首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Escherichia coli flavohemoglobin (HMP) is shown to be capable of catalyzing the reduction of several alkylhydroperoxide substrates into their corresponding alcohols using NADH as an electron donor. In particular, HMP possesses a high catalytic activity and a low Km toward cumyl, linoleic acid, and tert-butyl hydroperoxides, whereas it is a less efficient hydrogen peroxide scavenger. An analysis of UV-visible spectra during the stationary state reveals that at variance with classical peroxidases, HMP turns over in the ferrous state. In particular, an iron oxygen adduct intermediate whose spectrum is similar to that reported for the oxo-ferryl derivative in peroxidases (Compound II), has been identified during the catalysis of hydrogen peroxide reduction. This finding suggests that hydroperoxide cleavage occurs upon direct binding of a peroxide oxygen atom to the ferrous heme iron. Competitive inhibition of the alkylhydroperoxide reductase activity by carbon monoxide has also been observed, thus confirming that heme iron is directly involved in the catalytic mechanism of hydroperoxide reduction. The alkylhydroperoxide reductase activity taken together with the unique lipid binding properties of HMP suggests that this protein is most likely involved in the repair of the lipid membrane oxidative damage generated during oxidative/nitrosative stress.  相似文献   

3.
Escherichia coli flavohemoglobin is endowed with the notable property of binding specifically unsaturated and/or cyclopropanated fatty acids both as free acids or incorporated into a phospholipid molecule. Unsaturated or cyclopropanated fatty acid binding to the ferric heme results in a spectral change observed in the visible absorption, resonance Raman, extended x-ray absorption fine spectroscopy (EXAFS), and x-ray absorption near edge spectroscopy (XANES) spectra. Resonance Raman spectra, measured on the flavohemoglobin heme domain, demonstrate that the lipid (linoleic acid or total lipid extracts)-induced spectral signals correspond to a transition from a five-coordinated (typical of the ligand-free protein) to a hexacoordinated, high spin heme iron. EXAFS and XANES measurements have been carried out both on the lipid-free and on the lipid-bound protein to assign the nature of ligand in the sixth coordination position of the ferric heme iron. EXAFS data analysis is consistent with the presence of a couple of atoms in the sixth coordination position at 2.7 A in the lipid-bound derivative (bonding interaction), whereas a contribution at 3.54 A (nonbonding interaction) can be singled out in the lipid-free protein. This last contribution is assigned to the CD1 carbon atoms of the distal LeuE11, in full agreement with crystallographic data on the lipid-free protein at 1.6 A resolution obtained in the present work. Thus, the contributions at 2.7 A distance from the heme iron are assigned to a couple of carbon atoms of the lipid acyl chain, possibly corresponding to the unsaturated carbons of the linoleic acid.  相似文献   

4.
The recombinant Eschreichia coli strain BL21 (BAD) was constructed to carry a chromosomal copy of T7 gene 1 fused to the araBAD promoter. To further characterize this expression system, strain BL21 (BAD) was transformed with the plasmid containing the carbamoylase gene from Agrobacterium radiobacter driven by the T7 promoter. Upon induction with L-arabinose, recombinant cells produced 100-fold increase in carbamoylase activity in comparison with uninduced cells on M9 semidefined medium plus glycerol. This protein yield accounts for 30% of total cell protein content. In addition, it was found that after 100 generations the plasmid harboring the carbamoylase gene remained firmly stable in strain BL21 (BAD), but its stability dropped to only 20-30% in strain BL21 (DE3), a commercial strain bearing T7 gene 1 regulated by the lacUV5 promoter in its chromosome. In an attempt to enhance the total protein yield, fed-batch fermentation process was carried out using a two-stage feeding strategy to compartmentalize cell growth and protein synthesis. In the batch fermentation stage, the culture was grown on glucose to reach the stationary growth phase. Subsequently, glycerol was fed to the culture broth and L-arabinose was augmented to induce protein production when cells entered the late log growth phase. As a result, a carbamoylase yield corresponding to 5525 units was obtained, which amounts to a 337-fold increase over that achieved on a shake-flask scale. Taken together, these results illustrate the practical usefulness of T7 system under control of the araBAD promoter for heterologous protein production.  相似文献   

5.
An expression plasmid in which plasmid DNA replication and heterologous gene expression can be simultaneously regulated was constructed to avoid derepression prior to induction. This was achieved by placing a pBR322 origin of replication immediately downstream of an anthranilate synthase-human epidermal growth factor fusion gene (trpE-hEGF), both under the control of the promoter from the tryptophan biosynthetic operon. Regulation of plasmid copy number ensured tight repression of the trp promoter prior to induction. Upon induction, plasmid copy number increased up to six-fold and the fusion protein accumulated to approximately 12% of total cell protein. Induction experiments with a series of plasmid derivatives with sequentially lower copy numbers revealed that accumulation levels of the TrpE-hEGF fusion protein post-induction correlated well with plasmid copy number. Plasmid constructs where the native trp promoter had been replaced by derivatives deleted of the attenuator resulted in high levels of hEGF accumulation in the tryptophan-free medium prior to induction. Nevertheless, up to two-fold increase in TrpE-hEGF accumulation levels were obtained using the constructs lacking the attenuator compared to those bearing the native trp promoter.  相似文献   

6.
In vivo regulation of the Escherichia coli araC promoter.   总被引:10,自引:3,他引:7  
The ara pC promoter is known to be derepressed about fivefold for 20 to 30 min after the addition of arabinose. This transient derepression was studied by using araC::Mu lac insertions and araC-lacZ gene fusions. In strains containing increased levels of araC protein, the pC promoter became progressively less derepressible, but the ara pBAD promoter remained normally inducible. Repression of pC was reestablished 20 min after induction in araB mutants, but did not occur in arabinose-transport-deficient mutants. Finally, mutant araCc proteins which normally do not repress pC did so in the presence of arabinose.  相似文献   

7.
The Vitreoscilla hemoglobin gene (vhb) is expressed under oxygen-limited conditions via an FNR-dependent mechanism. Furthermore, cAMP-CRP has been implicated in its regulation. Recently, VHb protein has been reported to protect a heterologous host from nitrosative stress. In this study we analyzed the regulation of the Vitreoscilla hemoglobin promoter (Pvhb) in Escherichia coli under nitrosative and oxidative stress conditions. Our results show unambiguously that expression of neither VHb nor chloramphenicol acetyltransferase under the control of Pvhb is induced under the experimental conditions used. Thus, a clear discrepancy between in vivo function, i.e. protection against nitrosative stress, and regulation of gene expression is obvious. The regulation of Pvhb reported here is in clear contrast to the expression pattern of flavohemoglobins from various microorganisms, which are generally induced by nitrosative stress. However, the length of Pvhb is only 146 bp and therefore, we cannot rule out that additional regulatory sequences may be located in the upstream region of Pvhb.  相似文献   

8.
Escherichia coli possesses a soluble flavohemoglobin, with an unknown function, encoded by the hmp gene. A monolysogen containing an hmp-lacZ operon fusion was constructed to determine how the hmp promoter is regulated in response to heme ligands (O2, NO) or the presence of anaerobically utilized electron acceptors (nitrate, nitrite). Expression of the phi (hmp-lacZ)1 fusion was similar during aerobic growth in minimal medium containing glucose, glycerol, maltose, or sorbitol as a carbon source. Mutations in cya (encoding adenylate cyclase) or changes in medium pH between 5 and 9 were without effect on aerobic expression. Levels of aerobic and anaerobic expression in glucose-containing minimal media were similar; both were unaffected by an arcA mutation. Anaerobic, but not aerobic, expression of phi (hmp-lacZ)1 was stimulated three- to four-fold by an fnr mutation; an apparent Fnr-binding site is present in the hmp promoter. Iron depletion of rich broth medium by the chelator 2'2'-dipyridyl (0.1 mM) enhanced hmp expression 40-fold under anaerobic conditions, tentatively attributed to effects on Fnr. At a higher chelator concentration (0.4 mM), hmp expression was also stimulated aerobically. Anaerobic expression was stimulated 6-fold by the presence of nitrate and 25-fold by the presence of nitrite. Induction by nitrate or nitrite was unaffected by narL and/or narP mutations, demonstrating regulation of hmp by these ions via mechanisms alternative to those implicated in the regulation of other respiratory genes. Nitric oxide (10 to 20 microM) stimulated aerobic phi (hmp-lacZ)1 activity by up to 19-fold; soxS and soxR mutations only slightly reduced the NO effect. We conclude that hmp expression is negatively regulated by Fnr under anaerobic conditions and that additional regulatory mechanisms are involved in the responses to oxygen, nitrogen compounds, and iron availability. Hmp is implicated in reactions with small nitrogen compounds.  相似文献   

9.
10.
Escherichia coli flavohemoglobin has been shown to be able to bind specifically unsaturated and/or cyclopropanated fatty acids with very high affinity. Unsaturated or cyclopropanated fatty acid binding results in a modification of the visible absorption spectrum of the ferric heme, corresponding to a transition from a pentacoordinated (typical of the ligand free protein) to a hexacoordinated, high spin, heme iron. In contrast, no detectable interaction has been observed with saturated fatty acid, saturated phospholipids, linear, cyclic, and aromatic hydrocarbons pointing out that the protein recognizes specifically double bonds in cis conformation within the hydrocarbon chain of the fatty acid molecule. Accordingly, as demonstrated in gel filtration experiments, flavohemoglobin is able to bind liposomes obtained from lipid extracts of E. coli membranes and eventually abstract phospholipids containing cis double bonds and/or cyclopropane rings along the acyl chains. The presence of a protein bound lipid strongly affects the thermodynamic and kinetic properties of imidazole binding to the ferric protein and brings about significant modifications in the reactivity of the ferrous protein with oxygen and carbon monoxide. The effect of the bound lipid has been accounted for by a reaction scheme that involves the presence of two sites for the lipid/ligand recognition, namely, the heme iron and a non-heme site located in a loop region above the heme pocket.  相似文献   

11.
In Escherichia coli there is a large increase of cAMP synthesis in crp strains, which are deficient in the catabolite gene activator protein. In this work it was shown that this increase in cAMP synthesis does not occur in crp crr strains, deficient in both the catabolite gene activator protein and enzymeIII-glucose, a component of the phosphotransferase system. It was also shown that the other components of the phosphotransferase system are required to obtain the increase of cAMP synthesis in a crp background. Adenylate cyclase mutants were obtained, by random mutagenesis, which had partial adenylate cyclase activity but which did not exhibit increased levels of cAMP in a crp background. For three mutants the mutation was identified as a single point mutation. This allowed the identification of residues arginine 188, aspartic acid 414 and glycine 463 which could be involved in the catabolite gene activator protein dependent activation process.  相似文献   

12.
13.
14.
15.
The Escherichia coli nar promoter is maximally induced under anaerobic conditions in the presence of nitrate ion or under anaerobic only conditions, depending on the genotype of the E. coli nar promoter. Previously, we found that the E. coli nar promoter has some desirable characteristics as an inducible promoter in the E. coli host strains. In this study, the E. coli nar promoter with lacZ gene at the downstream was cloned onto a broad-host-range Gram-negative vector, pBBR122. It was then induced in some other Gram-negative host strains, such as Agrobacterium, Pseudomonas, and Rhizobium, to determine whether the E. coli nar promoter could be used as an inducible promoter in these strains. From shake-flask experiments it was found that the wild-type E. coli nar promoter cloned onto pBBR122, pNW61, was suppressed under aerobic conditions in an Agrobacterium host strain, was partially induced under microaerobic only conditions, and was maximally induced under microaerobic conditions in the presence of nitrate ion. Whereas the mutant-type E. coli nar promoter cloned onto pBBR122, pNW618, was suppressed under aerobic conditions and was maximally induced under microaerobic conditions, regardless of the presence of nitrate ion. This kind of induction pattern observed for the E. coli nar promoters in the Agrobacterium host strain was similar to that observed for the E. coli nar promoters in the E. coli host strain. On the other hand, it was found that both of the E. coli nar promoters, pNW61 and pNW618, in a Pseudomonas host strain were partially induced under aerobic conditions and were maximally induced under microaerobic conditions, regardless of the presence of nitrate. Finally, it was found that both of the E. coli nar promoters in a Rhizobium host strain were minimally induced, regardless of the presence of oxygen or nitrate ion. Similar induction patterns for the three strains were also observed from fermentor experiments in which the dissolved oxygen (DO) level was tightly controlled. From an evolutionary point of view, the results from the three Gram-negative host strains indicate that the E. coli nar promoter system, including the promoter and regulatory proteins, was best conserved in the Agrobacterium host strain and the least conserved in the Rhizobium host strain. From an industrial point of view, the results indicate that the E. coli nar promoter system can be used as an oxygen-dependent inducible promoter in both Agrobacterium and Pseudomonas host strains.  相似文献   

16.
17.
18.
A propanologenic (i.e., 1-propanol-producing) bacterium Escherichia coli strain was previously derived by activating the genomic sleeping beauty mutase (Sbm) operon. The activated Sbm pathway branches out of the tricarboxylic acid (TCA) cycle at the succinyl-CoA node to form propionyl-CoA and its derived metabolites of 1-propanol and propionate. In this study, we targeted several TCA cycle genes encoding enzymes near the succinyl-CoA node for genetic manipulation to identify the individual contribution of the carbon flux into the Sbm pathway from the three TCA metabolic routes, that is, oxidative TCA cycle, reductive TCA branch, and glyoxylate shunt. For the control strain CPC-Sbm, in which propionate biosynthesis occurred under relatively anaerobic conditions, the carbon flux into the Sbm pathway was primarily derived from the reductive TCA branch, and both succinate availability and the SucCD-mediated interconversion of succinate/succinyl-CoA were critical for such carbon flux redirection. Although the oxidative TCA cycle normally had a minimal contribution to the carbon flux redirection, the glyoxylate shunt could be an alternative and effective carbon flux contributor under aerobic conditions. With mechanistic understanding of such carbon flux redirection, metabolic strategies based on blocking the oxidative TCA cycle (via ∆sdhA mutation) and deregulating the glyoxylate shunt (via ∆iclR mutation) were developed to enhance the carbon flux redirection and therefore propionate biosynthesis, achieving a high propionate titer of 30.9 g/L with an overall propionate yield of 49.7% upon fed-batch cultivation of the double mutant strain CPC-Sbm∆sdhAiclR under aerobic conditions. The results also suggest that the Sbm pathway could be metabolically active under both aerobic and anaerobic conditions.  相似文献   

19.

Background

Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species.

Methodology/Principal Findings

As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus), a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications.

Conclusion/Significance

Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis.  相似文献   

20.
The Escherichia coli mazEF system is a chromosomal "addiction module" that, under starvation conditions in which guanosine-3',5'-bispyrophosphate (ppGpp) is produced, is responsible for programmed cell death. This module specifies for the toxic stable protein MazF and the labile antitoxic protein MazE. Upstream from the mazEF module are two promoters, P(2) and P(3) that are strongly negatively autoregulated by MazE and MazF. We show that the expression of this module is positively regulated by the factor for inversion stimulation. What seems to be responsible for the negative autoregulation of mazEF is an unusual DNA structure, which we have called an "alternating palindrome." The middle part, "a," of this structure may complement either the downstream fragment, "b," or the upstream fragment, "c". When the MazE.MazF complex binds either of these arms of the alternating palindrome, strong negative autoregulation results. We suggest that the combined presence of the two promoters, the alternating palindrome structure and the factor for inversion stimulation-binding site, all permit the expression of the mazEF module to be sensitively regulated under various growth conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号