The in vitro incorporation of 35S-methionine into actin and total soluble proteins, as well as the levels of actin mRNA, were studied in the hypothalamus and frontal cerebral cortex of adult male rats killed at six different time intervals during a 24-hr cycle. 2. The specific activity of total soluble proteins after labeled methionine incubations did not vary as a function of time of day in any of the examined brain regions. 3. The incorporation of 35S-methionine into a 43-kDa protein, corresponding to the electrophoretic mobility of actin, varied diurnally in the hypothalamus, exhibiting a maximum at 1200 hr. Such a diurnal variation was not found in frontal cerebral cortex. 4. Similar results were obtained when labeled methionine incorporation into actin was assessed in hypothalamus and cerebral cortex by an immunoprecipitation procedure. 5. An increase in actin hypothalamic mRNA levels, quantitated by dot-blot analysis, was found at 0800, 4 hr in advance to the maximum in 35S-methionine incorporation to actin. 6. The levels of actin mRNA did not vary significantly as a function of time of day in the frontal cerebral cortex.  相似文献   

19.
20.
Summary 1. Altered mRNA levels in postmortem brain tissue from persons with Alzheimer's disease (AD) or other neurological diseases are usually presumed to be characteristic of the disease state, even though both agonal state (the physiological state immediately premortem) and postmortem interval (PMI) (the time between death and harvesting the tissue) have the potential to affect levels of mRNAs measured in postmortem tissue. Although the possible effect of postmortem interval on mRNA levels has been more carefully evaluated than that of agonal state, many studies assume that all mRNAs have similar rates of degradation postmortem.2. To determine the postmortem stability of inducible heat shock protein 70 (hsp70) mRNAs, themselves unstablein vivo at normal body temperature, rats were heat shocked in order to induce synthesis of the hsp70 mRNAs. hsp70 mRNA levels in cerebellum and cortex were then compared to those of their heat shock cognate 70 (hsc70) mRNAs, as well as to levels of 18S rRNAs, at 0 and at 24 hr postmortem.3. Quantiation of northern blots after hybridization with an hsp70 mRNA-specific oligo probe indicated a massive loss of hsp70 mRNA signal in RNAs isolated from 24-hr postmortem brains; quantitation by slot-blot hybridization was 5- to 15-fold more efficient. Even using the latter technique, hsp70 mRNA levels were reduced by 59% in 24-hr-postmortem cerebellum and by 78% in cortex compared to mRNA levels in the same region of 0-hr-postmortem brain. There was little reduction postmortem in levels of the hsp70 mRNAs or of 18S rRNAs in either brain region.4.In situ hybridization analysis indicated that hsp70 mRNAs were less abundant in all major classes of cerebellar cells after 24 hr postmortem and mRNAs had degraded severalfold more rapidly in neurons than in glia. There was no corresponding loss of intracellular 18S rRNA in any cell type.5. We conclude from these results that the effect of postmortem interval on mRNA degradation must be carefully evaluated when analyzing levels of inducible hsp70 mRNAs, and perhaps other short-lived mRNAs, in human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号