首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sintered compounds prepared with β-tricalcium phosphate (β-TCP) are commonly used as biocompatible materials for bone regenerative medicine. Although implanted β-TCP is gradually replaced with new bone after resorption by osteoclasts, exactly how osteoclasts resorb β-TCP is not well understood. To elucidate this mechanism, we analyzed the structure of β-TCP discs on which mouse mature osteoclasts were cultured using scanning electron microscopy. We found that β-TCP was resorbed by mature osteoclasts on one side of each disc, as evidenced by the formation of multiple spine-like crystals at the exposed areas. Because osteoclasts secrete acid to resorb bone minerals, we mimicked this acidification by dipping β-TCP slices into HCl solution (pH 2.0). However, no spine-like crystals appeared even though the size of each β-TCP particle was reduced. On dentin slices, osteoclasts formed clear actin rings, which are cytoskeletal structures characteristic of bone-resorbing osteoclasts. No clear actin rings were observed in osteoclasts cultured on β-TCP slices, although small actin dots were observed. Analysis by transmission electron microscopy showed that osteoclasts attached to β-TCP particles. These results suggest that osteoclasts resorb β-TCP particles independently of clear actin ring formation.  相似文献   

2.
Hypercalcemia is a frequent complication of cancer. Recently, parathyroid hormone-related protein has been isolated from tumors associated with this syndrome. In the present study, the effects of tumor-derived hypercalcemic factor and bovine parathyroid hormone (PTH) on bone were compared in an organ culture system using calvarial bones from newborn mice. Mouse calvaria were incubated for 72 h with control medium or media containing 0.15 mg/m tumor extract (TE) or 2 x 10(-9) M PTH. Bone resorption, as assessed by the amount of calcium released into the medium and the number of osteoclasts counted on light microscopy, was increased by both PTH and TE. On electron microscopy, areas for cytoplasm, ruffled border and clear zone were statistically increased in PTH- and TE-treated calvaria as compared to control. These values were not significantly different between PTH- and TE-treated calvaria. The study therefore demonstrates that the ultrastructural changes in osteoclasts induced by the hypercalcemia-producing TE are similar to those induced by PTH.  相似文献   

3.
Osteopontin (OPN) was expressed in murine wild-type osteoclasts, localized to the basolateral, clear zone, and ruffled border membranes, and deposited in the resorption pits during bone resorption. The lack of OPN secretion into the resorption bay of avian osteoclasts may be a component of their functional resorption deficiency in vitro. Osteoclasts deficient in OPN were hypomotile and exhibited decreased capacity for bone resorption in vitro. OPN stimulated CD44 expression on the osteoclast surface, and CD44 was shown to be required for osteoclast motility and bone resorption. Exogenous addition of OPN to OPN-/- osteoclasts increased the surface expression of CD44, and it rescued osteoclast motility due to activation of the alpha(v)beta(3) integrin. Exogenous OPN only partially restored bone resorption because addition of OPN failed to produce OPN secretion into resorption bays as seen in wild-type osteoclasts. As expected with these in vitro findings of osteoclast dysfunction, a bone phenotype, heretofore unappreciated, was characterized in OPN-deficient mice. Delayed bone resorption in metaphyseal trabeculae and diminished eroded perimeters despite an increase in osteoclast number were observed in histomorphometric measurements of tibiae isolated from OPN-deficient mice. The histomorphometric findings correlated with an increase in bone rigidity and moment of inertia revealed by load-to-failure testing of femurs. These findings demonstrate the role of OPN in osteoclast function and the requirement for OPN as an osteoclast autocrine factor during bone remodeling.  相似文献   

4.
Osteoclasts are large monocyte-derived multinucleated cells whose function is to resorb bone, i.e. a mineralised extracellular matrix. They exhibit two different actin cytoskeleton organisations according to their substratum. On non-mineralised substrates they form canonical podosomes, but on mineralised extracellular matrices they form a sealing zone. Podosomes consist of two functionally different actin subdomains: a podosome core, probably made of branched actin organised through a CD44 transmembrane receptor, and an actin cloud of actin cables organised around alphavbeta3 integrin. During osteoclast differentiation, podosome patterning is highly dynamic, and we propose that it ends up in a sealing zone in mature bone-resorbing osteoclasts after a complete reorganisation of the two subdomains. In addition to matrix degradation, osteoclasts share with tumour cells the ability to transmigrate through cell layers and-for that purpose-can arrange their cytoskeleton in long protrusions reminiscent of invadopodia. In this review, we discuss the relationships between podosomes and sealing zone, comparing their structures, their molecular composition and their abilities to degrade extracellular matrices. The dynamic actin remodelling in osteoclasts appears then as a major factor to understand their unusual abilities reminiscent of metastatic tumour cells.  相似文献   

5.
The actin cytoskeleton is essential for osteoclasts main function, bone resorption. Two different organizations of actin have been described in osteoclasts, the podosomes belt corresponding to numerous F-actin columns arranged at the cell periphery, and the sealing zone defined as a unique large band of actin. To compare the role of these two different actin organizations, we imaged osteoclasts on various substrata: glass, dentin, and apatite. Using primary osteoclasts expressing GFP-actin, we found that podosome belts and sealing zones, both very dynamic actin structures, were present in mature osteoclasts; podosome belts were observed only in spread osteoclasts adhering onto glass, whereas sealing zone were seen in apico-basal polarized osteoclasts adherent on mineralized matrix. Dynamic observations of several resorption cycles of osteoclasts seeded on apatite revealed that 1) podosomes do not fuse together to form the sealing zone; 2) osteoclasts alternate successive stationary polarized resorption phases with a sealing zone and migration, nonresorption phases without any specific actin structure; and 3) apatite itself promotes sealing zone formation though c-src and Rho signaling. Finally, our work suggests that apatite-mediated sealing zone formation is dependent on both c-src and Rho whereas apico-basal polarization requires only Rho.  相似文献   

6.
There is increasing evidence that calpain contributes to the reorganization of the cytoskeleton in the integrin-mediated signaling pathway. Osteoclastic bone resorption requires cell-matrix contact, an event mediated by integrin alphavbeta3, and subsequent cytoskeletal reorganization to form characteristic membrane domains such as the sealing zone and ruffled border. In this study, therefore, we investigated whether calpain is involved in osteoclastic bone resorption. Membrane-permeable calpain inhibitors suppress the resorption activity of human osteoclasts, but an impermeable inhibitor does not. Upon the attachment of osteoclasts to bone, micro-calpain is translocated from the cytosolic to the cytoskeletal fraction and is autolytically activated. Both the activation of micro-calpain and the formation of actin-rings, the cytoskeletal structures essential for bone resorption, are inhibited by membrane-permeable calpain inhibitors. The activated micro-calpain in osteoclasts selectively cleaves talin, which links the matrix-recognizing integrin to the actin cytoskeleton. These findings suggest that calpain is a regulator of the bone resorption activity of osteoclasts through reorganization of the cytoskeleton related to actin-ring formation.  相似文献   

7.
Previous studies have indicated that the effects of parathyroid hormone (PTH) on osteoblastic function involve alteration of cytoskeletal assembly. We have reported that after a transitory cell retraction, PTH induces respreading with stimulation of actin, vimentin and tubulins synthesis in mouse bone cells and that this effect is not mediated by cAMP. In order to further elucidate the role of intracellular cAMP and calcium on PTH action on bone cell shape and cytoskeleton we have compared the effects of calcium- and cAMP-enhancing factors on actin, tubulin and vimentin synthesis in relation with mouse bone cell morphology, DNA synthesis and alkaline phosphatase activity as a marker of differentiation. Confluent mouse osteoblastic cells were treated with 0.1 mM isobutylmethylxanthine (IBMX) for 24 h. This treatment caused an increase in the levels of cytoskeletal subunits associated with an elevation of cAMP. Under these conditions, PTH (20 nM) and forskolin (0.1 microM) produced persistent cytoplasmic retraction. PTH and forskolin treatment in presence of IBMX (24 h) induced inhibitory effects on actin and tubulin synthesis evaluated by [35S]methionine incorporation into cytoskeletal proteins identified on two-dimensional gel electrophoresis. Under these culture conditions PTH and forskolin also caused disassembly of microfilament and microtubules as shown by the marked reduction in Triton X soluble-actin and alpha- and beta-tubulins. In contrast, incubation of mouse bone cells with 1 microM calcium ionophore A23187 (24 h) resulted in increased monomeric and polymeric forms of actin and tubulin while not affecting intracellular cAMP. Alkaline phosphatase activity was increased in all conditions while DNA synthesis evaluated by [3H]thymidine incorporation into DNA was stimulated by PTH combined with forskolin and inhibited by the calcium ionophore. These data indicate that persistent elevation of cAMP levels induced by PTH and forskolin with IBMX cause cell retraction with actin and tubulin disassembly whereas rising cell calcium induces cytoskeletal protein assembly and synthesis in mouse osteoblasts. The results point to a distinct involvement of calcium and cAMP in both cytoskeletal assembly and DNA synthesis in mouse bone cells.  相似文献   

8.
《The Journal of cell biology》1991,115(4):1179-1186
During bone resorption, osteoclasts form a tight attachment, the sealing zone, around resorption lacunae. Vitronectin receptor has previously been shown to be expressed in osteoclasts and it has been suggested that it mediates the tight attachment at the sealing zone. In this study we have shown that glycine-arginine-glycine-aspartic acid- serine pentapeptide inhibits bone resorption by isolated osteoclasts and drastically changes the morphology of the osteoclasts. When the vitronectin receptor was localized by immunofluorescence in rat and chicken osteoclasts cultured on bone slices, it was found to be distributed throughout the osteoclast cell membrane except in the sealing zone areas. Immunoperoxidase staining of rat bone sections at the light microscopical level also revealed intense staining of the cell membrane with occasional small unstained areas, probably corresponding to the sealing zones. Immunoelectron microscopy confirmed the results obtained by light microscopy showing specific labeling only at the ruffled borders and basolateral membranes (0.82 and 2.43 gold particles/microns of membrane, respectively), but not at the sealing zone areas (0.06 gold particles/microns of membrane). Both alpha v and beta 3 subunits of the vitronectin receptor were similarly localized. These results strongly suggest that, although the vitronectin receptor is important in the function of osteoclasts, it is not mediating the final sealing zone attachment of the osteoclasts to the mineralized bone surface.  相似文献   

9.
Actin cytoskeleton remodeling is well known to be positively involved in glucose-stimulated pancreatic β cell insulin secretion. We have observed glucose-stimulated focal adhesion remodeling at the β cell surface and have shown this to be crucial for glucose-stimulated insulin secretion. However, the mechanistic link between such remodeling and the insulin secretory machinery remained unknown and was the major aim of this study. MIN6B1 cells, a previously validated model of primary β cell function, were used for all experiments. Total internal reflection fluorescence microscopy revealed the glucose-responsive co-localization of focal adhesion kinase (FAK) and paxillin with integrin β1 at the basal cell surface after short term stimulation. In addition, blockade of the interaction between β1 integrins and the extracellular matrix with an anti-β1 integrin antibody (Ha2/5) inhibited short term glucose-induced phosphorylation of FAK (Tyr-397), paxillin (Tyr-118), and ERK1/2 (Thr-202/Tyr-204). Pharmacological inhibition of FAK activity blocked glucose-induced actin cytoskeleton remodeling and glucose-induced disruption of the F-actin/SNAP-25 association at the plasma membrane as well as the distribution of insulin granules to regions in close proximity to the plasma membrane. Furthermore, FAK inhibition also completely blocked short term glucose-induced activation of the Akt/AS160 signaling pathway. In conclusion, these results indicate 1) that glucose-induced activation of FAK, paxillin, and ERK1/2 is mediated by β1 integrin intracellular signaling, 2) a mechanism whereby FAK mediates glucose-induced actin cytoskeleton remodeling, hence allowing docking and fusion of insulin granules to the plasma membrane, and 3) a possible functional role for the Akt/AS160 signaling pathway in the FAK-mediated regulation of glucose-stimulated insulin secretion.  相似文献   

10.
Tropomyosins (Tms) are alpha-helical dimers that bind and stabilize actin microfilaments while regulating their accessibility to other actin-associated proteins. Four genes encode expression of over forty Tms, most of which are expressed in nonmuscle cells. In recent years, it has become clear that individual Tm isoforms may regulate specific actin pools within cells. In this study, we examined how osteoclast function may be regulated by the tropomyosin isoform Tm-4, which we previously showed to be highly localized to podosomes and sealing zones of osteoclasts. RNAi-mediated knockdown of Tm-4, both in RAW264.7- and mouse marrow-derived osteoclasts, resulted in thinning of the actin ring of the sealing zone. Knockdown of Tm-4 also resulted in diminished bone resorptive capacity and altered resorption pit shape. In contrast, osteoclasts overexpressing Tm-4 demonstrated thickened podosomes on glass as well as thickened, aberrant actin structures on bone, and diminished motility and resorptive capacity. These results indicate that Tm-4 plays a role in regulating adhesion structures of osteoclasts, most likely by stabilizing the actin microfilaments present in podosomes and the sealing zone.  相似文献   

11.
Previously, we demonstrated that epinephrine induced the expression of interleukin (IL)-6 mRNA via beta-adrenoceptors in cultured human osteoblastic cells. IL-6 is well known to modulate bone metabolism by regulating the development and function of osteoclasts and osteoblasts. Recently, restraint stress and intracerebroventricular injection of lipopolysaccharide (LPS) have been reported to induce the expression of IL-6 mRNA in peripheral organs in mice in which expression is mediated by the activation of the sympathetic nervous system. To prove the physiological role of sympathetic nerves in bone metabolism in vivo, we examined by RT-PCR analysis the effects of restraint stress and intracerebroventricular injection of LPS on IL-6 mRNA expression in mouse calvaria. The expression of IL-6 mRNA in mouse calvaria was stimulated by either restraint stress (30 min) or intracerebroventricular injection of LPS (50 ng/mouse, 60 min). The treatment of mice with the neurotoxin 6-hydroxydopamine (6-OHDA, 100 mg x kg-1 x day-1 ip for 3 days) inhibited LPS (icv)-induced expression of IL-6 mRNA in their calvaria. The expression of IL-6 mRNA induced by the restraint stress was not influenced by 6-OHDA, which destroys noradrenergic nerve terminals. Furthermore, pretreatment with a beta-blocker, propranolol (15 or 25 mg/kg ip), inhibited both stress- and LPS-induced increases in the level of IL-6 mRNA, but pretreatment with an alpha-blocker, phentolamine (5 mg/kg sc), did not inhibit them in mouse calvaria. In addition, treatment of calvaria with isoprenaline or norepinephrine increased IL-6 synthesis in the organ culture system. These results indicate that in vivo adrenergic stimulation modulates the osteoblastic activity in mouse calvaria via noradrenergic nerve terminals.  相似文献   

12.
Parathyroid hormone (PTH) regulates bone remodeling and calcium homeostasis by acting on osteoblasts. Recently, the gene expression profile changes in the rat PTH (1-34, 10(-8)M)-treated rat osteoblastic osteosarcoma cell line, UMR 106-01, using DNA microarray analysis showed that mRNA for LTBP-1, a latent transforming growth factor (TGF-beta)-binding protein is stimulated by PTH. Latent TGF-beta binding proteins (LTBPs) are required for the proper folding and secretion of TGF-beta, thus modifying the activity of TGF-beta, which is a local factor necessary for bone remodeling. We show here by real time RT-PCR that PTH-stimulated LTBP-1 mRNA expression in rat and mouse preosteoblastic cells. PTH also stimulated LTBP-1 mRNA expression in all stages of rat primary osteoblastic cells but extended expression was found in differentiating osteoblasts. PTH also stimulated TGF-beta1 mRNA expression in rat primary osteoblastic cells, indicating a link between systemic and local factors for intracellular signaling in osteoblasts. An additive effect on LTBP-1 mRNA expression was found when UMR 106-01 cells were treated with PTH and TGF-beta1 together. We further examined the signaling pathways responsible for PTH-stimulated LTBP-1 and TGF-beta1 mRNA expression in UMR 106-01 cells. The PTH stimulation of LTBP-1 and TGF-beta1 mRNA expression was dependent on the PKA and the MAPK (MEK and p38 MAPK) pathways, respectively in these cells, suggesting that PTH mediates its effects on osteoblasts by several intracellular signaling pathways. Overall, we demonstrate here that PTH stimulates LTBP-1 mRNA expression in osteoblastic cells and this is PKA-dependent. This event may be important for PTH action via TGF-beta in bone remodeling.  相似文献   

13.
The bone resorption function of osteoclasts is dependent on the integrity of the actin cytoskeleton. Depending on the substratum upon which the osteoclasts are spread, there are two different structures of actin known as podosomes and the sealing zone. To understand the specific properties and relationship of podosomes and the sealing zone, we used live-cell imaging of cultured osteoclasts. When cultured on extracellular matrix components, podosomes in these cells are organized in higher-ordered structures. These are clustered podosomes that will arrange later into dynamic short-lived rings which finally expand to the cell periphery to form a stable long-lived podosome belt in fully differentiated cells. In osteoclasts, this specific podosome patterning is under the control of microtubules (MTs). Indeed, nocodazole treatment does not affect podosome formation but only the transition between clusters/rings and belts. During this transition, MTs accumulate a specific post-translational modification of tubulin by acetylation. This process is repressed by an inhibitory pathway involving the GTPase Rho, its effector mDIA2 and the recently discovered tubulin deacetylase HDAC6. The specific function of this acetylation is still unknown but is also observed in active osteoclasts forming a sealing zone which is also MT dependent. Thus, it appears that the podosome belt is reminiscent of the sealing zone. Indeed, podosome belts and sealing zones are characterized by their overall stability. Despite their similar behavior, a sealing zone is not formed by fusion of podosomes. The formation of a podosome belt or a sealing zone is controlled by the external environment. Indeed, only the bone mineral fraction, known as apatite crystal, is able to induce sealing zone formation in mature osteoclasts. Contact of osteoclasts with apatite stimulates the non-receptor tyrosine kinase c-Src and the GTPase Rho in order to form the sealing zone. As we will discuss in this review, it appears that podosomes and the sealing zone are strikingly linked.  相似文献   

14.
The orphan nuclear receptor Nurr1 is mainly expressed in the central nervous system but is also detected in certain peripheral tissues such as bone. To elucidate the role of Nurr1 in bone, we examined the ability of Nurr1 to regulate osteopontin (OPN) expression in osteoblastic cell lines. Transfection of Nurr1 in osteoblastic cells increased OPN mRNA expression. A dominant negative Nurr1 variant abolished the ability of PTH to induce OPN expression, suggesting that Nurr1 is involved in mediating the regulation of OPN by PTH. Nurr1 efficiently transactivated a luciferase reporter construct driven by the -857/+191 fragment of the mouse OPN promoter. The activation of the OPN promoter was mediated by the monomeric form of Nurr1, required direct binding of Nurr1 to the OPN promoter, and was dependent on the amino-terminal transactivation function-1. The OPN promoter is also regulated by vitamin D receptor and estrogen-related receptors. We show that Nurr1 and vitamin D activate the OPN promoter in a synergistic fashion, whereas Nurr1-mediated transactivation of the OPN promoter is repressed by estrogen-related receptors. In conclusion, Nurr1 activates the OPN promoter directly in osteoblastic cells, suggesting a role for Nurr1 in the regulation of bone homeostasis.  相似文献   

15.
Osteoclasts are unique cells that utilize podosomes instead of focal adhesions for matrix attachment and cytoskeletal remodeling during motility. We have shown that osteopontin (OP) binding to the alpha(v)beta(3) integrin of osteoclast podosomes stimulated cytoskeletal reorganization and bone resorption by activating a heteromultimeric signaling complex that includes gelsolin, pp(60c-src), and phosphatidylinositol 3'-kinase. Here we demonstrate that gelsolin deficiency blocks podosome assembly and alpha(v)beta(3)-stimulated signaling related to motility in gelsolin-null mice. Gelsolin-deficient osteoclasts were hypomotile due to retarded remodeling of the actin cytoskeleton. They failed to respond to the autocrine factor, OP, with stimulation of motility and bone resorption. Gelsolin deficiency was associated with normal skeletal development and endochondral bone growth. However, gelsolin-null mice had mildly abnormal epiphyseal structure, retained cartilage proteoglycans in metaphyseal trabeculae, and increased trabecular thickness. With age, the gelsolin-deficient mice expressed increased trabecular and cortical bone thickness producing mechanically stronger bones. These observations demonstrate the critical role of gelsolin in podosome assembly, rapid cell movements, and signal transduction through the alpha(v)beta(3) integrin.  相似文献   

16.
The aim of this study is to identify the exact mechanism(s) by which cytoskeletal structures are modulated during bone resorption. In this study, we have shown the possible role of different actin-binding and signaling proteins in the regulation of sealing ring formation. Our analyses have demonstrated a significant increase in cortactin and a corresponding decrease in L-plastin protein levels in osteoclasts subjected to bone resorption for 18 h in the presence of RANKL, M-CSF, and native bone particles. Time-dependent changes in the localization of L-plastin (in actin aggregates) and cortactin (in the sealing ring) suggest that these proteins may be involved in the initial and maturation phases of sealing ring formation, respectively. siRNA to cortactin inhibits this maturation process but not the formation of actin aggregates. Osteoclasts treated as above but with TNF-α demonstrated very similar effects as observed with RANKL. Osteoclasts treated with a neutralizing antibody to TNF-α displayed podosome-like structures in the entire subsurface and at the periphery of osteoclast. It is possible that TNF-α and RANKL-mediated signaling may play a role in the early phase of sealing ring configuration (i.e. either in the disassembly of podosomes or formation of actin aggregates). Furthermore, osteoclasts treated with alendronate or αv reduced the formation of the sealing ring but not actin aggregates. The present study demonstrates a novel mechanistic link between L-plastin and cortactin in sealing ring formation. These results suggest that actin aggregates formed by L-plastin independent of integrin signaling function as a core in assembling signaling molecules (integrin αvβ3, Src, cortactin, etc.) involved in the maturation process.  相似文献   

17.
The clinical findings that alendronate blunted the anabolic effect of human parathyroid hormone (PTH) on bone formation suggest that active resorption is involved and enhances the anabolic effect. PTH signals via its receptor on the osteoblast membrane, and osteoclasts are impacted indirectly via the products of osteoblasts. Microarray with RNA from rats injected with human PTH or vehicle showed a strong association between the stimulation of monocyte chemoattractant protein-1 (MCP-1) and the anabolic effects of PTH. PTH rapidly and dramatically stimulated MCP-1 mRNA in the femora of rats receiving daily injections of PTH or in primary osteoblastic and UMR 106-01 cells. The stimulation of MCP-1 mRNA was dose-dependent and a primary response to PTH signaling via the cAMP-dependent protein kinase pathway in vitro. Studies with the mouse monocyte cell line RAW 264.7 and mouse bone marrow proved that osteoblastic MCP-1 can potently recruit osteoclast monocyte precursors and facilitate receptor activator of NF-kappaB ligand-induced osteoclastogenesis and, in particular, enhanced fusion. Our model suggests that PTH-induced osteoblastic expression of MCP-1 is involved in recruitment and differentiation at the stage of multinucleation of osteoclast precursors. This information provides a rationale for increased osteoclast activity in the anabolic effects of PTH in addition to receptor activator of NF-kappaB ligand stimulation to initiate greater bone remodeling.  相似文献   

18.
Prothrombin (PT) is an RGD-containing bone-residing precursor to the serine protease thrombin (TH), which acts as an agonist for a variety of cellular responses in osteoblasts and osteoclasts. We show here that PT, TH, osteopontin (OPN) and fibronectin (FN) promoted adhesion of isolated neonatal rat long bone osteoclasts. However, the cells that adhered to PT and TH were smaller in size, rounded and contained 3-4 nuclei, in comparison to the cells adhering to OPN and FN, which were larger with extended cytoplasmic processes and 6-7 nuclei. Attachment of the larger osteoclasts to OPN and FN was inhibited by antibodies towards beta 3 and beta 1 integrin subunits, respectively. Whereas an RGD-containing peptide inhibited adhesion of the smaller osteoclasts to PT and TH, this was not seen with the beta 3 or beta 1 antibodies. In contrast, the beta 1 antibody augmented osteoclast adhesion to PT and TH in an RGD-dependent manner. Small osteoclasts were less efficient in resorbing mineralized bovine bone slices, as well as expressed lower mRNA levels of MMP-9 and the cathepsins K and L compared to large osteoclasts. The small osteoclast adhering to PT and TH may represent either an immature, less functional precursor to the large osteoclast or alternatively constitute a distinct osteoclast population with a specific role in bone.  相似文献   

19.
The mechanisms whereby the parathyroid hormone (PTH) exerts its anabolic action on bone are incompletely understood. We previously showed that inhibition of ERK1/2 enhanced Smad3-induced bone anabolic action in osteoblasts. These findings suggested the hypothesis that changes in gene expression associated with the altered Smad3-induced signaling brought about by an ERK1/2 inhibitor would identify novel bone anabolic factors in osteoblasts. We therefore performed a comparative DNA microarray analysis between empty vector-transfected mouse osteoblastic MC3T3-E1 cells and PD98059-treated stable Smad3-overexpressing MC3T3-E1 cells. Among the novel factors, Tmem119 was selected on the basis of its rapid induction by PTH independent of later increases in endogenous TGF-β. The levels of Tmem119 increased with time in cultures of MC3T3-E1 cells and mouse mesenchymal ST-2 cells committed to the osteoblast lineage by BMP-2. PTH stimulated Tmem119 levels within 1 h as determined by Western blot analysis and immunocytochemistry in MC3T3-E1 cells. MC3T3-E1 cells stably overexpressing Tmem119 exhibited elevated levels of Runx2, osteocalcin, alkaline phosphatase, and β-catenin, whereas Tmem119 augmented BMP-2-induced Runx2 levels in mesenchymal cells. Tmem119 interacted with Runx2, Smad1, and Smad5 in C2C12 cells. In conclusion, we identified a Smad3-related factor, Tmem119, that is induced by PTH and promotes differentiation in mouse osteoblastic cells. Tmem119 is an important molecule in the pathway downstream of PTH and Smad3 signaling in osteoblasts.  相似文献   

20.
The cellular distribution of osteoclast integrin subunits alpha(v) and beta(3), the tissue distribution, and level of the apparent ligand osteopontin (OPN) as well as of the putative regulatory enzyme tartrate-resistant acid phosphatase (TRAP) were studied along with the intracellular distribution of the activation marker c-src in osteopetrotic ia/ia (incisors-absent) mutant rats and their normal littermates. In ia/ia rats, the osteoclasts are incapable of bone matrix resorption. Ultrastructurally the cells exhibit extended clear zones at the expense of ordinary ruffled borders. A secretory dysfunction in the mutant is strongly suggested by the absence of detectable extracellular TRAP, concomitant with an accumulation of the enzyme in abundant small cytoplasmic vesicles. Moreover, TRAP mRNA, protein content, as well as enzymatic activity were elevated. Furthermore, increased levels of integrin subunits alpha(v) and beta(3) were detected at the clear zone of mutant osteoclasts. OPN mRNA levels were elevated in long bones from mutants. In ia/ia rats, immunolabeling for OPN was homogeneously distributed at the surface facing osteoclasts, while in normal littermates it was concentrated at the clear zone area and barely detectable at ruffled borders. The absence of OPN labeling in the abundant, putative intracellular secretory vesicles in mutant osteoclasts suggests that these cells do not produce OPN. The osteoclasts of ia/ia rats appeared to produce and translocate the c-src protein to the cell membrane. In ia/ia a defect ruffled border-formation is observed along with extensive clear zone formation and decreased secretory function. The lesion may be due to a signaling defect, but in that case the defect seems to be located downstream to or not involving the c-src pathway. Our results illustrate the close relationship between secretory function and ruffled border formation in osteoclasts, a relationship that appears to be necessary for proper resorptive function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号