首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CDP-choline:1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2) and CDP-ethanolamine:1,2-diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) are microsomal enzymes that catalyze the final steps in the syntheses of phosphatidylcholine and phosphatidylethanolamine via the CDP-choline and CDP-ethanolamine pathways, respectively. Both enzyme activities were cosolubilized from hamster liver microsomes by Triton QS-15. Limited separation of these two activities was achieved by ion-exchange chromatography. The partially purified phosphotransferases displayed a higher sensitivity than microsomal phosphotransferases towards exogenous phospholipids and showed an absolute requirement for divalent cations. Upon purification, cholinephosphotransferase was more stable to heat treatment than ethanolaminephosphotransferase. The two enzymes exhibited distinct pH optima and responded differently to exogenous phospholipids. Our results clearly indicate that cholinephosphotransferase and ethanolaminephosphotransferase are separate enzymes.  相似文献   

2.
Effects of the dietary addition of orotic acid to a diet containing casein as a sole protein source on lipid levels in the liver and serum, activities of antioxidant enzymes in the liver, and some enzyme activities in serum, were compared with other diets containing egg protein, soy protein, or wheat gluten, respectively. 1. The contents in the liver of each lipid were increased by the addition of orotic acid as compared with those values without it. The orotic acid added to the casein diet caused accumulation of more liver total lipids, triacylglycerol, 1,2-diacylglycerol, and phospholipids than those fed three other diets. 2. The addition of orotic acid to the casein, but not to the other three diets, lowered the activities of liver superoxide dismutase and increased the activities of both serum ornithine carbamoyltransferase and alanine aminotransferase. Thus, the significant increase in serum ornithine carbamoyltransferase activities as the marker of liver lesions may result from the marked accumulation of liver lipids, decreased activities of hepatic superoxide dismutase, and the increased level of hepatic 1,2-diacylglycerol, followed by possibly the increased level of superoxide anion and increased activity of protein kinase C in rats fed the casein diet with orotic acid added.  相似文献   

3.
Phorbol esters have been reported to decrease sensitivity or responsiveness to insulin in cells in vitro. Since phorbol esters are analogues of endogenously produced 1,2-diacylglycerol, the present study investigated whether 1,2-diacylglycerol concentration is elevated in insulin-resistant tissues of the rat in vivo. Studies were done on 11-12-week-old genetically obese Zucker rats, which are insulin-resistant. Lean Zucker rats served as controls. Levels of 1,2-diacylglycerol in obese rats were increased 82% in liver, 136% in calf muscles, 72% in soleus muscle, a slow-twitch muscle, and 40% in plantaris muscle, a fast-twitch muscle. Ceramide levels in the same tissues were increased 26, 52, 69, and 13%, respectively. Studies were also done on normal, non-obese Sprague-Dawley rats 3 h, 1, 3, 8, and 15 days after interrupting the nerve supply to hindlimb muscles. We have previously shown that 3-17 days after denervation, soleus muscles are completely unresponsive to insulin and do not increase glucose uptake in response to insulin stimulation in vivo, whereas plantaris muscles show a normal glucose uptake when stimulated by insulin; however, the insulin-induced increment in glucose uptake is reduced 68% because it is superimposed on already elevated basal glucose uptake (Turinsky, J. (1987) Am. J. Physiol. 252, R531-R537). In the present study, the denervated soleus muscles exhibited a sustained increase of 23-56% in 1,2-diacylglycerol concentration between 3 h and 15 days after interruption of nerve supply. The denervated soleus muscles also showed 34 and 42% increases in ceramide concentration at 3 and 8 days after denervation, respectively. In contrast, no increases in 1,2-diacylglycerol concentration were observed in plantaris muscles at shorter intervals than 15 days after denervation. Ceramide concentrations in plantaris muscles were increased 43 and 75% at 8 and 15 days after denervation, respectively. These observations demonstrate that tissue insulin resistance is frequently associated with a long term increase in tissue 1,2-diacylglycerol concentration. This suggests the possibility that augmented 1,2-diacylglycerol levels contribute to the development of some types of tissue insulin resistance.  相似文献   

4.
The molecular species of 1,2-diacylglycerol in control and agonist-stimulated rat hepatocytes were analyzed by high performance liquid chromatography. Twelve species were identified which were increased nonuniformly by 100 nM vasopressin. Most species were increased 2-3-fold, but some (C16:0/C20:4 and C18:0/C20:4) were increased 3-6-fold. Selectively greater increases in the latter two species were also induced by ATP, angiotensin II, and A23187 ionophore, however, phorbol ester caused uniform increases. Calcium depletion of the cells with chelator resulted in a uniform 2-fold effect of vasopressin on 1,2-diacylglycerol species, with greater increases in C16:0/C20:4 and C18:0/C20:4 being restored by Ca2+ readdition. Comparison of the increases in 1,2-diacylglycerol species caused by the Ca2+-mediated agents with the molecular species present in rat hepatocyte phospholipids supports the concept that phosphatidylcholine is a major source of the 1,2-diacylglycerol that accumulates. In hepatocytes incubated for 5 min to 2 h with 1-O-[3H]alkyl-2-lyso-sn-glycero-3-phosphocholine, the label was incorporated mainly into phosphatidylcholine, and subsequent incubation with vasopressin, angiotensin II, ATP, epinephrine, A23187, and phorbol ester caused formation of [3H]alkyl-acylglycerol, but not [3H]alkyl-phosphatidic acid. The time course and concentration dependence of the vasopressin effect were similar to those reported previously for total 1,2-diacylglycerol (Bocckino, S. B., Blackmore, P. F., and Exton, J. H. (1985) J. Biol. Chem. 260, 14201-14207). Calcium depletion induced by chelator inhibited the effect of vasopressin, and readdition of Ca2+ largely restored the effect. In cells incubated with [14C]lyso-phosphatidylcholine, [3H]phosphatidylcholine, or [14C]phosphatidylethanolamine for 5 or 30 min to label hepatocyte phosphatidylcholine, vasopressin also induced the formation of labeled 1,2-diacylglycerol, but not phosphatidic acid. In contrast, in hepatocytes prepared from rats injected intraportally with [3H]alkyl-lyso-glycerophosphocholine 20 h previously, the hormone induced the rapid formation of both labeled 1,2-diacylglycerol and phosphatidic acid. In summary, these isotopic data indicate that a rapidly labeled pool of phosphatidylcholine is hydrolyzed to 1,2-diacylglycerol and a slowly labeled pool is broken down to both 1,2-diacylglycerol and phosphatidic acid in hepatocytes stimulated by Ca2+-mobilizing agents. It is concluded from both the analyses of molecular species of 1,2-diacylglycerol and the labeling experiments that phosphatidylcholine is a major source of the 1,2-diacylglycerol that accumulates in hepatocytes stimulated with Ca2+-mobilizing agonists and that the mechanisms responsible may involve both Ca2+ and protein kinase C.  相似文献   

5.
1. When the ionophore A23187 and Ca2+ were added to normal human erythrocytes, the incorporation of 32P into phosphatidate was enhanced within 1 min, but there was only slight labelling of other phospholipids. 2. Labelling of phosphatidate in these cells did not continue to increase after about 20min at 37 degrees C; by this time, radioactivity in phosphatidate was about ten times higher inionophore A23187-treated cells than in controls. A net synthesis of phosphatidate was measured in response to the increase in intracellular Ca2+ concentration; the content of this phospholipid in the cell was increased by approximately 50%. 3. In the presence of 2.5 mM-Ca2+ a maximum effect was seen with about 0.5 mug of ionophore/ml. 4. The concentration of Ca2+ giving half-maximal labelling of phosphatidate in the presence of 10 mug of ionophore A23187/ml was about 10 muM. 5. A rapid decrease of ATP content in the cell occurred in ionophore-treated cells. 6. Labelling of phosphatidate appeared to be secondary to the production of 1,2-diacylglycerol in the cells; accumulation of 1,2-diacylglycerol was only seen after about 15 min. After 60 min, the 1,2-diacylglycerol content of the cells was five to seven times that of untreated control cells. 7. The change in the shape of erythrocytes treated with Ca2+ and ionophore appeared to be related to accumulation of 1,2-diacylglycerol. 8. The source of 1,2-diacylglycerol has not been definitely identified, but its fatty acid compositon was similar to that of phosphatidylcholine. However, it has an unusually high content of hexadecenoic acid, a fatty acid not common in the major erythrocyte phospholipids. 9. Accumulation of 1,2-diacyglycerol also occurred in energy-starved cells, even in the absence of calcium; in this case it appeared to be produced by phosphatidate breakdown.  相似文献   

6.
A property common to many growth factors is that they must be present for several hours before the commitment to DNA synthesis and cell division occurs. The intracellular signals that are relevant during this period are poorly defined. We examined the formation of 1,2-diacylglycerol in IIC9 fibroblasts after stimulation with epidermal growth factor (EGF), and found that the mass of this lipid remained elevated for at least four hours. The concentration-dependence of EGF-stimulated 1,2-diacylglycerol production and [3H]thymidine incorporation were similar. Studies of phospholipid metabolism strongly suggested that phosphatidylcholine was the source of the 1,2-diacylglycerol generated in response to EGF. EGF did not stimulate the hydrolysis of other phospholipids, including the phosphoinositides, nor did it increase synthesis de novo of 1,2-diacylglycerol. This pattern of sustained 1,2-diacylglycerol formation from phosphatidylcholine may be important in the mitogenic signalling of EGF and potentially other growth factors.  相似文献   

7.
We have examined the effects of the tyrosine kinase inhibitor genistein on hormone dependent cell proliferation and intracellular signalling in mouse 10T1/2 fibroblasts and rat liver T51B epithelial cells. Genistein inhibits both PDGF and EGF induced mitogenesis with an IC50 of 40 uM and 10 uM respectively. Genistein also inhibits inositol phosphate generation and calcium signalling in response to PDGF, and 1,2-diacylglycerol generation and calpactin II translocation in response to EGF. By contrast genistein does not inhibit inositol phosphate production, Ca2+ signalling or 1,2-diacylglycerol generation in response to ATP or angiotensin II. These data demonstrate that genistein selectively inhibits tyrosine kinase dependent processes without effecting similar responses obtained to hormones which are not dependent upon tyrosine kinase activation.  相似文献   

8.
Diabetes was induced in rats by administration of a single intraperitoneal injection of streptozotocin (50 mg/kg body wt). After 7 days, one group of diabetic animals was treated with insulin for an additional 5 days. Control, diabetic and diabetic + insulin rats were then killed, their distal small intestines were removed and the epithelial cells were examined and compared with respect to polyphosphoinositide turnover, total protein kinase C activity and cellular distribution, and 1,2-diacylglycerol mass and production. The results of these experiments demonstrated that, compared with their control counterparts, the intestines from diabetic rats had a decreased turnover of polyphosphoinositides, but an increase in 1,2-diacylglycerol mass which was a result, at least in part, of an increase in the synthesis of this lipid de novo. Total protein kinase C activity was decreased in the diabetic rats due to a decrease in cytosolic activity, with no significant change in particulate activity. Moreover, insulin administration for 5 days to diabetic animals did not affect their lowered intestinal polyphosphoinositide turnover, but did further accentuate their increased 1,2-diacylglycerol mass and synthesis de novo; this treatment also corrected total protein kinase C activity by increasing the cytosolic activity of this enzyme. These results indicate that signalling mechanisms involving polyphosphoinositides, 1,2-diacylglycerol and protein kinase C are abnormal in the intestines of diabetic rats and that some of these biochemical parameters can be modulated by insulin administration in vivo.  相似文献   

9.
Yoon S  Kazusaka A  Fujita S 《Biopolymers》2000,57(5):267-271
Carbon tetrachloride (CCl4) induced rat hepatitis was studied by observing an FTIR spectrum of the liver microsomal or homogenate extract compared with those of model compounds. The microsomal extract from the liver of healthy control rats showed almost the same spectrum as a mixture of phosphatidylcholine and phosphatidylethanolamine (2:1 by weight). Intraperitoneal injection of CCl4 decreased the absorption intensity due to th --C--H in the--C==H at 3012 cm(-1) in the microsomal extract, and it developed a new 1,2-diacylglycerol band at 1070 cm(-1) in the homogenate extract. An HPLC study was added to assign the 1070 cm(-1) band to 1,2-diacylglycerol. These findings were interpreted from the peroxidation of the microsomal membrane and the regenerative proliferation of the damaged cell.  相似文献   

10.
Prior studies demonstrated that 1,2-diacylglycerols stimulated degradation of the choline-containing phospholipids, phosphatidylcholine and sphingomyelin, in GH3 pituitary cells by a phospholipase A2 and a sphingomyelinase, respectively (Kolesnick, R. N. (1987) J. Biol. Chem. 262, 16759-16762). The present studies demonstrate that the phenothiazine trifluoperazine also stimulates degradation of these phospholipids. Trifluoperazine (25 microM) reduced phosphatidylcholine and sphingomyelin levels to 81 and 58% of control, respectively, after 30 min in cells labeled for 48 h with [3H] choline. Choline-containing metabolites were released specifically into the cytosolic fraction. The level of cytosolic phosphocholine, but not choline or CDP-choline, increased to 150% of control. These events were not mediated by inhibition of phosphatidylcholine synthesis. The level of 1,2-diacylglycerols, but not lysophosphatidylcholine or glycerol-3-phosphocholine, also increased. These data are most consistent with phosphatidylcholine degradation via a phospholipase C. Trifluoperazine-stimulated sphingomyelin degradation was accompanied by quantitative generation of ceramides consistent with activation of a sphingomyelinase. In contrast to trifluoperazine, choline-containing metabolites were released into the medium during stimulation by the 1,2-diacylglycerol 1,2-dioctanoyl-glycerol. Although both trifluoperazine and 1,2-dioctanoylglycerol increased ceramide levels, only 1,2-dioctanoylglycerol increased the sphingoid base level from 24 to 43 pmol/10(6) cells. Hence, trifluoperazine appears to deplete an intracellular pool of phosphatidylcholine and sphingomyelin by a different mechanism than 1,2-diacylglycerols. This is the first report of phenothiazine-induced degradation of choline-containing phospholipids.  相似文献   

11.
D E Vance  J Lam 《Journal of virology》1975,16(4):1075-1076
Sindbis virus inhibits the incorporation of [methyl-3H]choline into the phospholipids of BHK-21 cells and also inhibits the activity of the enzyme that catalyzes the final reaction involved in phosphatidylcholine biosynthesis (cytidine diphosphate-choline:1,2-diacylglycerol cholinephosphotranferase; EC 2.7.8.2).  相似文献   

12.
Insulin and oxytocin effects on phosphoinositide metabolism in adipocytes   总被引:4,自引:0,他引:4  
The effects of hormones on phosphoinositide metabolism were examined in rat adipocytes prelabeled with 32Pi or [3H]inositol. Oxytocin and vasopressin produced large decreases in labeled polyphosphoinositides and increases in phosphatidic acid and inositol phosphates, whereas insulin was without effect, although it stimulated lipogenesis from glucose. Likewise, insulin did not elevate 1,2-diacylglycerol measured chemically by high pressure liquid or thin-layer chromatography in fat cells or pads. It also did not increase the radioactivity in 1,2-diacylglycerol in ghosts prepared from fat cells previously labeled with [3H]arachidonic acid, although oxytocin and vasopressin increased this. It is therefore concluded that insulin does not stimulate the breakdown of polyphosphoinositides to yield 1,2-diacylglycerol and inositol phosphates in adipocytes and that the insulin-like actions of oxytocin must be due to other changes. Insulin induced small, but significant and equal increases (40% at 30 min) in the incorporation of [3H] inositol into phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in adipocytes. The effects were not dependent upon glucose and were not evident before 15 min. Oxytocin also produced large increases in the labeling of the three phosphoinositides. Insulin stimulated the incorporation of [3H]glycerol into the three phosphoinositides and also phosphatidic acid, phosphatidylserine, and phosphatidylethanolamine by 50-100% in cells incubated without glucose. No changes in the labeling of glycerol 3-phosphate, lysophosphatidic acid, phosphatidylcholine, and triacylglycerol were detected, and there was a small increase (30%) in 1,2-diacylglycerol labeling. It is concluded that insulin increases the synthesis of phosphatidylinositol, phosphatidylinositol 4-phosphate, phosphatidylinositol 4,5-bisphosphate, phosphatidylethanolamine, and phosphatidylserine in fat cells partly by stimulating a reaction(s) located between glycerol 3-phosphate and phosphatidic acid in the biosynthetic pathway.  相似文献   

13.
Treatment of GH3 cells with thyrotropin-releasing hormone (TRH) for periods up to 60 min resulted in a prolonged reduction in the cellular content of phosphatidylinositol (PtdIns) with no lasting change in the levels of the other inositol-containing phospholipids. Accompanying this was a maintained increase in the GH3 cell 1,2-diacylglycerol content and a slower decline in the level of cellular triacylglycerol. When the cells were suspended in lithium-containing balanced salt solution for 30 min (in the absence of exogenous myo-inositol), there was a 15% decrease in GH3 cell inositol levels. This was associated with a small, but significant, increase in the cellular content of phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) and 1,2-diacylglycerol. Addition of TRH to cells suspended in lithium-containing medium depleted cellular inositol levels by around 65% within 30 min. By this time, there was also a 50% reduction in the cellular content of PtdIns and a 20% reduction in phosphatidylinositol 4-phosphate (PtdIns4P). Control levels of PtdIns4,5P2 were maintained in the combined presence of TRH and lithium. Under those conditions, TRH no longer depleted cellular triacylglycerol and there was a marked increase in the ability of TRH to elevate the GH3 cell content of 1,2-diacylglycerol. The effect of TRH on the cellular content of phosphatidic acid was not altered by the presence of lithium. The results show, firstly, that when PtdIns resynthesis is inhibited by lithium-induced inositol depletion, its glycerol backbone accumulates, at least in part, in 1,2-diacylglycerol and, secondly, that GH3 cells preserve their cellular levels of PtdIns4,5P2 in the face of a considerable reduction in the cellular content of PtdIns.  相似文献   

14.
There are conflicting data about the effect of the epidermal growth factor (EGF) on protein kinase C (PKC) enzyme activity. The aim of our study was to find out which type of phospholipids [phosphatidylinositol 4,5-bisphosphate P14,5P2 or the other phospholipids-phosphatidylcholine (PC) or phosphatidic acid (PA)] could be the source of 1,2-diacylglycerol (1,2-DAG) in PKC activation. In colon carcinoma cells (HT29) we observed a more than 2-fold increase in the PC pool and at the same time decreased tyrosine kinase activity (50%). With increasing incubation time EGF affects the pools of both phosphatidylinositols and other phospholipids parallel with the activation of the tyrosine kinase activity. EGF increases the activity of PKC in the HT29 cell line and PC could be the source of 1,2-DAG which may stimulate PKC activity.  相似文献   

15.
The protein kinase C family.   总被引:22,自引:0,他引:22  
Protein kinase C represents a structurally homologous group of proteins similar in size, structure and mechanism of activation. They can modulate the biological function of proteins in a rapid and reversible manner. Protein kinase C participates in one of the major signal transduction systems triggered by the external stimulation of cells by various ligands including hormones, neurotransmitters and growth factors. Hydrolysis of membrane inositol phospholipids by phospholipase C or of phosphatidylcholine, generates sn-1,2-diacylglycerol, considered the physiological activator of this kinase. Other agents, such as arachidonic acid, participate in the activation of some of these proteins. Activation of protein kinase C by phorbol esters and related compounds is not physiological and may be responsible, at least in part, for their tumor-promoting activity. The cellular localization of the different calcium-activated protein kinases, their substrate and activator specificity are dissimilar and thus their role in signal transduction is unlike. A better understanding of the exact cellular function of the different protein kinase C isoenzymes requires the identification and characterization of their physiological substrates.  相似文献   

16.
Microsomes isolated from Tetrahymena pyriformis synthesized phosphatidylcholine and phosphatidylethanolamine by CDPcholine: 1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2) and CDPethanolamine: 1,2-diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1), utilizing ethanol-dispersed dioleoglycerol. Cholinephosphotransferase and ethanolaminephosphotransferase activities have similar dependences on MgCl2 and MnCl2, but the latter was more effective than the former for both enzyme activities. The V values for 1,2-dioleoylglycerol obtained at optimal conditions were 1.8 nmol/min per mg microsomal protein for cholinephosphotransferase and 0.6 nmol/min per mg microsomal protein for ethanolaminephosphotransferase. Both enzymes could not utilize 1,3-dioleoylglycerol or 1-oleoylglycerol as substrates. Cholinephosphotransferase had an apparent Km for CDPcholine of 11.7 microM with 1,2-dioleoylglycerol and was inhibited by CDPethanolamine competitively. On the other hand, ethanolaminephosphotransferase has an apparent Km for CDPethanolamine of 8 microM and CDPcholine was a noncompetitive inhibitor of ethanolaminephosphotransferase activity. Furthermore, despite the marked alteration of phospholipid composition occurring during the temperature acclimation of Tetrahymena cells, both enzyme activities showed similar dependences on growth and incubation temperatures. This may imply that the final step of de novo synthesis of two major phospholipids does not participate in the thermally induced modification of the profile of phospholipid polar head group in membranes.  相似文献   

17.
Cytoplasmic lipid droplets and microlipid droplets, intracellular precursors of milk lipid globules, had little ability to incorporate radioactivity from glycerol 3-phosphate or palmitoyl-CoA into triacylglycerols. The limited incorporation of these precursors by micro- and cytoplasmic lipid droplets from rat and cow mammary gland was into phospholipids primarily. Acyltransferases catalyzing incorporation of glycerol 3-phosphate into acylglycerols were concentrated in a relatively high buoyant density class of rough microsomes. Palmitoyl-CoA-sn-1,2-diacylglycerol acyltransferase activity was distributed heterogeneously among fractions obtained by equilibrium density gradient fractionation of mammary homogenates. Observations suggest that terminal steps of acylglycerol synthesis are localized primarily in rough endoplasmic reticulum of milk secreting mammary epithelial cells. There appears to be a heterogeneous distribution of acyltransferases along the reticular network.  相似文献   

18.
The trophic effects of prolactin (PRL) in rat liver have been linked to activation of protein kinase C (PKC). Since alterations in PKC activity imply its activation by 1,2-diacylglycerol (DAG), we tested whether PRL treatment stimulated DAG generation coupled to induction of a growth response in primary hepatocytes. Addition of PRL to hepatocyte cultures significantly increased [3H]-glycerol incorporation into DAG within 5 minutes which was followed by a loss of cytosolic PKC activity by 10 minutes. Prolactin also significantly enhanced radiolabel incorporation into triacylglycerol and phospholipids within 10 minutes and induced ODC activity at 6 hours. Therefore, prolactin-stimulated alterations in PKC activity are preceded by enhanced DAG generation. Moreover, these events appear to be coupled to PRL-stimulated entry of hepatocytes into cell cycle.  相似文献   

19.
Phospholipase C from human platelets was found to catalyze the Ca2+-dependent degradation of phosphatidylinositol (PI), phosphatidylinositol 4'-phosphate (DPI), and phosphatidylinositol 4',5'-bisphosphate (TPI) at Ca2+ concentrations from 150 microM to 5 mM. Both DPI and TPI inhibited the hydrolysis of [2-3H]inositol-labeled PI (250 microM) in a concentration-dependent manner. The use of DPI and TPI from beef brain, both of which have fatty acid compositions different from that of soybean PI, permitted an assessment of the inhibitory effect of polyphosphoinositides on the hydrolysis of PI by phospholipase C. Fatty acid analysis of the diacylglycerols formed demonstrated that DPI and TPI, when incubated in mixture with PI, were competitive substrates for PI hydrolysis. Increasing the DPI/PI ratio from 0 to 0.3 caused a shift in the degradation of PI to DPI without greatly affecting the formation of 1,2-diacylglycerol. TPI alone, or in mixture with PI, was a poor substrate for phospholipase C. Increasing the TPI/PI ratio from 0 to 0.21, on the other hand, inhibited both PI degradation (greater than or equal to 95%) and overall formation of 1,2-diacylglycerol (greater than or equal to 82%). Kinetic analysis revealed that TPI acts as a mixed-type inhibitor with a Ki of about 10 microM. The Ka for Ca2+ in PI hydrolysis was profoundly increased from 5 to 180 microM when TPI (36 microM) was included with PI (250 microM). Optimum PI degradation under these conditions was only attained when the calcium concentration approached 4 mM. Analysis of phospholipids from unstimulated human platelets from five different donors revealed DPI/PI and TPI/PI ratios of 0.42 and 0.16, respectively. These findings, combined with the observed inhibition of PI hydrolysis by TPI at a TPI/PI ratio of 0.16, would suggest that in unstimulated platelets phospholipase C activity may be inhibited by greater than or equal to 75%. Changes in 33P-prelabeled phospholipids of intact platelets upon stimulation with thrombin indicated a transient decline in 33P label of both TPI and DPI (15 s) followed by an increase in [33P]phosphatidic acid but no change in [33P]PI. The finding that DPI is selectively degraded by phospholipase C in mixture with PI at DPI/PI ratios determined to be present in unstimulated platelets indicates that DPI may be more important than PI in the formation of 1,2-diacylglycerol which is believed to serve as precursor of arachidonic acid for thromboxane biosynthesis. Furthermore, the results suggest that in human platelets TPI may serve as modulator for the formation of 1,2-diacylglycerol from inositol phospholipids.  相似文献   

20.
1,2-Diacylglycerol has recently been reported to potentiate the ability of phospholipases A and C to hydrolyze phospholipids in a cell-free system. The present study has been undertaken to investigate whether 1,2-diacylglycerol can also perform this function in intact cells using the platelet as a test system. Exogenous 1-oleoyl-2-acetyl-glycerol ( OAG ) and 1,2- didecanoylglycerol , at concentrations sufficient to produce maximal phosphorylation of a 40,000 dalton protein, caused no significant formation of [3H]inositol phosphates and [32P]phosphatidic acid (products of phospholipase C activation) or [14C]arachidonic acid metabolites and lysophosphatidyl[3H]inositol (products of phospholipase A2 activation). These data therefore imply that 1,2-diacylglycerols do not potentiate the actions of phospholipases A2 and C in intact platelets at concentrations that are physiologically relevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号