首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Freshly harvested zoospores of Blastocladiella emersonii begin to germinate about 15 min after inoculation into a defined growth medium at a density of 10(6) zoospores per ml. Flagellum retraction accompanies encystment, and dispersal of the ribosomal nuclear cap takes place shortly thereafter. The primary rhizoid begins to emerge at 25 to 30 min and starts to branch at ca. 60 min. The first nuclear division occurs between 120 and 190 min. The dry weight per cell increases linearly after 60 min, whereas the deoxyribonucleic acid per cell doubles between 120 and 240 min. A linear increase in total ribonucleic acid (RNA) is detectable beginning at 40 to 45 min, and in total protein beginning at 80 min; neither process is interrupted during nuclear division. Encystment and nuclear cap disorganization are associated with a sharp rise in the rates of precursor incorporation into RNA and protein. Cycloheximide at 20 mug/ml prevents leucine incorporation at all stages and inhibits development beyond the earliest encystment stage. Actinomycin D at 25 mug to 50 mug/ml prevents uracil incorporation, but it has no effect on leucine incorporation or development until 40 to 45 min. At the latter stage, actinomycin D causes a sharp developmental arrest and begins to inhibit leucine incorporation. It is concluded that early protein synthesis must occur on the ribosomes formed during the prior growth phase and conserved through the zoospore stage in the nuclear cap. The results further indicate that this synthesis is dependent upon messenger RNA already present in the zoospore before germination.  相似文献   

2.
Maceration at liquid nitrogen temperatures, use of poly-vinylpyrrolidone, and careful pH control are essential to the isolation of ribosomes and polysomes from deciduous fruit tissue. Characteristics of the ribosomes and constituent RNA are described.The distribution of ribosomes among monomer and polymer forms remains relatively constant until fruit reach the climacteric peak, after which there is a notable decline in the polymeric forms. In contrast to the relative stability in size distribution there is a marked change in ribosomal turnover during the climacteric rise. A transitory increase in rate of ribosomal synthesis is followed by a rapid decline coincident with the final portion of the climacteric rise. No incorporation of radioactive base into ribosomes could be detected once fruit had reached the climacteric peak.Coincidence of radioactivity with the ribosomal RNA on methylated albumin-Kieselguhr chromatograms and complete inhibition of ribosomal RNA synthesis by actinomycin D confirm that radioactive nucleotide was incorporated into newly synthesized ribosomes. Data are presented to distinguish between a cellular response to injury, as may result from the preparation of tissue slices, and the effects of physiological age.Superimposed intracellular radiation injury stimulates the synthesis of new ribosomes and underscores a major transition in the dynamics of the ribosomal system coincident with the climacteric rise.  相似文献   

3.
Regulation of Protein Synthesis in Zoospores of Blastocladiella   总被引:3,自引:1,他引:2       下载免费PDF全文
The factors responsible for the regulation of protein synthesis in the zoospores of Blastocladiella emersonii were studied by means of cell fractionation and in vitro assays. Charged transfer ribonucleic acid (tRNA) and aminoacyl-tRNA synthetases were found both inside the membrane-bound, ribosomal nuclear cap, and in the extracap cytoplasm. Ribosomes isolated from zoospore nuclear caps in low salt buffer failed to support polyuridylic acid-dependent phenylalanine incorporation. After washing with high salt buffer, the cap ribosomes were equivalent in activity to similarly prepared plant ribosomes. Both the high-salt wash from cap ribosomes and the extracap supernatant fraction contained an unidentified material which inhibited aminoacyl-tRNA binding and peptide bond formation by ribosomes. Ribosomal binding of polyuridylic acid was not inhibited. Washed cap ribosomes supported very low incorporation rates without added messenger RNA, and were highly dependent upon added poly U for phenylalanine incorporation, indicating a low level of messenger in nuclear caps. It is concluded that enclosure of the ribosomes in the nuclear cap does not in itself prevent protein synthesis, and that the lack of activity may be due to the presence of a ribosome inhibitor.  相似文献   

4.
In bacterial extracts streptomycin is known not only to inhibit ribosomal activity but also to cause gradual release of ribosomes from polysomes. Nevertheless, we now find that after streptomycin has virtually halted protein synthesis in cells of Escherichia coli K12 a substantial (though reduced) level of polysomes persists. These polysomes are evidently maintained by turnover rather than by static blockade, for in streptomycin-treated cells [3H]uracil pulses are rapidly incorporated in the polysomal messenger RNA; moreover, if the synthesis of RNA or the formylation of methionyl-transfer RNA is blocked the polysome level decreases rapidly. Streptomycin thus appears to cause a cycle of ribosomal initiation, blockage of chain extension, gradual release, and reinitiation.The resulting cyclic blockade of initiation sites can account for the dominance of streptomycin sensitivity over resistance in strsstrr2 heterozygotes. In confirmation of this model, the inactive resistant ribosomes in treated heterozygotes were found to resume activity if the cells were lysed and excess messenger was provided. These findings further suggest that in sensitive cells damage to only a fraction of the ribosomal population by streptomycin may be sufficient to block protein synthesis.  相似文献   

5.
Synthesis of ribosomes and ribosomal ribonucleic acid (RNA) continued during differentiation of Dictyostelium discoideum concurrently with extensive turnover of ribosomes synthesized during both growth and developmental stages. We show here that the rate of synthesis of 26S and 17S ribosomal RNA during differentiation was less than 15% of that in growing cells, and by the time of sorocarp formation only about 25% of the cellular ribosomes had been synthesized during differentiation. Ribosomes synthesized during growth and differentiation were utilized in messenger RNA translation to the same extent; about 50% of each class were on polyribosomes. Ribosome degradation is apparently an all-or-nothing process, since virtually all 80S monosomes present in developing cells could be incorporated into polysomes when growth conditions were restored. By several criteria, ribosomes synthesized during growth and differentiation were functionally indistinguishable. Our data, together with previously published information on changes in the messenger RNA population during differentiation, indicate that synthesis of new ribosomes is not necessary for translation of developmentally regulated messenger RNA. We also establish that the overall rate of messenger RNA synthesis during differentiation is less than 15% of that in growing cells.  相似文献   

6.
The synthesis of RNA was studied during the synchronous germination of Blastocladia ramosa zoospores. Comparison of RNA synthesis during germination of B. ramosa and Blastocladiella emersonii zoospores revealed that B. ramosa has a longer lag time before RNA synthesis is initiated and, in addition, the rate of RNA synthesis is ten-fold lower in B. ramosa. Zoospores of B. ramosa were shown to contain pre-formed messenger RNA but this messenger RNA directs only a portion of the protein synthesis which occurs during early germination. The conclusion that the remainder of the protein synthetic activity of the germinating spores is due to new message synthesis was supported by demonstrating that the timing of the initation of protein synthesis on new messages correlates with the time RNA synthesis is initiated. New message synthesis was also demonstrated by the incorporation of label into RNA which contains a poly (A) fragment. Synthesis of all classes of RNA including ribosomal, messenger, and transfer RNA was shown to be initiated at the same time. The implications of this observation are discussed.  相似文献   

7.
8.
Studies of newly synthesized ribosomal ribonucleic acid of Escherichia coli   总被引:6,自引:2,他引:4  
1. RNA synthesized by Escherichia coli during one-hundredth of the generation time contains two fractions distinguishable by hybridization with homologous DNA. One fraction, approximately 30% of the newly synthesized RNA, did not compete with ribosomal RNA, being apparently messenger RNA. The other fraction, approximately 70% of the newly made RNA, hybridized as ribosomal RNA. These values are comparable with previous estimates (McCarthy & Bolton, 1964; Pigott & Midgley, 1968). 2. Hybridization-competition experiments showed that the newly made RNA associated with 70s ribosomes and larger ribosome aggregates was a mixture of ribosomal RNA and messenger RNA, whereas that associated with nascent ribosomal subunits consisted exclusively of ribosomal RNA. This observation provides means by which newly synthesized ribosomal RNA can be isolated free from messenger RNA. 3. Newly made ribosomal RNA in nascent ribosomal subunits was sensitive to shear under conditions where ribosomal RNA in mature ribosomes was shear-resistant. Thus, when RNA was extracted from cells of E. coli disrupted by mechanical means, newly made ribosomal RNA appeared heterogeneous in size, sedimenting as a broad peak extending from 8s to 16s. 4. Newly synthesized ribosomal RNA in nascent ribosomal subunits was rapidly degraded in the presence of actinomycin D and during glucose starvation. 5. Newly synthesized ribosomal RNA stimulated amino acid incorporation in a system synthesizing protein in vitro to the same extent as the RNA which contained the messenger RNA fraction.  相似文献   

9.
The rate of protein synthesis in HeLa cells appears to be regulated, in part, by a factor which promotes the association of ribosomes with messenger RNA and whose production is inhibited by actinomycin. The decline in protein synthesis after the administration of actinomycin is not primarily due to a decay of available messenger RNA but, rather, is a result of a decrease in the rate of ribosomal association with message.The decay of protein synthesis in actinomycin can be varied over a wide range by altering the temperature of cell incubation. Thus the half-life of protein synthesis decay ranges from eight hours at 34 °C to two hours at 41°C. The rapid decline of protein synthesis at 41 °C is not accompanied by a corresponding decay of the messenger RNA. Polyribosomes decrease in size, but they can be restored to normal sedimentation distributions by low levels of cycloheximide, suggesting that messenger RNA remains functional. The translation rate at 41 °C is unaltered. The dose-response of protein synthesis inhibition by actinomycin was measured and a half-maximum inhibition was found to be effected by 0·1 μg of the drug/ml.Another important aspect of the regulation of translation in HeLa cells is the response of cells to depressed rates of protein synthesis. At 42 °C, protein synthesis is severely inhibited, due to a failure in the association of ribosomes with messenger RNA. Prolonged incubation at the elevated temperature results in a significant repair of the lesion. This repair is inhibited by actinomycin. The half-maximum inhibition is achieved at levels of from 0·05 to 0·1 μg of the drug/ml.The cell response to depressed rates of protein synthesis can also be demonstrated using the drug cycloheximide. Prolonged incubation in the drug results in a response which then can promote protein synthesis at 42 °C. Here again, the half-maximum inhibition of the response to cyclohemixide is achieved by 0·1 μg of actinomycin/ml. These experiments suggest, but do not prove, that the cellular response may be mediated through the synthesis of RNA that promotes the initiation of translation and does not involve the subsequent production of protein.  相似文献   

10.
11.
A mutant of Bacillus subtilis 168 (strain 168 KW), defective in its ability to concentrate K(+) from low levels in the growth medium, was used to study the role of K(+) in the development of phage 2C. Both the final burst size and the duration of the rise period depended on the K(+) concentration in the medium. During normal infection (in the presence of K(+)), host deoxyribonucleic acid (DNA) synthesis stopped. The synthesis of host messenger ribonucleic acid (RNA) continued throughout infection, albeit at a steadily decreasing rate. The synthesis of ribosomal RNA and its subsequent incorporation into mature ribosomes also proceeded. In contrast to these findings, host DNA and messenger RNA synthesis were not inhibited in cells infected in the absence of K(+). Only "early" phage messenger RNA was synthesized under these conditions of infection. Phage DNA synthesis was dependent on K(+) irrespective of the requirement for this cation in protein synthesis.  相似文献   

12.
In light-grown wheat (Triticum aestivum L.) seedlings, the amount of chloroplast and cytoplasmic ribosomal RNA increased to a maximum in the first leaf near the end of its growth and declined by about 60% in the following 3 days. While total ribosomal RNA was declining, labeled uracil was still incorporated into cytoplasmic ribosomal RNA, but the rate of incorporation into chloroplast ribosomal RNA fell by more than 80%, as did the incorporation of labeled leucine into fraction I protein. Either there is greater replacement of cytoplasmic ribosomal RNA than chloroplast ribosomal RNA in mature leaves, or chloroplasts are able to repress the incorporation of exogenous precursor when there is no net synthesis of RNA.  相似文献   

13.
14.
Summary The nucleotide composition of ribosomal, soluble and total ribonucleic acids (RNA) from the zoospores of Rhizophlyctis rosea was determined. The base ratios for ribosomal, soluble, and total RNA were 49.16, 51.79 and 49.97 moles percent, guanylic acid (G) and cytidylic acid (C) respectively. The distribution of the nucleotides in ribosomal RNA differed slightly from those determined in other fungi and microorganisms. The amount of uridylic acid in soluble RNA was very high, while the GC content was unexpectedly low. Ribosomes were characterized with respect to their mean sedimentation coefficient, under high magnesium (0.01 M) concentrations, in the analytical ultracentrifuge, and by a linear sucrose-density gradient centrifugation. The particles had an average of 82 S by the sucrose-density gradient method, and an average of 78 S by the analytical ultracentrifugation technique.  相似文献   

15.
Regulation of Ribosomal Protein Synthesis in Escherichia coli   总被引:11,自引:6,他引:5       下载免费PDF全文
  相似文献   

16.
After starvation for deoxyribosides, the deoxyribonucleic acid (DNA) of Lactobacillus acidophilus is restricted to a localized region of the cell. (3)H-uracil is first incorporated into such a restricted region but subsequently is found throughout the cell. This spread occurs despite the absence of protein synthesis and a major reduction in the rate of ribonucleic acid (RNA) synthesis. However, blocking RNA synthesis with actinomycin D restricts incorporation to a localized region of the cell. It is concluded that uracil is first incorporated into RNA in the bacterial nucleus from which it subsequently spreads through the cell. Actinomycin D could prevent this spread by preventing the completion of RNA molecules, which therefore do not dissociate from the DNA template.  相似文献   

17.
The in vitro phenylalanine incorporation by polyribosomes of peach flower buds (Prunus persica Stokes) during dormancy, dormancy break and flowering was investigated. Protein synthesis was measured using as catalyst either calf liver soluble factors or the ribosomal supernatant from the peach flower buds in the presence or the absence of the synthetic mRNA, polyuridylic acid. In the presence of polyuridylic acid, the activity of protein synthesis of dormant ribosomes is the same as that of ribosomes during dormancy break and flowering. The absence of synthetic messenger did not cause a change in activity. The ribosomal supernatant of dormant buds, but not of flowering buds, reduces the phenylalanine incorporation by polyribosomes from buds harvested at dormancy break.  相似文献   

18.
The incorporation of C14 leucine into the protein moiety of ribosomes has been studied as a sequel to the studies of ribosomal RNA synthesis. In contrast to the latter studies, labeled leucine is incorporated directly into 50S and 30S ribosomes without measurable delay by precursor stages. There is, however, evidence of some transfer of radioactivity from the 43S group of particles to the 50S. The inhibition of protein synthesis by chloramphenicol results in the accumulation of material similar to the eosome—the primary precursor in ribosome synthesis. There is also evidence for the synthesis of some neosome. The results of the studies of ribosomal RNA and protein synthesis are combined into a model of ribosome synthesis. Finally, consideration is made of the significance of these studies of ribosome synthesis for general problems of protein synthesis and information transfer.  相似文献   

19.
Summary The effect of cycloheximide upon protein synthesis, RNA metabolism, and polyribosome stability was investigated in the parent and in two temperature-sensitive mutant yeast strains defective respectively in the initiation of polypeptide chains and in messenger RNA synthesis. Cycloheximide at high concentrations (100 g/ml) severely inhibits but does not completely stop protein synthesis (Fig. 1); the incorporation of 14C-amino acids into polyribosome-associated nascent polypeptide chains continues at a slow but measurable rate (Figs. 2 and 3). Polyribosome structures are stable in the parent strain at 36° whether or not cycloheximide is present (Fig. 5). However, in Mutant ts- 136, a mutant defective in messenger as well as in stable RNA production, polyribosomes decay at the restrictive temperature (36° C) at the same rate whether or not cycloheximide is present (Fig. 5). Thus the maintenance of polyribosome structures is dependent upon the continued synthesis of messenger RNA even under conditions of extremely slow polypeptide chain elongation. In mutant ts- 187, a mutant defective in the initiation of polypeptide chains, all of the polyribosomes decay to monoribosomes within 2 minutes after a shift to the restrictive temperature; cycloheximide completely prevents this decay demonstrating that this mutant is capable of continued messenger RNA synthesis at 36° C. Consistent with these observations is the fact that a newly synthesized heterogeneously sedimenting RNA fraction continues to enter polyribosomes in the presence of cycloheximide whereas the entrance of newly synthesized ribosomal RNA is severely inhibited (Figs. 7, 8, 9). The decay or lack of decay of polyribosomes at the restrictive temperature is, therefore, a rapid and discriminating test for the analysis of mutants defective in macromolecule synthesis. Mutants which exhibit a decay of polyribosomes in the presence of cycloheximide are likely to be defective directly or indirectly in the synthesis of messenger RNA whereas mutants in which decay is prevented or slowed by cycloheximide are likely to be defective in some factor required for the association of ribosomes and messenger RNA.  相似文献   

20.
Relative rates of protein synthesis in individual cells were determined by allowing random populations to incorporate tritiated leucine for very short periods (pulses) and then examining autoradiographs of these cells to assess the amount of incorporation (grains per cell) as a function of cell size. Relative rates of ribonucleic acid (RNA) synthesis were determined in the same way by using tritiated uracil. Unless the uracil pulse was very short (less than 1/20 generation), the RNA labeled during the pulse was predominantly ribosomal. The rate of protein synthesis in individual cells is directly proportional to cell size. The rate of RNA synthesis also increases linearly with size in larger cells, but there appears to be a slight delay in RNA synthesis immediately after cell division. Total cellular content of protein, RNA, and ribosomes is directly proportional to cell size. Thus, we conclude that, in individual cells during the cell cycle (i) the average rate of protein synthesis per ribosome is constant and (ii) the increase in macromolecular mass of the cell is exponential with age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号