首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In contrast to pathogenic human immunodeficiency virus and simian immunodeficiency virus (SIV) infections, chronic SIVagm infections in African green monkeys (AGMs) are characterized by persistently low peripheral and tissue viral loads that correlate with the lack of disease observed in these animals. We report here data on the dynamics of acute SIVagm infection in AGMs that exhibit remarkable similarities with viral replication patterns observed in peripheral blood during the first 2 weeks of pathogenic SIVmac infections. Plasma viremia was evident at day 3 postinfection (p.i.) in AGMs, and rapid viral replication led by days 7 to 10 to peak viremias characterized by high levels of antigenemia (1.2 to 5 ng of p27/ml of plasma), peripheral DNA viral load (10(4) to 10(5) DNA copies/10(6) peripheral blood mononuclear cells [PBMC]), and plasma RNA viral load (2 x 10(6) to 2 x 10(8) RNA copies/ml). The lymph node (LN) RNA and DNA viral load patterns were similar to those in blood, with peaks observed between day 7 and day 14. These values in LNs (ranging from 3 x 10(5) to 3 x 10(6) RNA copies/10(6) LN cell [LNC] and 10(3) to 10(4) DNA copies/10(6) LNC) were at no time point higher than those observed in the blood. Both in LNs and in blood, rapid and significant decreases were observed in all infected animals after this peak of viral replication. Within 3 to 4 weeks p. i., antigenemia was no longer detectable and peripheral viral loads decreased to values similar to those characteristic of the chronic phase of infection (10(2) to 10(3) DNA copies/10(6) PBMC and 2 x 10(3) to 2 x 10(5) RNA copies/ml of plasma). In LNs, viral loads declined to 5 x 10(1) to 10(3) DNA copies and 10(4) to 3 x 10(5) RNA copies per 10(6) LNC at day 28 p.i. and continued to decrease until day 84 p.i. (<10 to 3 x 10(4) RNA copies/10(6) LNC). Despite extensive viremia during primary infection, neither follicular hyperplasia nor CD8(+) cell infiltration into LN germinal centers was detected. Altogether, these results indicate that the nonpathogenic outcome of SIVagm infection in its natural host is associated with a rapidly induced control of viral replication in response to SIVagm infection, rather than with a poorly replicating virus or a constitutive host genetic resistance to virus replication.  相似文献   

2.
The mechanisms underlying the lack of disease progression in natural simian immunodeficiency virus (SIV) hosts are still poorly understood. To test the hypothesis that SIV-infected African green monkeys (AGMs) avoid AIDS due to virus replication occurring in long-lived infected cells, we infected six animals with SIVagm and treated them with potent antiretroviral therapy [ART; 9-R-(2-phosphonomethoxypropyl) adenine (tenofovir) and beta-2,3-dideoxy-3-thia-5-fluorocytidine (emtricitabine)]. All AGMs showed a rapid decay of plasma viremia that became undetectable 36 h after ART initiation. A significant decrease of viral load was observed in peripheral blood mononuclear cells and intestine. Mathematical modeling of viremia decay post-ART indicates a half-life of productively infected cells ranging from 4 to 9.5 h, i.e., faster than previously reported for human immunodeficiency virus and SIV. ART induced a slight but significant increase in peripheral CD4(+) T-cell counts but no significant changes in CD4(+) T-cell levels in lymph nodes and intestine. Similarly, ART did not significantly change the levels of cell proliferation, activation, and apoptosis, already low in AGMs chronically infected with SIVagm. Collectively, these results indicate that, in SIVagm-infected AGMs, the bulk of virus replication is sustained by short-lived cells; therefore, differences in disease outcome between SIVmac infection of macaques and SIVagm infection of AGMs are unlikely due to intrinsic differences in the in vivo cytopathicities between the two viruses.  相似文献   

3.
African green monkeys (AGMs) infected by simian immunodeficiency virus (SIV) SIVagm are resistant to AIDS. SIVagm-infected AGMs exhibit levels of viremia similar to those described during pathogenic human immunodeficiency virus type 1 (HIV-1) and SIVmac infections in humans and macaques, respectively, but contain lower viral loads in their lymph nodes. We addressed the potential role of dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN; CD209) in viral dissemination. In previous studies, it has been shown that human DC-SIGN and macaque DC-SIGN allow transmission of HIV and SIVmac to T cells. Here, we looked at the ability of DC-SIGN derived from AGM lymph nodes to interact with SIVagm. We show that DC-SIGN-expressing cells are present mainly in the medulla and often within the cortex and/or paracortex of AGM lymph nodes. We describe the isolation and characterization of at least three isoforms of dc-sign mRNA in lymph nodes of AGMs. The predicted amino acid sequence from the predominant mRNA isoform, DC-SIGNagm1, is 92 and 99% identical to the corresponding human and rhesus macaque DC-SIGN amino acid sequences, respectively. DC-SIGNagm1 is characterized by the lack of the fourth motif in the repeat domain. This deletion was also detected in the dc-sign gene derived from thirteen animals belonging to five other African monkey species and from four macaques (Macaca fascicularis and M. mulatta). Despite three- to seven-amino-acid modifications compared to DC-SIGNmac, DC-SIGNagm1 allows transmission of SIVagm to T cells. Furthermore, AGM monocyte-derived dendritic cells (MDDC) expressed at least 100,000 DC-SIGN molecules and were able to transmit SIVagm to T cells. At a low multiplicity of infection (10(-5) 50% tissue culture infective doses/cell), viral transmission by AGM MDDC was mainly DC-SIGN dependent. The present study reveals that DC-SIGN from a natural host species of SIV has the ability to act as an efficient attachment and transmission factor for SIVagm and suggests the absence of a direct link between this ability and viral load levels in lymph nodes.  相似文献   

4.
Caribbean-born African green monkeys (AGMs) were classified as Chlorocebus sabaeus by cytochrome b sequencing. Guided by these phylogenetic analyses, we developed a new model for the study of simian immunodeficiency virus (SIV) infection in natural hosts by inoculating Caribbean AGMs with their species-specific SIVagm.sab. SIVagm.sab replicated efficiently in Caribbean AGM peripheral blood mononuclear cells in vitro. During SIVagm.sab primary infection of six Caribbean AGMs, the virus replicated at high levels, with peak viral loads (VLs) of 10(7) to 10(8) copies/ml occurring by day 8 to 10 postinfection (p.i.). Set-point values of up to 2 x 10(5) copies/ml were reached by day 42 p.i. and maintained throughout follow-up (through day 450 p.i.). CD4(+) T-cell counts in the blood showed a transient depletion at the peak of VL, and then returned to near preinfection values by day 28 p.i. and remained relatively stable during the chronic infection. Preservation of CD4 T cells was also found in lymph nodes (LNs) of chronic SIVagm.sab-infected Caribbean AGMs. No activation of CD4(+) T cells was detected in the periphery in SIV-infected Caribbean AGMs. These virological and immunological profiles from peripheral blood and LNs were identical to those previously reported in African-born AGMs infected with the same viral strain (SIVagm.sab92018). Due to these similarities, we conclude that Caribbean AGMs are a useful alternative to AGMs of African origin as a model for the study of SIV infection in natural African hosts.  相似文献   

5.
African green monkeys (AGMs) are naturally infected with a simian immunodeficiency virus (SIVagm) that is nonpathogenic in its host. Although SIVagm is common and widespread, little is known about the mechanisms that govern its transmission. Since the earliest virus-host interactions may provide key insights into the nonpathogenic phenotype of SIVagm, we developed a mucosal transmission model for this virus. Using plasma from an acutely infected AGM as the virus inoculum, we exposed adult and juvenile AGMs, as well as pigtailed macaques (PTMs) as a nonnatural host control, by mucosal routes to increasing titers of virus and compared the doses needed to establish a productive infection. Four juvenile and four adult AGMs as well as two PTMs were intrarectally (IR) exposed, while two additional adult female AGMs were intravaginally (IVAG) exposed. No animal became infected following exposure to 10(5) RNA copies. Both PTMs but none of the AGMs became infected following exposure to 10(6) RNA copies. Finally, all adult AGMs and two of the four juvenile AGMs became infected following exposure to 10(7) RNA copies, acquiring either one (2 IR infected juveniles, 1 IR infected adult, 2 IVAG infected adults) or two (3 IR infected adults) transmitted founder viruses. These results were consistent with immunophenotypic data, which revealed a significant correlation between the percentage of CD4(+) T cells expressing CCR5 in the mucosa and the susceptibility to infection, in terms of both the viral dose and the numbers of transmitted founder viruses. Moreover, studies of uninfected AGMs showed that the fraction of CCR5-expressing CD4(+) T cells increased significantly with age. These results indicate that (i) AGMs are readily infected with SIVagm by both intrarectal and intravaginal routes, (ii) susceptibility to infection is proportional to the number of available CCR5(+) CD4(+) target cells in the mucosa, and (iii) the paucity of CCR5(+) CD4(+) target cells in infant and juvenile AGMs may explain the near absence of vertical transmission.  相似文献   

6.
Chronically SIVagm-infected African green monkeys (AGMs) have a remarkably stable nonpathogenic disease course, with levels of immune activation in chronic SIVagm infection similar to those observed in uninfected monkeys and with stable viral loads for long periods of time. In vivo administration of LPS or an IL-2/diphtheria toxin fusion protein (Ontak) to chronically SIVagm-infected AGMs triggered increases in immune activation and subsequently of viral replication and depletion of intestinal CD4(+) T cells. Our study indicates that circulating microbial products can increase viral replication by inducing immune activation and increasing the number of viral target cells, thus demonstrating that immune activation and T cell proliferation are key factors in AIDS pathogenesis.  相似文献   

7.
The distribution and levels of simian immunodeficiency virus (SIV) in tissues and plasma were assessed in naturally infected African green monkeys (AGM) of the vervet subspecies (Chlorocebus pygerythrus) by limiting-dilution coculture, quantitative PCR for viral DNA and RNA, and in situ hybridization for SIV expression in tissues. A wide range of SIV RNA levels in plasma was observed among these animals (<1,000 to 800,000 copies per ml), and the levels appeared to be stable over long periods of time. The relative numbers of SIV-expressing cells in tissues of two monkeys correlated with the extent of plasma viremia. SIV expression was observed in lymphoid tissues and was not associated with immunopathology. Virus-expressing cells were observed in the lamina propria and lymphoid tissue of the gastrointestinal tract, as well as within alveolar macrophages in the lung tissue of one AGM. The range of plasma viremia in naturally infected AGM was greater than that reported in naturally infected sooty mangabeys. However, the degree of viremia in some AGM was similar to that observed during progression to AIDS in human immunodeficiency virus-infected individuals. Therefore, containment of viremia is an unlikely explanation for the lack of pathogenicity of SIVagm in its natural host species, AGM.  相似文献   

8.
METHODS: To define potential common features of simian immunodeficiency virus (SIV) infections in different naturally infected host species, we compared the dynamics of viral replication in 31 African green monkeys (10 sabeus, 15 vervets and seven Caribbean AGMs), 14 mandrills and three sooty mangabeys (SMs) that were experimentally infected with their species-specific viruses. RESULTS: After infection, these SIVs replicated rapidly reaching viral loads (VLs) of 10(5)-10(9) copies/ml of plasma between days 9-14 post-infection (p.i). Set point viremia was established between days 42 and 60 p.i., with levels of approximately 10(5)-10(6) copies/ml in SM and mandrills, and lower levels (10(3)-10(5) copies/ml) in AGMs. VL during the chronic phase did not correlate with viral genome structure: SIVmnd-2 (a vpx-containing virus) and SIVmnd-1 (which does not contain vpu or vpx) replicated to similar levels in mandrills. VL was dependent on virus strain: vervets infected with three different viral strains showed different patterns of viral replication. The pattern of viral replication of SIVagm.sab, which uses both CCR5 and CXCR4 co-receptors was similar to those of the other viruses. CONCLUSIONS: Our results show a common pattern of SIV replication in naturally and experimentally infected hosts. This is similar overall to that observed in pathogenic SIV infection of macaques. This result indicates that differences in clinical outcome between pathogenic and non-pathogenic infections rely on host responses rather than the characteristics of the virus itself.  相似文献   

9.
10.
Pathogenesis studies of SIV infection have not been performed to date in wild monkeys due to difficulty in collecting and storing samples on site and the lack of analytical reagents covering the extensive SIV diversity. We performed a large scale study of molecular epidemiology and natural history of SIVagm infection in 225 free-ranging AGMs from multiple locations in South Africa. SIV prevalence (established by sequencing pol, env, and gag) varied dramatically between infant/juvenile (7%) and adult animals (68%) (p<0.0001), and between adult females (78%) and males (57%). Phylogenetic analyses revealed an extensive genetic diversity, including frequent recombination events. Some AGMs harbored epidemiologically linked viruses. Viruses infecting AGMs in the Free State, which are separated from those on the coastal side by the Drakensberg Mountains, formed a separate cluster in the phylogenetic trees; this observation supports a long standing presence of SIV in AGMs, at least from the time of their speciation to their Plio-Pleistocene migration. Specific primers/probes were synthesized based on the pol sequence data and viral loads (VLs) were quantified. VLs were of 104–106 RNA copies/ml, in the range of those observed in experimentally-infected monkeys, validating the experimental approaches in natural hosts. VLs were significantly higher (107–108 RNA copies/ml) in 10 AGMs diagnosed as acutely infected based on SIV seronegativity (Fiebig II), which suggests a very active transmission of SIVagm in the wild. Neither cytokine levels (as biomarkers of immune activation) nor sCD14 levels (a biomarker of microbial translocation) were different between SIV-infected and SIV-uninfected monkeys. This complex algorithm combining sequencing and phylogeny, VL quantification, serology, and testing of surrogate markers of microbial translocation and immune activation permits a systematic investigation of the epidemiology, viral diversity and natural history of SIV infection in wild African natural hosts.  相似文献   

11.
To elucidate the relationship between early viral infection events and immunodeficiency virus disease progression, quantitative-competitive and branched-DNA methods of simian immunodeficiency virus (SIV) RNA quantitation were cross-validated and used to measure viremia following infection of rhesus macaques with the pathogenic SIVmac251 virus isolate. Excellent correlation between the methods suggests that both accurately approximate SIV copy number. Plasma viremia was evident 4 days postinfection, and rapid viral expansion led to peak viremia levels of 10(7) to 10(9) SIV RNA copies/ml by days 8 to 17. Limited resolution of primary viremia was accompanied by relatively short, though variable, times to the development of AIDS (81 to 630 days). The persistent high-level viremia observed following intravenous inoculation of SIVmac251 explains the aggressive disease course in this model. Survival analyses demonstrated that the disease course is established 8 to 17 days postinfection, when peak viremia is observed. The most significant predictor of disease progression was the extent of viral decline following peak viremia; larger decrements in viremia were associated with both lower steady-state viremia (P = 0.0005) and a reduced hazard of AIDS (P = 0.004). The data also unexpectedly suggested that following SIVmac251 infection, animals with the highest peak viremia were better able to control virus replication rather than more rapidly developing disease. Analysis of early viral replication dynamics should help define host responses that protect from disease progression and should provide quantitative measures to assess the extent to which protective responses may be induced by prophylactic vaccination.  相似文献   

12.
Chronic immune activation (IA) is considered as the driving force of CD4+ T cell depletion and AIDS. Fundamental clues in the mechanisms that regulate IA could lie in natural hosts of SIV, such as African green monkeys (AGMs). Here we investigated the role of innate immune cells and IFN-α in the control of IA in AGMs. AGMs displayed significant NK cell activation upon SIVagm infection, which was correlated with the levels of IFN-α. Moreover, we detected cytotoxic NK cells in lymph nodes during the early acute phase of SIVagm infection. Both plasmacytoid and myeloid dendritic cell (pDC and mDC) homing receptors were increased, but the maturation of mDCs, in particular of CD16+ mDCs, was more important than that of pDCs. Monitoring of 15 cytokines showed that those, which are known to be increased early in HIV-1/SIVmac pathogenic infections, such as IL-15, IFN-α, MCP-1 and CXCL10/IP-10, were significantly increased in AGMs as well. In contrast, cytokines generally induced in the later stage of acute pathogenic infection, such as IL-6, IL-18 and TNF-α, were less or not increased, suggesting an early control of IA. We then treated AGMs daily with high doses of IFN-α from day 9 to 24 post-infection. No impact was observed on the activation or maturation profiles of mDCs, pDCs and NK cells. There was also no major difference in T cell activation or interferon-stimulated gene (ISG) expression profiles and no sign of disease progression. Thus, even after administration of high levels of IFN-α during acute infection, AGMs were still able to control IA, showing that IA control is independent of IFN-α levels. This suggests that the sustained ISG expression and IA in HIV/SIVmac infections involves non-IFN-α products.  相似文献   

13.
A serologic survey of primates living in a French zoo allowed identification of three cases of infection with simian immunodeficiency virus in sooty mangabeys (Cercocebus atys) (SIVsm). Viral isolates, which were designated SIVsmFr66, SIVsmFr74, and SIVsmFr85, were obtained after short-term culture of mangabey lymphoid cells. Phylogenetic analysis of gag and env sequences amplified directly from mangabey tissues showed that the three SIVsmFr were genetically close and that they constituted a new subtype within the diverse SIVsm–SIVmac–human immunodeficiency virus type 2 (HIV-2) group. We could reconstruct the transmission events that likely occurred in 1986 between the three animals and evaluate the divergence of SIVsmFr sequences since transmission. The estimated rate of mutation fixation was 6 × 10−3 substitutions per site per year, which was as high as the rate found for SIVmac infection in macaques. These data indicated that SIVsmFr replicated at a high rate in mangabeys, despite the nonpathogenic character of infection in this host. The viral load evaluated by competitive PCR reached 20,000 viral DNA copies per 106 lymph node cells. In addition, productively infected cells were readily detected in mangabey lymphoid tissues by in situ hybridization. The amounts of viral RNA in plasma ranged from 105 to 107 copies per ml. The cell-associated and plasma viral loads were as high as those seen in susceptible hosts (humans or macaques) during the asymptomatic stage of HIV or SIVmac infections. Thus, the lack of pathogenicity of SIVsm for its natural host cannot be explained by limited viral replication or by tight containment of viral production.  相似文献   

14.
Simian immunodeficiency virus from African green monkeys (SIVagm) results in asymptomatic infection in its natural host species. The virus is not inherently apathogenic, since infection of pigtailed (PT) macaques (Macaca nemestrina) with one isolate of SIVagm results in an immunodeficiency syndrome characterized by progressive CD4+-T-cell depletion and opportunistic infections. This virus was passaged once in a PT macaque and, thus, may not be entirely reflective of the virulence of the parental strain. The goal of the present study was to assess the pathogenicity of the PT-passaged isolate (SIVagm9063) and two primary SIVagm isolates in PT macaques, including the parental strain of the PT-passaged variant. Infection of macaques with any of the three isolates resulted in high levels of primary plasma viremia by 1 week after inoculation. Viremia was quickly controlled following infection with SIVagm155; these animals have maintained CD4+-T-cell subsets and remain healthy. The plateau levels among SIVagm90- and SIVagm9063-inoculated macaques varied widely from 100 to 1 million copies/ml of plasma. Three of four animals from each of these groups progressed to AIDS. Setpoint viremia and the degree of CD4+-T-cell loss at 6 months postinfection were not significantly different between macaques inoculated with SIVagm90 and SIVagm9063. However these parameters were significantly different in SIVagm155-inoculated macaques (P values of <0.01). Considering all the macaques, the degree of CD4+-T-cell loss by 6 months postinfection correlated with the plateau levels of viremia. Thus, similar to SIVsm/mac infection of macaques and human AIDS, viral load is an excellent prognostic indicator of disease course. The inherent pathogenicity of natural SIVagm isolates varies, but such natural isolates are capable of inducing AIDS in macaques without prior macaque passage.  相似文献   

15.
We addressed the role of plasmacytoid dendritic cells (PDC) in protection against AIDS in nonpathogenic simian immunodeficiency virus (SIVagm) infection in African green monkeys (AGMs). PDC were monitored in blood and lymph nodes (LNs) starting from day 1 postinfection. We observed significant declines in blood during acute infection. However, PDC then returned to normal levels, and chronically infected AGMs showed no decrease of PDC in blood. There was a significant increase of PDC in LNs during acute infection. Blood PDC displayed only weak alpha interferon (IFN-alpha) responses to TLR9 agonist stimulation before infection. However, during acute infection, both blood and LN PDC showed a transiently increased propensity for IFN-alpha production. Bioactive IFN-alpha was detected in plasma concomitant with the peak of viremia, though levels were only low to moderate in some animals. Plasma interleukin 6 (IL-6) and IL-12 were not increased. In conclusion, PDC were recruited to the LNs and displayed increased IFN-alpha production during acute infection. However, increases in IFN-alpha were transient. Together with the lack of inflammatory cytokine responses, these events might play an important role in the low level of T-cell activation which is associated with protection against AIDS in nonpathogenic SIVagm infection.  相似文献   

16.
The predictive value of acute gut-associated lymphoid tissue (GALT) CD4+ T cell depletion in lentiviral infections was assessed by comparing three animal models illustrative of the outcomes of SIV infection: pathogenic infection (SIVsmm infection of rhesus macaques (Rh)), persistent nonprogressive infection (SIVagm infection of African green monkeys (AGM)), and transient, controlled infection (SIVagm infection of Rh). Massive acute depletion of GALT CD4+ T cells was a common feature of acute SIV infection in all three models. The outcome of this mucosal CD4+ T cell depletion, however, differed substantially between the three models: in SIVsmm-infected Rh, the acute GALT CD4+ T cell depletion was persistent and continued with disease progression; in SIVagm, intestinal CD4+ T cells were partially restored during chronic infection in the context of normal levels of apoptosis and immune activation and absence of damage to the mucosal immunologic barrier; in SIVagm-infected Rh, complete control of viral replication resulted in restoration of the mucosal barrier and immune restoration. Therefore, our data support a revised paradigm wherein severe GALT CD4+ T cell depletion during acute pathogenic HIV and SIV infections of humans and Rh is necessary but neither sufficient nor predictive of disease progression, with levels of immune activation, proliferation and apoptosis being key factors involved in determining progression to AIDS.  相似文献   

17.
Previous studies suggested that simian immunodeficiency viruses isolated from African green monkeys (SIVagm) are relatively nonpathogenic. The report describes the isolation and biologic and molecular characterization of a pathogenic SIVagm strain derived from a naturally infected African green monkey. This virus induced an AIDS-like syndrome characterized by early viremia, frequent thrombocytopenia, severe lymphoid depletion, opportunistic infections, meningoencephalitis, and death of five of eight macaques within 1 year after infection. An infectious clone derived from this isolate reproduced the immunodeficiency disease in pig-tailed (PT) macaques, providing definitive proof of the etiology of this syndrome. Although the virus was highly pathogenic in PT macaques, no disease was observed in experimentally infected rhesus macaques and African green monkeys despite reproducible infection of the last two species. Whereas infection of PT macaques was associated with a high viral load in plasma, peripheral blood mononuclear cells, and tissues, low-level viremia and infrequent expression in lymph nodes of rhesus macaques and African green monkeys suggest that differences in pathogenicity are associated with the extent of in vivo replication. The availability of a pathogenic molecular clone will provide a useful model for the study of viral and host factors that influence pathogenicity.  相似文献   

18.
The events that contribute to the progression to AIDS during the acute phase of a primate lentiviral infection are still poorly understood. In this study, we used pathogenic and nonpathogenic simian models of simian immunodeficiency virus (SIV) infection of rhesus macaques (RMs) and African green monkeys (AGMs), respectively, to investigate the relationship between apoptosis in lymph nodes and the extent of viral replication, immune activation, and disease outcome. Here, we show that, in SIVmac251-infected RMs, a marked increased in lymphocyte apoptosis is evident during primary infection at the level of lymph nodes. Interestingly, the levels of apoptosis correlated with the extent of viral replication and the rate of disease progression to AIDS, with higher apoptosis in RMs of Indian genetic background than in those of Chinese origin. In stark contrast, no changes in the levels of lymphocyte apoptosis were observed during primary infection in the nonpathogenic model of SIVagm-sab infection of AGMs, despite similarly high rates of viral replication. A further and early divergence between SIV-infected RMs and AGMs was observed in terms of the dynamics of T- and B-cell proliferation in lymph nodes, with RMs showing significantly higher levels of cycling cells (Ki67+) in the T-cell zones in association with relatively low levels of Ki67+ in the B-cell zones, whereas AGMs displayed a low frequency of Ki67+ in the T-cell area but a high proportion of Ki67+ cells in the B-cell area. As such, this study suggests that species-specific host factors determine an early immune response to SIV that predominantly involves either cellular or humoral immunity in RMs and AGMs, respectively. Taken together, these data are consistent with the hypotheses that (i) high levels of T-cell activation and lymphocyte apoptosis are key pathogenic factors during pathogenic SIV infection of RMs and (ii) low T-cell activation and apoptosis are determinants of the AIDS resistance of SIVagm-infected AGMs, despite high levels of SIVagm replication.  相似文献   

19.
The simian immunodeficiency virus (SIV)-rhesus macaque model of heterosexual human immunodeficiency virus transmission consists of atraumatic application of cell-free SIVmac onto the intact vaginal mucosa of mature female rhesus macaques. This procedure results in systemic infection, and eventually infected animals develop the clinical signs and pathologic changes of simian AIDS. To achieve 100% transmission with the virus stocks used to date, multiple intravaginal inoculations are required. The current titration study utilized two stocks of SIVmac and demonstrated that a single intravaginal dose of cell-free SIV can reliably produce infection in rhesus macaques. This study also demonstrated that some animals intravaginally inoculated with cell-free SIVmac develop transient viremia characterized by a limited ability to isolate virus from peripheral blood mononuclear cells and lymph node mononuclear cells and no seroconversion to SIV antigen. SIV could be isolated from the peripheral lymph nodes of transiently viremic animals only during periods of viremia and not at times when SIV was not detected in circulating mononuclear cells. Thus, peripheral lymphoid tissues were not reservoirs of infection in the transiently viremic animals. Taken together, these results suggest either that the SIV infection was cleared in the transiently viremic animals or that SIV infection is limited to a compartment of the genital mucosal immune system that cannot be assessed by monitoring SIV infection in peripheral blood mononuclear cells and peripheral lymphoid tissue.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号