首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A study was conducted with the aim of evaluating the genetic diversity of alfalfa rhizobia isolated from volcanic soils in southern Chile and their ability to establish an effective symbiosis with alfalfa. Rhizobial strains isolated from nodules were identified and selected based on PCR analyses and acid tolerance. Symbiotic effectiveness (nodulation and shoot dry weight) of acid-tolerant rhizobia was evaluated in glasshouse experiments under acidic conditions. The results revealed that Sinorhizobium meliloti is the dominant species in alfalfa nodules with a high genetic diversity at strain level grouped in three major clusters. There was a close relationship (r 2 = 0.895, P ≤ 0.001, n = 40) between soil pH and the size of rhizobial populations. Representative isolates from major cluster groups showed wide variation in acid tolerance expressed on buffered agar plates (pH 4.5–7.0) and symbiotic effectiveness with alfalfa. One isolate (NS11) appears to be suitable as an inoculant for alfalfa according to its acid tolerance and symbiotic effectiveness at low pH (5.5). The isolation and selection of naturalized S. meliloti strains with high symbiotic effectiveness under acidic conditions is an alternative approach to improving the productivity of alfalfa and for reducing the application of synthetic fertilizers in Chile.  相似文献   

2.
From an analysis of 481 Rhizobium leguminosarum bv. viceae strains with 7 pea cultivars in pot and field experiments, we demonstrated that effective strains could be isolated from a rich medium-acid grey forest soil of the Oröl area (Central region of the European part of Russia) but not from a poor acid podzolic soil of the St. Petersburg area (North-West Russia). The proportion of the isolates significantly increasing N accumulation in pea plants (10.2%) is higher than that of strains increasing the shoot dry mass (4.6%) in the pot experiments. The mean values of the increase for N accumulation (33.8%) upon inoculation are also higher than for shoot mass (27.0%) in these experiments. N accumulation in the inoculated pea plants in the pot experiments was significantly correlated with seed yield and seed N accumulation in field experiments, while for shoot dry mass these correlations were either weak or not significant. Two-factor analysis of variance demonstrated that the contribution of plant cultivars to the variation of the major symbiotic efficiency parameters is higher (30.8–31.6%) and contributions of cultivar-strain specificity is lower (5.4–8.8%) than the contributions of strain genotypes (13.4–14.9%). We identified an ineffective R. leguminosarum bv. viceae strain 50 which can be used as a tester for assessing the nodulation competitiveness of the effective strains by an indirect method (analysis of dry mass and N accumulation in pea plants inoculated with the mixture of the tested effective strains and the tester strain). The relative competitive ability (RCA) determined by this method was 75.7–82.8% for strain 52 but only 10.5–13.8% for strain 250a; this difference was confirmed by a direct method (use of the streptomycin-resistant mutants). Results of screening of the diverse collection of 53 effective R. leguminosarum bv. viceae strains by the indirect method permits us to divide them into 3 groups (32 high-competitive, 10 medium-competitive and 11 low-competitive strains) but reveals no correlation between the competitiveness and symbiotic efficiency. N accumulation in the pea shoots is demonstrated to be a much more suitable criterion than the shoot mass for selection either of the highly-effective or of highly-competitive (by the indirect estimation) R. leguminosarum bv. viceae strains in the pot experiments.  相似文献   

3.
Saprophytic rhizoactinomycetes isolated from the root nodule surface of the nitrogen-fixing actinorhizal plant Discaria trinervis, Streptomyces MM40, Actinoplanes ME3, and Micromonospora MM18, previously shown to stimulate nodulation in Frankia-Discaria trinervis symbiosis, were assayed as co-inoculants with Sinorhizobium meliloti 2011 on Medicago sativa. When plants were fertilized with a low level of N (0.07 mM), the inoculation of the actinomycetes alone did not show any effect on plant growth. Meanwhile, when actinomycetes were co-inoculated with S. meliloti, nodulation and plant growth were significantly stimulated compared to plants inoculated with only S. meliloti. The analysis of nodulation kinetics of simultaneously or delayed co-inoculations suggests that the effect of the actinomycetes operates in early infection and nodule development counteracting the autoregulation of nodulation by the plant. Because the actinomycete effect was found in the symbiotic nitrogen-fixing state of the plant, we investigated the effects of the actinomycetes, in single inoculation or co-inoculation with S. meliloti, on plants grown under a high level of N (7 mM) that was inhibitory for nodulation by S. meliloti. The inoculation of the actinomycetes alone did not show any effect on plant growth although high N was available. Unexpectedly, the co-inoculation of actinomycetes with S. meliloti on plants grown with high N (7 mM) significantly stimulates nodulation, clearly counteracting the inhibition of nodulation by high N. These results corroborate that the interaction of rhizoactinomycetes would interfere with the autoregulation of nodulation in alfalfa mediated by high N, opening new research lines of potential agronomical applications.  相似文献   

4.
Drought is an important environmental factor that can affect rhizobial competition and N2 fixation. Three alfalfa (Medicago sativa L. and M. falcata L.) accessions were grown in pots containing soil from an irrigated (Soil 1) and a dryland (Soil 2) alfalfa field in northern Utah, USA. Mutants of three strains of Rhizobium meliloti Dang. from Pakistan (UL 136, UL 210, and UL 222) and a commercial rhizobial strain 102F51a were developed with various levels of resistance to streptomycin. Seeds inoculated with these individual streptomycin-resistant mutants were sown in the two soils containing naturalized rhizobial populations. Soils in the pots were maintained at −0.03, −0.5, and −1.0 MPa. After 10 weeks, plants were harvested and nodule isolates were cultured on agar medium with and without streptomycin to determine nodule occupancy (proportion of the nodules occupied by introduced rhizobial strains). Number of nodules, nodule occupancy, total plant dry weight, and shoot N were higher for Soil 1 than Soil 2. Number of nodules, plant dry weight, and shoot N decreased as drought increased from −0.03 to −1.0 MPa in the three alfalfa accessions. Rhizobial strains UL 136 and UL 222 were competitive with naturalized alfalfa rhizobia and were effective at symbiotic N2 fixation under drought. These results suggest that nodulation, growth, and N2 fixation in alfalfa can be improved by inoculation with competitive and drought-tolerant rhizobia and may be one economically feasible way to increase alfalfa production in water-limited environments. Joint contribution from USDA-ARS and the Utah Agric. Exp. Sta., Utah State Univ., Logan, UT 84322-4810, USA. Journal Paper No. 4931. Joint contribution from USDA-ARS and the Utah Agric. Exp. Sta., Utah State Univ., Logan, UT 84322-4810, USA. Journal Paper No. 4931.  相似文献   

5.
Nitrogen fixation (NF) by alfalfa and nitrogen transfer (NT) from alfalfa to associated timothy was studied under different environmental conditions in controlled growth chambers, using the15N dilution technique. Evidence was obtained of NT from alfalfa to the associated timothy. Conditions that favored NF by alfalfa resulted in an increase in its NT. Of 3 different temperature regimes (25/20, 16/14, and 12/9°C day/night), 16–25/14–20°C was the best range for NF by alfalfa and resulted in the greatest NT. High light intensity (550 uE.m−2.sec−1) and long days (16–20 h) also caused increased NF by alfalfa and benefitting timothy more than in a regime of low light intensity (by shading 50% or 75%) or short days (12/12 or 16/8 h day/night). When the inoculated (Rhizobium meliloti) root systems of plants were kept free from other microorganisms (axenic condition) to minimize possible decomposition of dead tissues, lower NT from alfalfa was observed, especially at later cuts, compared to non-axenic plants. This suggests that both direct excretion and decomposition of dead alfalfa tissues are sources of N benefit from alfalfa to associated timothy. Contribution no 1065 of the Plant Research Centre.  相似文献   

6.
Reduction in crop yield and contamination of food crops are major problems in many areas due to high soil arsenic content. In this study an aquaglyceroporin (AqpS) disrupted Sinorhizobium meliloti smk956 strain was found to accumulate 70.5% more arsenic than its parental strain S. meliloti Rm1021 under free living condition. This strain was inoculated onto alfalfa host plants under different arsenic concentrations (0, 1 and 5 mg/L) and its ability to alleviate arsenic toxicity in the host plant was investigated. At 1 and 5 mg/L arsenic concentrations the average arsenic contents in the shoots of the plants inoculated with the strain S. meliloti smk956 were 45.5 and 27.5% less than those of the plants inoculated with S. meliloti Rm1021, respectively. Under arsenic stress conditions the strain S. meliloti smk956 showed increased symbiotic efficiency than its parental strain. These results demonstrate a novel method to alleviate arsenic toxicity in alfalfa plants.  相似文献   

7.
Abstract A greenhouse study with soil–plant microcosms was conducted in order to compare the effect of crop species, soil origin, and a bacterial inoculant on the establishment of microbial communities colonizing plant roots. Two crop species, alfalfa (Medicago sativa) and rye (Secale cereale), were grown separately in two soils collected from agricultural fields at different locations and with differing histories of leguminous crop rotation. A subset of microcosms was inoculated at 106 cfu g-1 soil with the luciferase marker gene-tagged Sinorhizobium meliloti strain L33, a symbiotic partner of M. sativa. Microbial consortia were collected from the rhizospheres of alfalfa after 10 weeks of incubation and from rye after 11 weeks. S. meliloti L33 populations were one to two orders of magnitude higher in the rhizospheres of alfalfa than of rye. In soil with previous alfalfa cultivation, 80% of the alfalfa nodules were colonized by indigenous bacteria, while in the other soil alfalfa was colonized almost exclusively (>90%) with S. meliloti L33. Three community-level targeting approaches were used to characterize the variation of the extracted microbial rhizosphere consortia: (1) Community level physiological profiles (CLPP), (2) fatty acid methyl ester analysis (FAME), and (3) diversity of PCR amplified 16S rRNA target sequences from directly extracted ribosomes, determined by temperature gradient gel electrophoresis (TGGE). All approaches identified the crop species as the major determinant of microbial community characteristics. Consistently, the influence of soil was of minor importance, while a modification of the alfalfa-associated microbial community structure after inoculation with S. meliloti L33 was only consistently observed by using TGGE. Received: 20 October 1999; Accepted: 15 January 2000; Online Publication: 18 July 2000  相似文献   

8.
Insertion sequence (IS) hybridization was used to define the structure of a population of Rhizobium meliloti isolated directly from soil and from nodules of Medicago sativa (alfalfa) and Melilotus alba (sweet clover) grown under controlled conditions and inoculated with a suspension of the same soil. The detection of R. meliloti isolated from soil on agar plates was facilitated by use of a highly species specific DNA probe derived from ISRm5. All R. meliloti obtained directly from soil proved to be symbiotic (i.e. nodulated and fixed nitrogen with alfalfa). Analysis of 293 R. meliloti isolates revealed a total of 17 distinct IS genotypes of which 9, 9 and 15 were from soil, M. alba and M. sativa, respectively; 8 genotypes were common to soil and both plant species. The frequency of R. meliloti genotypes from soil differed markedly from that sampled from nodules of both legume species: 5 genotypes represented about 90% of the isolates from soil whereas a single genotype predominated among isolates from nodules accounting for more than 55% of the total. The distribution of genotypes differed between M. sativa and M. alba indicating species variation in nodulation preferences for indigenous R. meliloti. The data are discussed in the context of competition for nodulation of the host plant and the selection of Rhizobium strains for use in legume inoculants. This study has ecological implications and suggests that the composition of R. meliloti populations sampled by the traditionally used host legume may not be representative of that actually present in soil.  相似文献   

9.
The aim of this research was to carry out a critical study of the method of obtaining size equivalence between non-symbiotic alfalfa and alfalfa associated with Glomus and/or Rhizobium by applying fixed addition rates of nutrients to the non-symbiotic controls. The experimental design included three nutrient response curves in which the levels of added phosphorus and/or nitrogen were constant during the whole plant growth process: 1) a phosphorus response curve, in order to compare the growth of double symbiotic plants with that of only-Rhizobium inoculated ones; 2) a nitrogen response curve, that consisted of a comparison between the growth of double symbiotic alfalfa and four treatments associated only with Glomus; 3) a phosphorus and nitrogen response curve, to compare the growth of non-inoculated alfalfa with that of double symbiotic plants. Although similar size was achieved among some treatments at harvest, shoot growth over time and nutrient concentrations in tissues differed, indicating that growth equivalence did not mean functional equivalence. A second experimental design was performed taking into account the establishment of microsymbionts for determining the adequate moment to add supplemental phosphorus and/or nitrogen. It included four treatments: a) double symbiotic plants (MR); b) plants inoculated with Rhizobium only (R); c) plants inoculated with Glomus only (M), and d) non-inoculated plants (N). Great similarity in terms of plant growth and nutrient contents in tissues were obtained. Moreover, symbiotic plants were able to produce similar dry matter than non-symbiotic ones under P and N limitations.  相似文献   

10.
To improve symbiotic nitrogen fixation on alfalfa plants, Sinorhizobium meliloti strains containing different average copy numbers of a symbiotic DNA region were constructed by specific DNA amplification (SDA). A DNA fragment containing a regulatory gene (nodD1), the common nodulation genes (nodABC), and an operon essential for nitrogen fixation (nifN) from the nod regulon region of the symbiotic plasmid pSyma of S. meliloti was cloned into a plasmid unable to replicate in this organism. The plasmid then was integrated into the homologous DNA region of S. meliloti strains 41 and 1021, which resulted in a duplication of the symbiotic region. Sinorhizobium derivatives carrying further amplification were selected by growing the bacteria in increased concentrations of an antibiotic marker present in the integrated vector. Derivatives of strain 41 containing averages of 3 and 6 copies and a derivative of strain 1021 containing an average of 2.5 copies of the symbiotic region were obtained. In addition, the same region was introduced into both strains as a multicopy plasmid, yielding derivatives with an average of seven copies per cell. Nodulation, nitrogenase activity, plant nitrogen content, and plant growth were analyzed in alfalfa plants inoculated with the different strains. The copy number of the symbiotic region was critical in determining the plant phenotype. In the case of the strains with a moderate increase in copy number, symbiotic properties were improved significantly. The inoculation of alfalfa with these strains resulted in an enhancement of plant growth.  相似文献   

11.
The salinity tolerance of aRhizobium meliloti strain isolated from salt-affected soils was examined. Growth of the strain on yeast—mannitol broth containing 0–1.2% NaCl exhibited in all cases the same generation time and simultaneous onset of the stationary phase while the total viable number of cells was the same for three continuous generations. The nodulation, plant yield and elemental composition ofMedicago sativa plants grown on agar slopes, inoculated with cultures from the third generation grown on broth containing 0–1.2% NaCl responded identically to all inocula. The salinity tolerance of the strain in fixing nitrogen was furthermore demonstrated withM. sativa plants grown on either nitrogen-free agar slopes containing 0.2–1.2% NaCl or soil-agar slopes with saline soil in which 0.15 and 0.3% additional NaCl was used.  相似文献   

12.
Alfalfa (Medicago sativa L.) growth and nodulation in acid soil is reduced because the plant and its bacterial symbiontRhizobium meliloti cannot tolerate acid, aluminum-rich soil. A study was conducted to determine if a relatively acid-tolerant alfalfa germplasm combined with a relatively acid-tolerantR. meliloti strain could overcome these limitations. In a light room study, an acid-tolerant alfalfa germplasm inoculated with a more acid-tolerantR. meliloti strain produced greater top growth, nodule number and weight, and acetylene reduction values in an unlimed soil (pH 4.6) than the same germplasm inoculated with a relatively acid-sensitiveR. meliloti strain or an acid-sensitive germplasm inoculated with either a relatively acid-tolerant or acid-sensitiveR. meliloti strain.  相似文献   

13.
Nodulation of common bean was explored in six oases in the south of Tunisia. Nineteen isolates were characterized by PCR–RFLP of 16S rDNA. Three species of rhizobia were identified, Rhizobium etli, Rhizobium gallicum and Sinorhizobium meliloti. The diversity of the symbiotic genes was then assessed by PCR–RFLP of nodC and nifH genes. The majority of the symbiotic genotypes were conserved between oases and other soils of the north of the country. Sinorhizobia isolated from bean were then compared with isolates from Medicago truncatula plants grown in the oases soils. All the nodC types except for nodC type p that was specific to common bean isolates were shared by both hosts. The four isolates with nodC type p induced N2-fixing effective nodules on common bean but did not nodulate M. truncatula and Medicago sativa. The phylogenetic analysis of nifH and nodC genes showed that these isolates carry symbiotic genes different from those previously characterized among Medicago and bean symbionts, but closely related to those of S. fredii Spanish and Tunisian isolates effective in symbiosis with common bean but unable to nodulate soybean. The creation of a novel biovar shared by S. meliloti and S. fredii, bv. mediterranense, was proposed.  相似文献   

14.
pIJ1008, a Rhizobium leguminosarum plasmid which determines hydrogen uptake ability and symbiotic functions in pea was transferable to three of seven natural isolates of R. meliloti tested. In these three strains, pIJ1008 was maintained stably with the respective sym megaplasmid indigenous to each R. meliloti strain. These strains carrying both plasmids nodulated alfalfa but not pea. By reisolation and examination of the strains from alfalfa nodule tissue, it was shown that pIJ1008 continued to be maintained but that pea-nodulation ability was suppressed.In one strain of R. meliloti which carries a 200 kb cryptic plasmid (in addition to a megaplasmid), the transfer and selection for pIJ1008 resulted in the loss of the cryptic plasmid.In three separate plant growth experiments, alfalfa nodules induced by each of the R. meliloti strain carrying both sym plasmids were assayed for hydrogen uptake activity. The average activity was 40-, 3.5-and 2-fold higher than with the respective pIJ1008-free strains. However, this higher activity was not accompanied by an increase in plant biomass or nitrogen content of shoots.C.B.R.I. Contribution Number: 1478  相似文献   

15.
Saubidet  María I.  Fatta  Nora  Barneix  Atilio J. 《Plant and Soil》2002,245(2):215-222
Azospirillium brasilense is a rhizosphere bacteria that has been reported to improve yield when inoculated on wheat plants. However, the mechanisms through which this effect is induced is still unclear. In the present work, we have studied the effects of inoculating a highly efficient A. brasilense strain on wheat plant grown in 5 kg pots with soil in a greenhouse, under three N regimes (0, 3 or 16 mM NO3 , 50 ml/pot once or twice-a -week), and in disinfected or non-disinfected soil. At the booting stage, the inoculated roots in both soils showed a similar colonization by Azospirillum sp. that was not affected by N addition. The plants grown in the disinfected soil showed a higher biomass, N content and N concentration than those in the non-disinfected soil, and in both soils the inoculation stimulated plant growth, N accumulation, and N and NO3 concentration in the tissues.At maturity, the inoculated plants showed a higher biomass, grain yield and N content than the uninoculated ones in both soils, and a higher grain protein concentration than the uninoculated. It is concluded that in the present experiments, A. brasilenseincreased plant growth by stimulating nitrogen uptake by the roots.  相似文献   

16.
Jacot  Katja A.  Lüscher  Andreas  Nösberger  Josef  Hartwig  Ueli A. 《Plant and Soil》2000,225(1-2):201-211
The significance of symbiotic N2 fixation in legumes (Trifolium alpinum L., T. nivale Sieber, T. pratense L., T. badium Schreber, T. thalii Vill., T. repens L., Lotus alpinus [DC.] Schleicher, L. corniculatus L., Vicia sativa L.) and other N sources for the N budget of grassland ecosystems was studied along an altitudinal gradient in the Swiss Alps. The total annual symbiotic N2 fixation was compared with other sources of N for plant growth of the total plant community (mineralisation and wet deposition). The contribution of symbiotically fixed N to total above-ground N yield of the swards decreased from at least 16% to 9% with increasing altitude where legumes were present. This decrease was due to a decrease in the yield proportion of legumes from 15% at 900 and 1380 m a.s.l. to 5% at 2100 and 2300 m a.s.l. (no legumes were found above 2750 m a.s.l.) and not to a decline in the activity of symbiotic N2 fixation. With increasing altitude legumes are more patchily distributed. The high symbiotic N2 fixation of individual plants up to their altitudinal limit is not primarily the result of low mineral N availability since an addition of NH4 + or NO3 fertiliser at 2300 m a.s.l. led either to no decrease or only to a minor decrease in symbiotic N2 fixation. At 1380 m a.s.l., N mineralisation (13.45 g N m−2 yr−1) appeared to be the main source of N for growth of the sward; N from symbiosis (at least 1.0 g to 2.6 g N m−2 yr−1) and wet deposition (0.4 g to 0.6 g m−2 yr−1) was not a significant N source for plant growth at this altitude. At 2100 m a.s.l., the combined amounts of N from symbiotic N2 fixation (at least 0.1 g N m−2 yr−1) and wet deposition (0.3 g N m−2 yr−1) appeared to be similarly important for plant growth as soil N mineralisation (0.47 g N m−2 yr−1). At high altitudes, wet N deposition and symbiotic N2 fixation together represent a significant source of N for the grassland ecosystem while at low altitudes these N inputs appear to be much less important. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Alfalfa (Medicago sativa L.) plants were inoculated with Sinorhizobium meliloti Tn-5 mutants featuring various nitrogen-fixing effectiveness and then grown in sand culture to study relations between CO2 exchange, plant productivity, and nitrogen fixation. At the flowering stage, the relationship between nitrogen fixation and photosynthesis of whole alfalfa plants was described with the logarithmic curve. At the same stage of plant development, a close relationship was observed between nitrogen fixation rate and plant weight; this relationship showed a trend toward saturation at high rates of nitrogen fixation. The increase in nitrogenase activity of root nodules was accompanied by stimulation of root respiration; the relation of respiration to nitrogen-fixing activity was manifested stronger than its relation to the total root weight. It is concluded that highly effective strains of root nodule bacteria can realize their potential only in combination with complementary plant genotypes featuring active photosynthesis that provides a balanced supply of assimilates for both the symbiotic apparatus and growth processes in the macrosymbiont.  相似文献   

18.
Two fold increase in the yield of glucose and maltose containing exo-polysaccharide (EPS) by Rhizobium sp. was observed during its growth in modified YEMB. EPS production, plant growth promotion activity and root colonization of Rhizobium sp. studies showed enhanced EPS synthesis, more seed germination and over all improvement in plant growth over control and R. meliloti treatment. Groundnut seeds bacterized with Rhizobium sp. resulted in 69.75% more root length, 49.51% more shoot height, 13.75% more number of branches and 13.60% more number of pods over the control and R. meliloti treatment. Bacterization of wheat seeds increased the dry matter yield of roots (1.7-fold), and roots adhering soil (RAS) (1.5) and shoot mass (1.9-fold). Rhizobium sp. inoculation also increased the population density of EPS-producing bacteria on the rhizoplane. Roots of plants inoculated with Rhizobium sp. maintained a higher K+/Na+ ratio and K+–Na+ selectivity.  相似文献   

19.
The formation of nitrogen‐fixing nodules on legume hosts is a finely tuned process involving many components of both symbiotic partners. Production of the exopolysaccharide succinoglycan by the nitrogen‐fixing bacterium Sinorhizobium meliloti 1021 is needed for an effective symbiosis with Medicago spp., and the succinyl modification to this polysaccharide is critical. However, it is not known when succinoglycan intervenes in the symbiotic process, and it is not known whether the plant lysin‐motif receptor‐like kinase MtLYK10 intervenes in recognition of succinoglycan, as might be inferred from work on the Lotus japonicus MtLYK10 ortholog, LjEPR3. We studied the symbiotic infection phenotypes of S. meliloti mutants deficient in succinoglycan production or producing modified succinoglycan, in wild‐type Medicago truncatula plants and in Mtlyk10 mutant plants. On wild‐type plants, S. meliloti strains producing no succinoglycan or only unsuccinylated succinoglycan still induced nodule primordia and epidermal infections, but further progression of the symbiotic process was blocked. These S. meliloti mutants induced a more severe infection phenotype on Mtlyk10 mutant plants. Nodulation by succinoglycan‐defective strains was achieved by in trans rescue with a Nod factor‐deficient S. meliloti mutant. While the Nod factor‐deficient strain was always more abundant inside nodules, the succinoglycan‐deficient strain was more efficient than the strain producing only unsuccinylated succinoglycan. Together, these data show that succinylated succinoglycan is essential for infection thread formation in M. truncatula, and that MtLYK10 plays an important, but different role in this symbiotic process. These data also suggest that succinoglycan is more important than Nod factors for bacterial survival inside nodules.  相似文献   

20.
Summary Ten alfalfa cultivars were used to study the effects of nodulation and variations in resistance to alfalfa sickness. The alfalfa seedlings were planted in sick soil with three treatment,,i.e.: pasteurized sick soil inoculated with Rhizobium ‘Nitragin’ which served as the control, the inoculated non-pasteurized sick soil and the non-inoculated non-pasteurized sick soil. None of the alfalfa cultivars were immune from the sickness. Cultivar ‘Anik’ fromMedicago falcata was among the most resistant cultivars. Three Phytophthora root rot resistant cultivars including ‘Agate’, ‘Apollo’ and ‘Ramsey’ were not resistant to the disease. Alfalfa inoculated with Rhizobium showed greatly improved seedling growth. Correlation coefficients showed that those alfalfa cultivars more resistant to alfalfa sickness produced more dry weight. Dry weight increase due to nodulation (82%) had more than compensated for the loss of dry weight due to alfalfa sickness (33%). The present study suggested that the poor growth of alfalfa on sick soil was attributed to both the soil borne pathogens and the poor nodulation of alfalfa, probably due to the absence of effective Rhizobium in sick soil. Highly significant differences were also obtained among olfalfa cultivars for plant dry weight in the inoculation treatment. Selection for effective Rhizobium strains and for alfalfa genotypes which are resistant to alfalfa sickness and are high in nitrogen fixation rates could improve alfalfa yield in sick soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号