首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Extracts of the human erythrocyte membrane have been prepared by solubilization with Triton X-100 and analysed by electrophoresis and gel filtration techniques. 2. The extracts have been incorporated asymmetrically into lecithincholesterol-n-decane planar bilayers. 3. The electrical characteristics and glucose permeabilities of the bilayers have been measured. 4. The extracts increased the electrical conductance of the bilayers and also markedly enhanced the D-glucose permeability but not the L-glucose permeability. 5. The enhanced D-glucose permeability was inhibited by monosaccharide transport inhibitors. 6. The results support the claim that a monosachharide facititated diffusion system has been set-up in vitro which has many of the characteristics of the transport system in the human erythrocyte membrane. 7. The data indicates that the trans membrane polypeptides of band 3 of the electrophoretogram of the erythrocyte membrane proteins (notation of Fairbanks, G., Steck, T.L. and Wallach, D.F.H. (1971) Biochemistry 10, 2606-2616) are implicated in D-glucose transport, although the possibility that relatively minor component of the membrane could be responsible for glucose transport cannot be eliminated.  相似文献   

2.
Reconstitution of the glucose transporter from bovine heart   总被引:1,自引:0,他引:1  
Reconstitution of the glucose transporter from heart should be useful as an assay in its purification and in the study of its regulation. We have prepared plasma membranes from bovine heart which display D-glucose reversible binding of cytochalasin B (33 pmol sites/mg protein; Kd = 0.2 muM). The membrane proteins were reconstituted into liposomes by the freeze-thaw procedure. Reconstituted liposomes showed D-glucose transport activity which was stereospecific, saturable and inhibited by cytochalasin B, phloretin, and mercuric chloride. Compared to membrane proteins reconstituted directly, proteins obtained by dispersal of the membranes with low concentrations of cholate or by cholate solubilization showed 1.2- or 2.3-fold higher specific activities for reconstituted transport, respectively. SDS-polyacrylamide gel electrophoresis followed by electrophoretic protein transfer and labeling with antisera prepared against the human erythrocyte transporter identified a single band of about 45 kDa in membranes from both dog and bovine hearts, a size similar to that reported for a number of other glucose transporters in various animals and tissues.  相似文献   

3.
The monosaccharide transporter from the plasma membranes of rat adipocytes and insulin-stimulated adipocytes has been reconstituted in sonicated liposomes. The stereospecific D-glucose uptake by liposomes made from a range of phospholipids and incorporating fatty acids has been investigated. D-Glucose uptake is correlated with an increase in lipid fluidity as a consequence of the addition of fluidizing fatty acids, changes in phospholipid acyl chain length and temperature. Benzyl alcohol and ethyl alcohol, which are generally considered to increase bilayer fluidity, decrease stereo-specific D-glucose uptake in both whole adipocytes and reconstituted liposomes. It is suggested that, although these alcohols may affect D-glucose transport by lipid-mediated fluidity changes, they also interact directly with the transporter resulting in inhibition of transport.  相似文献   

4.
The pig erythrocyte nucleoside transporter has been identified as a band 4.5 polypeptide (Mr 64,000) on the basis of photoaffinity labelling experiments with the nucleoside transport inhibitor nitrobenzylthioinosine (NBMPR). This protein was purified 140-fold by treatment of haemoglobin-free erythrocytes 'ghosts' with EDTA (pH 11.2) to remove extrinsic proteins, extraction of the protein-depleted membranes with n-octyl-glucoside and subsequent gradient-elution ion-exchange chromatography on DEAE-cellulose. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of the purified material revealed the presence of only two detectable protein bands, one which co-migrated with the radiolabelled NBMPR-binding protein, and a lower molecular weight species with an Mr of 43,000. The latter protein may be a degradation product of the band 3 anion-exchange transporter. The overall purification of the NBMPR-binding protein with respect to the Mr 64,000 band was 350-fold. Reversible NBMPR-binding to the partially-purified band 4.5 preparation was saturable (apparent Kd 7.2 nM). Adjustment of the chromatography conditions to allow elution of the NBMPR-binding protein along with the majority of solubilised membrane phospholipid reduced the apparent Kd value to 3.0 nM. Purification of reversible NBMPR-binding activity during ion-exchange chromatography was paralleled by an increase in the specific activity of nitrobenzylthioguanosine (NBTGR) -sensitive uridine transport as assayed in proteoliposomes reconstituted by a freeze-thaw-sonication procedure.  相似文献   

5.
N5-(L-1-Carboxyethyl)-L-ornithine:NADP+ oxidoreductase (EC 1.5.1.-) from Streptococcus lactis K1 has been purified 8,000-fold to homogeneity. The NADPH-dependent enzyme mediates the reductive condensation between pyruvic acid and the delta- or epsilon-amino groups of L-ornithine and L-lysine to form N5-(L-1-carboxyethyl)-L-ornithine and N6-(L-1-carboxyethyl)-L-lysine, respectively. The five-step purification procedure involves ion-exchange (DE52 and phosphocellulose P-11), gel filtration (Ultrogel AcA 44), and affinity chromatography (2',5'-ADP-Sepharose 4B). Approximately 100-200 micrograms of purified enzyme of specific activity 40 units/mg were obtained from 60 g of cells, wet weight. Anionic polyacrylamide gel electrophoresis revealed a single enzymatically active protein band, whereas three species (pI 4.8-5.1) were detected by analytical electrofocusing. The purified enzyme is active over a broad pH range of 6.5-9.0 and is stable to heating at 50 degrees C for 10 min. Substrate Km values were determined to be: NADPH, 6.6 microM; pyruvate, 150 microM; ornithine, 3.3 mM; and lysine, 18.2 mM. The oxidoreductase has a relative molecular mass (Mr = 150,000) as estimated by high pressure liquid chromatography exclusion chromatography and by polyacrylamide gradient gel electrophoresis. Conventional gel filtration indicated an Mr = 78,000, and a single protein band of Mr = 38,000 was revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is composed of identical subunits of Mr = 38,000, which may associate to yield both dimeric and tetrameric forms. Polyclonal antibody to the purified protein inhibited enzyme activity. The amino acid composition of the enzyme is reported, and the sequence of the first 37 amino acids from the NH2 terminus has been determined by stepwise Edman degradation.  相似文献   

6.
7.
Reconstitution studies of the human erythrocyte nucleoside transporter   总被引:3,自引:0,他引:3  
The human erythrocyte nucleoside transporter has been identified as a band 4.5 polypeptide (Mr 45,000-66,000) on the basis of reversible binding and photoaffinity labeling experiments with the nucleoside transport inhibitor, nitrobenzylthioinosine (NBMPR). In the present study, the NBMPR-binding protein was extracted from protein-depleted human erythrocyte "ghosts" with Triton X-100 and reconstituted into soybean phospholipid vesicles by a freeze-thaw-sonication procedure. The reconstituted proteoliposomes exhibited nitrobenzylthioguanosine (NBTGR)-sensitive [14C]uridine transport. A partially purified preparation of the NBMPR-binding protein, consisting largely of band 4.5 polypeptides, was also shown to have nucleoside transport activity. This band 4.5 preparation exhibited a 10-fold increase in uridine transport activity and a 7-fold increase in NBMPR-binding activity relative to the crude membrane extract. Uridine transport by the reconstituted band 4.5 preparation was saturable (apparent Km = 0.21 mM; Vmax = 9 nmol/mg of protein/5 s) and was inhibited by dipyridamole, dilazep, adenosine, and inosine. The vesicles reconstituted with the band 4.5 preparation also exhibited stereospecific glucose transport which was inhibited by cytochalasin B, but unaffected by NBTGR. In contrast, cytochalasin B was a poor inhibitor of NBTGR-sensitive uridine transport. These experiments implicate band 4.5 polypeptides in both nucleoside and sugar permeation.  相似文献   

8.
The D-glucose permeabilities of bimolecular lipid membranes formed from egg lecithin, cholesterol and human erythrocyte membrane fractions obtained using several fractionation procedures have been measured in order to assess their monosaccharide transport activity. The electrical properties of the bilayers containing the membrane fractions have also been measured and the bilayer thicknesses calculated. The observed D-glucose permeability coefficients are several orders of magnitude lower than that of the human erythrocyte membrane, indicating that none of the membrane fractions possessed significant glucose carrier activity. It is concluded that more refined techniques for incorporating membrane fractions into BLMs will be necessary before the monosaccharide transport system can be simulated in vitro.  相似文献   

9.
J Grenier  C Potvin    A Asselin 《Plant physiology》1993,103(4):1277-1283
Proteins from intercellular fluid extracts of chemically stressed barley (Hordeum vulgare L.) leaves were separated by native polyacrylamide gel electrophoresis at alkaline or acid pH. Polyacrylamide gels contained Saccharomyces cerevisiae (bakers' yeast) or Schizosaccharomyces pombe (fission yeast) crude cell walls for assaying yeast wall lysis. In parallel, gels were overlaid with a suspension of yeasts for assaying growth inhibition by pathogenesis-related proteins. The same assays were also performed with proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. In alkaline native polyacrylamide gels, only one band corresponding to yeast cell wall lytic activity was found to be inhibitory to bakers' yeast growth, whereas in acidic native polyacrylamide gels one band inhibited the growth of both yeasts. Under denaturing nonreducing conditions, one band of 19 kD inhibited the growth of both fungi. The 19-kD band corresponded to a basic protein after two-dimensional gel analysis. The 19-kD protein with yeast cell wall lytic activity and inhibitory to both yeasts was found to be different from previously reported barley chitosanases that were lytic to fungal spores. It could be different from other previously reported lytic antifungal activities related to pathogenesis-related proteins.  相似文献   

10.
In this study, we describe the effects of altered bilayer cholesterol content on reconstituted, protein-mediated sugar transport. The system used was the human erythrocyte sugar transporter (band 4.5) reconstituted into the bilayers of large unilamellar vesicles. Vesicle preparations were formed from synthetic lecithins whose bilayer cholesterol content ranged from 0 to 50 mol %. Transport was measured by microturbidimetric analysis over the temperature range of 0-65 degrees C while bilayer physical state was characterized by differential scanning calorimetry. Reconstituted transport activity was irreversibly lost between 62 and 65 degrees C. The Km for reconstituted transport was found to increase only slightly with increasing temperature and was not systematically affected by bilayer cholesterol content. The most striking observation of this study is that over certain critical cholesterol concentrations, as little as a 2.5% change in bilayer cholesterol can result in as much as a 100-fold change in Vmax per reconstituted protein. Our findings run counter to the view that increasing bilayer cholesterol content monotonically transforms a membrane into a state of "intermediate fluidity". Abrupt, cholesterol-induced bilayer reorganizations occurring at 15-20 and 30 mol % bilayer cholesterol are markedly reflected in altered sugar transport rates. Increasing the cholesterol content of crystalline distearoyllecithin bilayers inhibits the activity of the reconstituted transporter. It is apparent from these studies that bilayer "fluidity" is neither the sole nor a major determinant of the Indeed, we find the effect of cholesterol on transport activity is independent of its ability to fluidize membranes.  相似文献   

11.
S H Lee  N S Cohen  A J Jacobs  A F Brodie 《Biochemistry》1979,18(11):2232-2239
Membrane vesicles from Mycobacterium phlei contain carrier proteins for proline, glutamine, and glutamic acid. The transport of proline is Na+ dependent and required substrate oxidation. A proline carrier protein was solubilized from the membrane vesicles by treatment with cholate and Triton X-100. Electron microscopic observation of the detergent-treated membrane vesicles showed that they are closed structures. The detergent-extracted proteins were purified by means of sucrose density gradient centrifugation, followed by gel filtration and isoelectric focusing. A single protein with a molecular weight of 20,000 +/- 1000 was found on polyacrylamide gel electrophoresis. Reconstitution of proline transport was demonstrated when the purified protein was incubated with the detergent-extracted membrane vesicles. This reconstituted transport system was specific for proline and required substrate oxidation and Na+. The purified protein was also incorporated into liposomes, and proline uptake was demonstrated when energy was supplied as a membrane potential introduced by K+ diffusion via valinomycin. The uptake of proline was Na+ dependent and was inhibited by uncoupler or by sulfhydryl reagents.  相似文献   

12.
Glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from Lake Van fish (Chalcalburnus tarichii pallas, 1811) liver, using a simple and rapid method, and some characteristics of the enzyme were investigated. The purification procedure was composed of two steps: homogenate preparation and 2', 5'-ADP Sepharose 4B affinity gel chromatography, which took 7-8 hours. Thanks to the two consecutive procedures, the enzyme, having specific activity of 38 EU/mg protein, was purified with a yield of 44.39% and 1310 fold. In order to control the enzyme purification SDS polyacrylamide gel electrophoresis (SDS-PAGE) was done. SDS polyacrylamide gel electrophoresis showed a single band for enzyme. Optimal pH, stable pH, optimal temperature, Km and, Vmax values for NADP+ and glucose 6-phosphate (G6P) were also determined for the enzyme. In addition, molecular weight and subunit molecular weights were found by sodium dodecyl sulfate polyacrilamide gel electrophoresis (SDS-PAGE) and gel filtration chromatography respectively.  相似文献   

13.
Human red cell membranes were isolated and partially stripped of peripheral proteins by gel filtration of hemolysates on a Sepharose CL-4B column at pH 8 connected in tandem to a Sepharose CL-6B column at pH 10.5. The eluted material was washed by centrifugations, once at pH 10.5 and twice at pH 12. In this way, water-soluble proteins and peripheral membrane proteins were thoroughly removed, and 0.2 g of integral membrane proteins could be prepared within 10 h from 0.2 litre of red cells. The exposure to high pH did not lower the D-glucose transport activity, and electrophoretically pure glucose transport protein could be isolated from this preparation. Gel filtration in sodium dodecyl sulfate separated the integral membrane components into four fractions, one of them containing 4.5-material; gel electrophoresis showed about 14 zones and two-dimensional electrophoresis resolved up to 100 mostly minor components, among which the glucose transporter focused around pH 7. However, purified glucose transporter focused around pH 8. Glucose and nucleoside transport proteins were co-purified in active form on DEAE-cellulose and a fraction isolated by adsorption to Mono Q was used for immunization of mice and production of monoclonal antibodies. One hybridoma produced antibodies that reacted with material in the 4.5-region, possibly the glucose transport protein, and not with band 3-material. Upon two-dimensional electrophoresis of integral membrane components that had been solubilized with octyl glucoside the immunoreactive and the silver-stained 4.5-material focused in a broad range from pH 6 to pH 9. A possible explanation for this heterogeneity might be interaction between the glucose and nucleoside transport proteins and negatively charged lipids.  相似文献   

14.
Erythrocytes bearing the Rh(D) antigen have an Mr 30,000 integral membrane protein which can be surface-labeled with 125I and can be quantitatively immunoprecipitated from Triton X-100-solubilized spectrin-depleted membrane vesicles. The 125I-labeled Rh(D)-associated protein was purified to radiochemical homogeneity from membrane skeletons solubilized in sodium dodecyl sulfate and urea by hydroxylapatite chromatography, gel filtration, and preparative polyacrylamide gel electrophoresis. The Rh(D)-associated protein was purified nearly 200-fold from 2 units of erythrocytes from DD individuals by employing similar methods on a large scale using the purified 125I-labeled Rh(D)-associated protein as a tracer. The product appeared to be greater than 95% pure and migrated as a diffuse band of Mr approximately 30,000-32,000 on silver-stained sodium dodecyl sulfate electrophoresis gels poured from 12% acrylamide. It is estimated that the Rh(D)-associated protein makes up approximately 0.5% of the original membrane protein. When concentrated, partially purified Rh(D)-associated protein forms dimers and larger oligomers which are stable in sodium dodecyl sulfate and urea. The Rh(D)-associated protein was protected from degradation when intact erythrocytes or inside out membrane vesicles were enzymatically digested. These studies indicate that the Mr 30,000 protein associated with the Rh(D) antigen is linked to the membrane skeleton, resides within the lipid bilayer with minimal extra- or intracellular protrusions, exists normally as an oligomer, and can be purified in denatured form.  相似文献   

15.
Protein kinase [EC 2.7.1.37] of human erythrocyte membranes was solubilized with 0.5 M NaCl in 5 mM phosphate buffer, pH 6.7 at 4 degrees C and purified on a CM-Sephadex C-50 column, followed by affinity chromatography on a histone-Sepharose 4B column. The purified protein kinase gave a single band (molecular weight; 41,000) on examination by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The optimum pH of the enzyme was 8.0 and a millimolar range of concentration of Mg2+ was required for its maximum activity. Histone and protamine were well phosphorylated by the protein kinase but casein and phosvitin were poor phosphate acceptors for the enzyme. The enzymic activity was not stimulated by cyclic AMP (cAMP). A cAMP-finding protein from human erythrocyte membranes inhibited the activity of the protein kinase, but the activity was restored with cAMP. A heat stable protein inhibitor from rabbit skeletal muscle also inhibited this enzyme. From these observations, this protein kinase seemed to be a catalytic subunit of the membrane bound cAMP-dependent protein kinase. This enzyme was strongly inhibited with Ca2+ in the presence of 1 mM MgCl2. Various sulfhydryl reagents and polyamines also had inhibitory activity on the protein kinase. Natural substrates of the enzyme were investigated using heat treated membranes and 0.5 M NaCl extracted membrane residues. Band 4.1, 4.2, and 4.5 proteins were phosphorylated but band 2 (spectrin) and band 3 proteins were poor substrates for this protein kinase.  相似文献   

16.
Purified hexose transport protein ("band 4.5") from human erythrocytes, reconstituted in vesicles of its endogenous lipids, displays minima in its circular dichroism (CD) spectrum at 222 and 207 nm, a pattern diagnostic for alpha-helical content of proteins. Upon addition of D-glucose, a saturable increment of +10-12% in negative ellipticity at 222 nm is observed stereospecifically and reproducibly. Addition of L-glucose had no effect on the CD spectrum of the transport protein. Addition of cytochalasin B (CB), a reversible inhibitor of hexose transport, had no effect itself on transporter CD spectra, but restored the spectrum at 222 nm to its original value when added in the presence of D-glucose. The observed D-glucose-induced increase in ordered secondary structure is proposed to result from incorporation into the membrane of a segment of the transport protein originally at a membrane-water interface.  相似文献   

17.
Brush border membrane vesicles from rat small intestine were isolated by a Mg/EGTA precipitation method. Further fractionation either by free flow electrophoresis or by sucrose density gradient centrifugation leads to subfractions which differ with respect to enzyme enrichment factors, transport properties for D-glucose and protein pattern analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. A relative enrichment of (Na+ + K+)-ATPase is found in one fraction, whereas in another fraction maltase, aminopeptidase M and alkaline phosphatase are relatively enriched. The fractions show different properties of D-glucose transport under tracer exchange conditions and a different inhibition of D-glucose transport by phlorizin and phloretin. These results indicate that the vesicles obtained from rat small intestine by this cation precipitation method are not homogeneous. The inhomogeneity cannot be due to a crosscontamination by membranes other than from the cell envelopment, as none of the fractions show a significant enrichment of succinate--cytochrome c oxidoreductase, KCN-resistant NADH oxidoreductase or glucosaminidase. The inhomogeneity might be due either to a crosscontamination by basal-lateral membranes or to membranes derived from epithelial cells not yet fully differentiated.  相似文献   

18.
A photoreactive, radioiodinated derivative of glucose, N-(4-iodoazidosalicyl)-6-amido-6-deoxyglucopyranose (IASA-glc), has been synthesized and used as a photoaffinity label for the human erythrocyte monosaccharide transporter. Photoinactivation and photoinsertion are both light-dependent and result in a marked decrease in the absorption spectra of the compound. When [125I]IASA-glc was photolyzed with erythrocyte ghost membranes, photoinsertion of radiolabel was observed in three major regions, spectrin, band 3, and a protein of 58,000 daltons located in the zone 4.5 region. Of the three regions which were photolabeled, only labeling of polypeptides in the zone 4.5 region was partially blocked by D-glucose. In the non-iodinated form, N-(4-azidosalicyl)-6-amido-6-deoxy-glucopyranose inhibited the labeling of the transporter by [125I]IASA-glc more effectively than D-glucose. The ability to synthesize this [125I]containing photoprobe for the monosaccharide transporter at carrier-free levels offers several new advantages for investigating the structure of this transport protein in the erythrocyte.  相似文献   

19.
Protein 4.1 from human erythrocytes formed a complex with band 3 in inside-out erythrocyte membrane vesicles and with soluble peptides derived from the cytoplasmic domain of band 3. Protein 4.1 labeled metabolically with 32P bound saturably to vesicles depleted of endogenous protein 4.1. The soluble cytoplasmic domain of band 3 (43K) competitively displaced approximately 60% of bound 32P-protein 4.1 from reconstituted membrane vesicles. Pretreatment of vesicles with anti-43K similarly inhibited the rebinding of protein 4.1. In solution, 125I-43K formed a complex with protein 4.1 that saturated at 1:1 stoichiometry and migrated as a discrete band when analyzed by nondenaturing polyacrylamide gel electrophoresis. In rate-zonal sedimentation in isotonic salt solutions, protein 4.1 and 43K sedimented as a sharp peak at 4.4 S. In experiments aimed at exploring the role of the protein 4.1-band 3 interaction in the organization of the membrane skeleton, the effect of spectrin was investigated. Spectrin and protein 4.1 formed a complex which co-sedimented in sucrose gradients, but the addition of 43K to preformed spectrin-protein 4.1 complexes resulted in disruption of the complex and co-sedimentation of most of the protein 4.1 with 43K. These results suggest that protein 4.1 can associate with band 3 in the erythrocyte membrane and that this association may modulate the attachment of the membrane skeleton to the membrane.  相似文献   

20.
Mass spectrometric peptide mapping, particularly by matrix-assisted laser desorption-ionization (MALDI-MS), has recently been shown to be an efficient tool for the primary structure characterization of proteins. In combination with in situ proteolytic digestion of proteins separated by one- and two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), mass spectrometric peptide mapping permits identification of proteins from complex mixtures such as cell lysates. In this study we have investigated several ion channel membrane proteins (porins) and their supramolecular assembly in mitochondrial membranes by peptide mapping in solution and upon digestion in the gel matrix. Porins are integral membrane proteins serving as nonspecific diffusion pores or as specific systems for the transport of substrates through bacterial and mitochondrial membranes. The well-characterized porin from Rhodobacter capsulatus (R.c.-porin) has been found to be a native trimeric complex by the crystal structure and was used as a model system in this study. R.c.-porin was characterized by MALDI-MS peptide mapping in solution, and by direct in situ-gel digestion of the trimer. Furthermore, in this study we demonstrate the direct identification of the noncovalent complex between a mitochondrial porin and the adenine nucleotide translocator from rat liver, by MALDI-MS determination of the specific peptides due to both protein sequences in the SDS-PAGE gel band. The combination of native gel electrophoresis and mass spectrometric peptide mapping of the specific gel bands should be developed as a powerful tool for the molecular identification of protein interactions. Proteins Suppl. 2:63–73, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号