首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agrawal N  Hong B  Mihai C  Kohen A 《Biochemistry》2004,43(7):1998-2006
The enzyme thymidylate synthase (TS) catalyzes a complex reaction that involves forming and breaking at least six covalent bonds. The physical nature of the hydride transfer step in this complex reaction cascade has been studied by means of isotope effects and their temperature dependence. Competitive kinetic isotope effects (KIEs) on the second-order rate constant (V/K) were measured over a temperature range of 5-45 degrees C. The observed H/T ((T)V/K(H)) and D/T ((T)V/K(D)) KIEs were used to calculate the intrinsic KIEs throughout the temperature range. The Swain-Schaad relationships between the H/T and D/T V/K KIEs revealed that the hydride transfer step is the rate-determining step at the physiological temperature of Escherichia coli (20-30 degrees C) but is only partly rate-determining at elevated and reduced temperatures. H/D KIE on the first-order rate constant k(cat) ((D)k = 3.72) has been previously reported [Spencer et al. (1997) Biochemistry 36, 4212-4222]. Additionally, the Swain-Schaad relationships between that (D)k and the V/K KIEs reported here suggested that at 20 degrees C the hydride transfer step is the rate-determining step for both rate constants. Intrinsic KIEs were calculated here and were found to be virtually temperature independent (DeltaE(a) = 0 within experimental error). The isotope effects on the preexponential Arrhenius factors for the intrinsic KIEs were A(H)/A(T) = 6.8 +/- 2.8 and A(D)/A(T) = 1.9 +/- 0.25. Both effects are significantly above the semiclassical (no-tunneling) predicted values and indicate a contribution of quantum mechanical tunneling to this hydride transfer reaction. Tunneling correction to transition state theory would predict that these isotope effects on activation parameters result from no energy of activation for all isotopes. Yet, initial velocity measurements over the same temperature range indicate cofactor inhibition and result in significant activation energy on k(cat) (4.0 +/- 0.1 kcal/mol). Taken together, the temperature-independent KIEs, the large isotope effects on the preexponential Arrhenius factors, and a significant energy of activation all suggest vibrationally enhanced hydride tunneling in the TS-catalyzed reaction.  相似文献   

2.
African trypanosomes are devoid of glutathione reductase activity, and instead contain a unique flavoprotein variant, trypanothione reductase, which acts on a cyclic derivative of glutathione, trypanothione. The high degree of sequence similarity between trypanothione reductase and glutathione reductase, as well as the obvious similarity in the reactions catalyzed, led us to investigate the pH dependence of the kinetic parameters, and the isotopic behavior of trypanothione reductase. The pH dependence of the kinetic parameters V, V/K for NADH, and V/K for oxidized trypanothione has been determined for trypanothione reductase from Trypanosoma congolense. Both V/K for NADH and the maximum velocity decrease as single groups exhibiting pK values of 8.87 +/- 0.09 and 9.45 +/- 0.07, respectively, are deprotonated. V/K for oxidized trypanothione, T(S)2, decreases as two groups exhibiting experimentally indistinguishable pK values of 8.74 +/- 0.03 are deprotonated. Variable magnitudes of the primary deuterium kinetic isotope effects on pyridine nucleotide oxidation are observed on V and V/K when different pyridine nucleotide substrates are used, and the magnitude of DV and D(V/K) is independent of the oxidized trypanothione concentration at pH 7.25. Solvent kinetic isotope effects, obtained with 2',3'-cNADPH as the variable substrate, were observed on V only, and plots of V versus mole fraction of D2O (i.e., proton inventory) were linear, and yielded values of 1.3-1.6 for D2OV. Solvent kinetic isotope effects obtained with alternate pyridine nucleotides as substrates were also observed on V, and the magnitude of D2OV decreases for each pyridine nucleotide as its maximal velocity relative to that of NADPH oxidation decreases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
B N Leichus  J S Blanchard 《Biochemistry》1992,31(12):3065-3072
Lipoamide dehydrogenase is a flavoprotein which catalyzes the reversible oxidation of dihydrolipoamide, Lip(SH)2, by NAD+. The ping-pong kinetic mechanism involves stable oxidized and two-electron-reduced forms. We have investigated the rate-limiting nature of proton transfer steps in both the forward and reverse reactions catalyzed by the pig heart enzyme by using a combination of alternate substrates and solvent kinetic isotope effect studies. With NAD+ as the variable substrate, and at a fixed, saturating concentration of either Lip(SH)2 or DTT, inverse solvent kinetic isotope effects of 0.68 +/- 0.05 and 0.71 +/- 0.05, respectively, were observed on V/K. Solvent kinetic isotope effects on V of 0.91 +/- 0.07 and 0.69 +/- 0.02 were determined when Lip(SH)2 or DTT, respectively, was used as reductant. When Lip(SH)2 or DTT was used as the variable substrate, at a fixed concentration of NAD+, solvent kinetic isotope effects of 0.74 +/- 0.06 and 0.51 +/- 0.04, respectively, were observed on V/K for these substrates. Plots of the kinetic parameters versus mole fraction D2O (proton inventories) were linear in all cases. Solvent kinetic isotope effect measurements performed in the reverse direction using NADH as the variable substrate showed equivalent, normal solvent kinetic isotope effects on V/KNADH when oxidized lipoamide, lipoic acid, or DTT were present at fixed, saturating concentrations. Solvent kinetic isotope effects on V were equal to 1.5-2.1. When solvent kinetic isotope effect measurements were performed using the disulfide substrates lipoamide, lipoic acid, or DTT as the variable substrates, normal kinetic isotope effects on V/K of 1.3-1.7 were observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Adenosine 5'-phosphate was synthesized with specific heavy atom substitutions to permit measurement of V/K kinetic isotope effects for the N-glycohydrolase activity of the allosteric AMP nucleosidase and the acid-catalyzed solvolysis of these compounds. The effects of allosteric activation on the kinetic isotope effects together with the kinetic mechanism of AMP nucleosidase [DeWolf, W. E., Jr., Emig, F. A., & Schramm, V. L. (1986) Biochemistry 25, 4132-4140] indicate that the kinetic isotope effects are fully expressed. Comparison of individual primary and secondary kinetic isotope effects with combined isotope effects and the isotope effect of the reverse reaction indicated that kinetic isotope effects in AMP nucleosidase arise from a single step in the reaction mechanism. Under these conditions, kinetic isotope effects can be used to interpret transition-state structure for AMP nucleosidase. Changes in kinetic isotope effects occurred as a function of allosteric activator, demonstrating that allosteric activation alters transition-state structure for AMP nucleosidase. Kinetic isotope effects, expressed as [V/K(normal isotope]/[V/K(heavy isotope)], were observed with [2'-2H]AMP (1.061 +/- 0.002), [9-15N]AMP (1.030 +/- 0.003), [1'-2H]AMP (1.045 +/- 0.002), and [1'-14C]AMP (1.035 +/- 0.002) when hydrolyzed by AMP nucleosidase in the absence of MgATP. Addition of MgATP altered the [2'-2H]AMP effect (1.043 +/- 0.002) and the [1'-2H]AMP effect (1.030 +/- 0.003) and caused a smaller decrease of the 14C and 15N effects. Multiple heavy atom substitutions into AMP caused an increase in observed isotope effects to 1.084 +/- 0.004 for [1'-2H,1'-14C]AMP and to 1.058 +/- 0.002 for [9-15N,1'-14C]AMP with the enzyme in the absence of ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
L A Xue  P Talalay  A S Mildvan 《Biochemistry》1990,29(32):7491-7500
delta 5-3-Ketosteroid isomerase (EC 5.3.3.1) catalyzes the isomerization of delta 5-3-ketosteroids to delta 4-3-ketosteroids by a conservative tautomeric transfer of the 4 beta-proton to the 6 beta-position using Tyr-14 as a general acid and Asp-38 as a general base [Kuliopulos, A., Mildvan, A. S., Shortle, D., & Talalay, P. (1989) Biochemistry 28, 149]. On deuteration of the 4 beta-position (97.0%) of the substrate, kcat(H)/kcat(4 beta-D) is 6.1 in H2O and 6.3 in D2O. The solvent isotope effect, kcat(H2O)/kcat(D2O), is 1.6 for both the 4 beta-H and 4 beta-D substrates. Mutation of Tyr-55 to Phe lowers kcat 4.3-fold; kcat(H)/kcat/4 beta-D) is 5.3 in H2O and 5.9 in D2O, and kcat(H2O)/kcat(D2O) with the 4 beta-H and 4 beta-D substrates is 1.5 and 1.7, respectively, indicating concerted general acid-base catalysis in either the enolization or the ketonization step of both the wild-type and the Tyr-55----Phe (Y55F) mutant enzymes. An additional slow step occurs with the Y55F mutant. Smaller isotope effects on Km are used to estimate individual rate constants in the kinetic schemes of both enzymes. On deuteration of the 4 alpha-position (88.6%) of the substrate, the secondary isotope effect on kcat/Km corrected for composition is 1.11 +/- 0.02 with the wild-type enzyme and 1.12 +/- 0.02 with the Y55F mutant. These effects decrease to 1.06 +/- 0.01 and 1.07 +/- 0.01, respectively, when the 4 beta-position is also deuterated, thereby establishing these to be kinetic (rather than equilibrium) secondary isotope effects and to involve a proton-tunneling contribution. Deuteration of the 6-position of the substrate (92.0%) produces no kinetic isotope effects on kcat/Km with either the wild-type (1.00 +/- 0.01) or the Y55F mutant (1.01 +/- 0.01) enzyme. Since a change in hybridization from sp3 to sp2 occurs at C-4 only during enolization of the substrate and a change in hybridization at C-6 from sp2 to sp3 occurs only during reketonization of the dienol intermediate, enolization of the substrate constitutes the concerted rate-limiting step. Concerted enolization is consistent with the right angle or antarafacial orientations of Tyr-14 and Asp-38 with respect to the enzyme-bound substrate and with the additive effects on kcat of mutation of these catalytic residues [Kuliopulos, A., Talalay, P., & Mildvan, A. S. (1990) Biophys. J. 57, 39a].  相似文献   

6.
The effect of isotopic substitution of the 8-H of xanthine (with 2H and 3H) on the rate of oxidation by bovine xanthine oxidase and by chicken xanthine dehydrogenase has been measured. V/K isotope effects were determined from competition experiments. No difference in H/T(V/K) values was observed between xanthine oxidase (3.59 +/- 0.1) and xanthine dehydrogenase (3.60 +/- 0.09). Xanthine dehydrogenase exhibited a larger T/D(V/K) value (0.616 +/- 0.028) than that observed for xanthine oxidase (0.551 +/- 0.016). Observed H/T(V/K) values for either enzyme are less than those H/T(V/K) values calculated with D/T(V/K) data. These discrepancies are suggested to arise from the presence of a rate-limiting step(s) prior to the irreversible C-H bond cleavage step in the mechanistic pathways of both enzymes. These kinetic complexities preclude examination of whether tunneling contributes to the reaction coordinate for the H-transfer step in each enzyme. No observable exchange of tritium with solvent is observed during the anaerobic incubation of [8-3H]xanthine with either enzyme, which suggests the reverse commitment to catalysis (Cr) is essentially zero. With the assumption of adherence to reduced mass relationships, the intrinsic deuterium isotope effect (Dk) for xanthine oxidation is calculated to be 7.4 +/- 0.7 for xanthine oxidase and 4.2 +/- 0.2 for xanthine dehydrogenase. By use of these values and steady-state kinetic data, the minimal rate for the hydrogen-transfer step is calculated to be approximately 75-fold faster than kcat for xanthine oxidase and approximately 10-fold faster than kcat for xanthine dehydrogenase. This calculated rate is consistent with data obtained by rapid-quench experiments with XO. A stoichiometry of 1.0 +/- 0.3 mol of uric acid/mol of functional enzyme is formed within the mixing time of the instrument (5-10 ms). The kinetic isotope effect data also permitted the calculation of the Kd values [Klinman, J. P., & Mathews, R. G. (1985) J. Am. Chem. Soc. 107, 1058-1060] for substrate dissociation, including all reversible steps prior to C-H bond cleavage. Values calculated for each enzyme (Kd = 120 microM) were found to be identical within experimental uncertainty.  相似文献   

7.
Patel MP  Liu WS  West J  Tew D  Meek TD  Thrall SH 《Biochemistry》2005,44(50):16753-16765
Beta-ketoacyl-acyl carrier protein reductase (KACPR) catalyzes the NADPH-dependent reduction of beta-ketoacyl-acyl carrier protein (AcAc-ACP) to generate (3S)-beta-hydroxyacyl-ACP during the chain-elongation reaction of bacterial fatty acid biosynthesis. We report the evaluation of the kinetic and chemical mechanisms of KACPR using acetoacetyl-CoA (AcAc-CoA) as a substrate. Initial velocity, product inhibition, and deuterium kinetic isotope effect studies were consistent with a random bi-bi rapid-equilibrium kinetic mechanism of KACPR with formation of an enzyme-NADP(+)-AcAc-CoA dead-end complex. Plots of log V/K(NADPH) and log V/K(AcAc)(-)(CoA) indicated the presence of a single basic group (pK = 5.0-5.8) and a single acidic group (pK = 8.0-8.8) involved in catalysis, while the plot of log V vs pH indicated that at high pH an unprotonated form of the ternary enzyme complex was able to undergo catalysis. Significant and identical primary deuterium kinetic isotope effects were observed for V (2.6 +/- 0.4), V/K(NADPH) (2.6 +/- 0.1), and V/K(AcAc)(-)(CoA) (2.6 +/- 0.1) at pH 7.6, but all three values attenuated to values of near unity (1.1 +/- 0.03 or 0.91 +/- 0.02) at pH 10. Similarly, the large alpha-secondary deuterium kinetic isotope effect of 1.15 +/- 0.02 observed for [4R-(2)H]NADPH on V/K(AcAc)(-)(CoA) at pH 7.6 was reduced to a value of unity (1.00 +/- 0.04) at high pH. The complete analysis of the pH profiles and the solvent, primary, secondary, and multiple deuterium isotope effects were most consistent with a chemical mechanism of KACPR that is stepwise, wherein the hydride-transfer step is followed by protonation of the enolate intermediate. Estimations of the intrinsic primary and secondary deuterium isotope effects ((D)k = 2.7, (alpha)(-D)k = 1.16) and the correspondingly negligible commitment factors suggest a nearly full expression of the intrinsic isotope effects on (D)V/K and (alpha)(-D)V/K, and are consistent with a late transition state for the hydride transfer step. Conversely, the estimated intrinsic solvent effect ((D)2(O)k) of 5.3 was poorly expressed in the experimentally derived parameters (D)2(O)V/K and (D)2(O)V (both = 1.2 +/- 0.1), in agreement with the estimation that the catalytic commitment factor for proton transfer to the enolate intermediate is large. Such detailed knowledge of the chemical mechanism of KAPCR may now help guide the rational design of, or inform screening assay-design strategies for, potent inhibitors of this and related enzymes of the short chain dehydrogenase enzyme class.  相似文献   

8.
M A Vanoni  R G Matthews 《Biochemistry》1984,23(22):5272-5279
Previous work from this laboratory has established that the NADPH-menadione oxidoreductase reaction catalyzed by methylenetetrahydrofolate reductase from pig liver proceeds by Ping Pong Bi Bi kinetics and that the reductive half-reaction is rate limiting in steady-state turnover. We have now shown that methylenetetrahydrofolate reductase stereo-specifically removes the pro-S hydrogen from the 4-position of NADPH. During the oxidation of [4(S)-3H]NADPH, we observed a kinetic isotope on V/KNADPH of 10.8 +/- 0.4. When comparing the rates of oxidation of [4(S)-2H]NADPH and [4(S)-1H]NADPH, we measure kinetic isotope effects on V of 4.78 +/- 0.15 and on V/KNADPH of 4.54 +/- 0.59. When oxidation of [4(R)-2H]NADPH and [4(R)-1H]NADPH is compared, the secondary kinetic isotope effect on V is 1.04 +/- 0.01. When the NADPH-menadione oxidoreductase reaction is catalyzed in tritiated water, no incorporation of solvent tritium into residual NADPH is observed. We conclude from these observations that the oxidation of NADPH is largely or entirely rate limiting in the reductive half-reaction and, hence, in NADPH-menadione oxidoreductase turnover at saturating menadione concentration. In the presence of saturating NADPH, the flavin reduction proceeds with a rate constant of 160 S-1, which is at least 29-fold slower than estimates of the lower limit for the diffusion-limited rate constant characterizing NADPH binding to the enzyme under physiological conditions. Albery & Knowles have defined criteria for perfection in enzyme catalysis [Albery, W. J., & Knowles, J.R. (1976) Biochemistry 15, 5631-5640].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
Klimacek M  Nidetzky B 《Biochemistry》2002,41(31):10158-10165
Mannitol dehydrogenases (MDH) are a family of Zn(2+)-independent long-chain alcohol dehydrogenases that catalyze the regiospecific NAD(+)-dependent oxidation of a secondary alcohol group in polyol substrates. pH and primary deuterium kinetic isotope effects on kinetic parameters for reaction of recombinant MDH from Pseudomonas fluorescens with D-mannitol have been measured in H(2)O and D(2)O at 25 degrees C and used to determine the relative timing of C-H and O-H bond cleavage steps during alcohol conversion. The enzymatic rates decreased at low pH; apparent pK values for log(k(cat)/K(mannitol)) and log k(cat) were 9.2 and 7.7 in H(2)O, respectively, and both were shifted by +0.4 pH units in D(2)O. Proton inventory plots for k(cat) and k(cat)/K(mannitol) were determined at pL 10.0 using protio or deuterio alcohol and were linear at the 95% confidence level. They revealed the independence of primary deuterium isotope effects on the atom fraction of deuterium in a mixed H(2)O-D(2)O solvent and yielded single-site transition-state fractionation factors of 0.43 +/- 0.05 and 0.47 +/- 0.01 for k(cat)/K(mannitol) and k(cat), respectively. (D)(k(cat)/K(mannitol)) was constant (1.80 +/- 0.20) in the pH range 6.0-9.5 and decreased at high pH to a limiting value of approximately 1. Measurement of (D)(k(cat)/K(fructose)) at pH 10.0 and 10.5 using NADH deuterium-labeled in the 4-pro-S position gave a value of 0.83, the equilibrium isotope effect on carbonyl group reduction. A mechanism of D-mannitol oxidation by MDH is supported by the data in which the partly rate-limiting transition state of hydride transfer is stabilized by a single solvation catalytic proton bridge. The chemical reaction involves a pH-dependent internal equilibrium which takes place prior to C-H bond cleavage and in which proton transfer from the reactive OH to the enzyme catalytic base may occur. Loss of a proton from the enzyme at high pH irreversibly locks the ternary complex with either alcohol or alkoxide bound in a conformation committed of undergoing NAD(+) reduction at a rate about 2.3-fold slower than the corresponding reaction rate of the protonated complex. Transient kinetic studies for D-mannitol oxidation at pH(D) 10.0 showed that the solvent isotope effect on steady-state turnover originates from a net rate constant of NADH release that is approximately 85% rate-limiting for k(cat) and 2-fold smaller in D(2)O than in H(2)O.  相似文献   

11.
Tsai S  Klinman JP 《Biochemistry》2001,40(7):2303-2311
The temperature dependence of steady-state kinetics has been studied with horse liver alcohol dehydrogenase (HLADH) using protonated and deuterated benzyl alcohol as substrates in methanol/water mixtures between +3 and -50 degrees C. Additionally, the competitive isotope effects, k(H)/k(T) and k(D)/k(T), were measured. The studies indicate increasing kinetic complexity for wild-type HLADH at subzero temperatures. Consistent with earlier findings at 25 degrees C [Bahnson et al. (1993) Biochemistry 31, 5503], the F93W mutant shows much less kinetic complexity than the wild-type enzyme between 3 and -35 degrees C. An analysis of noncompetitive deuterium isotope effects and competitive tritium isotope effects leads to the conclusion that the reaction of F93W involves substantial hydrogen tunneling down to -35 degrees C. The effect of methanol on kinetic properties for the F93W mutant was analyzed, showing a dependence of competitive KIEs on the NAD(+) concentration. This indicates a more random bi--bi kinetic mechanism, in comparison to an ordered bi-bi kinetic mechanism in water. Although MeOH also affects the magnitude of the reaction rates and, to some extent, the observed KIEs, the ratio of ln k(H)/k(T) to ln k(D)/k(T) for primary isotope effects has not changed in methanol, and we conclude little or no change in kinetic complexity. Importantly, the degree of tunneling, as shown from the relationship between the secondary k(H)/k(T) and k(D)/k(T) values, is the same in water and MeOH/water mixtures, implicating similar trajectories for H transfer in both solvents. In a recent study of a thermophilic alcohol dehydrogenase [Kohen et al. (1999) Nature 399, 496], it was shown that decreases in temperatures below a transition temperature lead to decreased tunneling. This arises because of a change in protein dynamics below a break point in enzyme activity [Kohen et al. (2000) J. Am. Chem. Soc. 122, 10738-10739]. For the mesophilic HLADH described herein, an opposite trend is observed in which tunneling increases at subzero temperatures. These differences are attributed to inherent differences in tunneling probabilities between 0 and 100 degrees C vs subzero temperatures, as opposed to fundamental differences in protein structure for enzymes from mesophilic vs thermophilic sources. We propose that future investigations of the relationship between protein flexibility and hydrogen tunneling are best approached using enzymes from thermophilic sources.  相似文献   

12.
The transition state of the Vmax mutant of AMP nucleosidase from Azotobacter vinelandii [Leung, H. B., & Schramm, V. L. (1981) J. Biol. Chem. 256, 12823-12829] has been characterized by heavy-atom kinetic isotope effects in the presence and absence of MgATP, the allosteric activator. The enzyme catalyzes hydrolysis of the N-glycosidic bond of AMP at approximately 2% of the rate of the normal enzyme with only minor changes in the Km for substrate, the activation constant for MgATP, and the Ki for formycin 5'-phosphate, a tight-binding competitive inhibitor. Isotope effects were measured as a function of the allosteric activator concentration that increases the turnover number of the enzyme from 0.006 s-1 to 1.2 s-1. The kinetic isotope effects were measured with the substrates [1'-3H]AMP, [2'-2H]AMP, [2'-2H]AMP, [9-15N]AMP, and [1',9-14C, 15N]AMP. All substrates gave significant kinetic isotope effects in a pattern that establishes that the reaction expresses intrinsic kinetic isotope effects in the presence or absence of MgATP. The kinetic isotope effect with [9-15N]AMP decreased from 1.034 +/- 0.002 to 1.021 +/- 0.002 in response to MgATP. The [1'-3H]AMP isotope effect increased from 1.086 +/- 0.003 to 1.094 +/- 0.002, while the kinetic isotope effect for [1',9-14C, 15N]AMP decreased from 1.085 +/- 0.003 to 1.070 +/- 0.004 in response to allosteric activation with MgATP. Kinetic isotope effects with [1'-14C]AMP and [2'-2H]AMP were 1.041 +/- 0.006 and 1.089 +/- 0.002 and were not changed by addition of MgATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The enzyme clavaminate synthase (CS) catalyzes the formation of the first bicyclic intermediate in the biosynthetic pathway to the potent beta-lactamase inhibitor clavulanic acid. Our previous work has led to the proposal that the cyclization/desaturation of the substrate proclavaminate proceeds in two oxidative steps, each coupled to a decarboxylation of alpha-ketoglutarate and a reduction of dioxygen to water [Salowe, S. P., Marsh, E. N., & Townsend, C. A. (1990) Biochemistry 29, 6499-6508]. We have now employed kinetic isotope effect studies to determine the order of oxidations for CS purified from Streptomyces clavuligerus. By using (4'RS)-[4'-3H,1-14C]-rac-proclavaminate, a primary T(V/K) = 8.3 +/- 0.2 was measured from [3H]water release data, while an alpha-secondary T(V/K) = 1.06 +/- 0.01 was determined from the changing 3H/14C ratio of the product clavaminate. Values for the primary and alpha-secondary effects of 11.9 +/- 1.7 and 1.12 +/- 0.07, respectively, were obtained from the changing 3H/14C ratio of the residual proclavaminate by using new equations derived for a racemic substrate bearing isotopic label at both primary and alpha-secondary positions. Since only the first step of consecutive irreversible reactions will exhibit a V/K isotope effect, we conclude that C-4' is the initial site of oxidation in proclavaminate. As expected, no significant changes in the 3H/14C ratio of residual substrate were observed with [3-3H,1-14C]-rac-proclavaminate. However, two new tritiated compounds were produced in this incubation, apparently the result of isotope-induced branching brought about by the presence of tritium at the site of the second oxidation. One of these compounds was identified by comparison to authentic material as dihydroclavaminate, a stable intermediate that normally remains enzyme-bound. On the basis of the body of information available and the similarities to alpha-ketoglutarate-dependent dioxygenases, a comprehensive mechanistic scheme for CS is proposed to account for this unusual enzymatic transformation.  相似文献   

14.
The kinetics of microperoxidase-11 (MP-11) in the oxidation reaction of guaiacol (AH) by hydrogen peroxide was studied, taking into account the inactivation of enzyme during reaction by its suicide substrate, H2O2. Concentrations of substrates were so selected that: 1) the reaction was first-order in relation to benign substrate, AH and 2) high ratio of suicide substrate to the benign substrate, [H2O2] > [AH]. Validation and reliability of the obtained kinetic equations were evaluated in various nonlinear and linear forms. Fitting of experimental data into the obtained integrated equation showed a close match between the kinetic model and the experimental results. Indeed, a similar mechanism to horseradish peroxidase was found for the suicide-peroxide inactivation of MP-11. Kinetic parameters of inactivation including the intact activity of MP-11, alphai, and the apparent inactivation rate constant, ki, were obtained as 0.282 +/- 0.006 min(-1) and 0.497 +/- 0.013(-1) min at [H2O2] = 1.0 mM, 27 degrees C, phosphate buffer 5.0 mM, pH = 7.0. Results showed that inactivation of microperoxidase as a peroxidase model enzyme can occur even at low concentrations of hydrogen peroxide (0.4 mM).  相似文献   

15.
S J O'Keefe  J R Knowles 《Biochemistry》1986,25(20):6077-6084
To investigate the mechanism of the carboxylation of pyruvate to oxalacetate catalyzed by the enzyme transcarboxylase, we have measured the D(V/K) and 13(V/K) isotope effects. Comparison of the double-reciprocal plots of the initial velocities with [1H3]pyruvate and with [2H3]pyruvate as substrate yields a deuterium isotope effect on Vmax/Km of 1.39 +/- 0.04. The 13C kinetic isotope effect on the carboxylation of pyruvate to oxalacetate has been measured by the competitive method and is 1.0227 +/- 0.0008. To determine whether the removal of the proton from pyruvate and the addition of the carboxyl group occur in the same or in different steps, the double-isotope fractionation test has been used. When [2H3]pyruvate replaces [1H3]pyruvate as the substrate, the observed 13(V/K) isotope effect falls from 1.0227 to 1.0141 +/- 0.001. The latter value is in excellent agreement with the value of 1.0136, predicted for a stepwise pathway. We may conclude, therefore, that the carboxylation of pyruvate catalyzed by transcarboxylase proceeds by a stepwise mechanism involving the intermediate formation of the substrate carbanion.  相似文献   

16.
The effects of pH, solvent isotope, and primary isotope replacement on substrate dehydrogenation by Rhodotorula gracilis d-amino acid oxidase were investigated. The rate constant for enzyme-FAD reduction by d-alanine increases approximately fourfold with pH, reflecting apparent pKa values of approximately 6 and approximately 8, and reaches plateaus at high and low pH. Such profiles are observed in all presteady-state and steady-state kinetic experiments, using both d-alanine and d-asparagine as substrates, and are inconsistent with the operation of a base essential to catalysis. A solvent deuterium isotope effect of 3.1 +/- 1.1 is observed on the reaction with d-alanine at pH 6; it decreases to 1.2 +/- 0.2 at pH 10. The primary substrate isotope effect on the reduction rate with [2-D]d-alanine is 9.1 +/- 1.5 at low and 2.3 +/- 0.3 at high pH. At pH 6.0, the solvent isotope effect is 2.9 +/- 0.8 with [2-D]d-alanine, and the primary isotope effect is 8.4 +/- 2.4 in D2O. Thus, primary and solvent kinetic isotope effects (KIEs) are independent of the presence of the other isotope, i.e. the 'double' kinetic isotope effect is the product of the individual KIEs, consistent with a transition state in which rupture of the two bonds of the substrate to hydrogen is concerted. These results support a hydride transfer mechanism for the dehydrogenation reaction in d-amino acid oxidase and argue against the occurrence of any intermediates in the process. A pKa,app of approximately 8 is interpreted to arise from the microscopic ionization of the substrate amino acid alpha-amino group, but also includes contributions from kinetic parameters.  相似文献   

17.
Elimination of [2H]ethanol in vivo as studied by gas chromatography/mass spectrometry occurred at about half the rate in deer mice reported to lack alcohol dehydrogenase (ADH-) compared with ADH+ deer mice and exhibited kinetic isotope effects on Vmax and Km (D(V/K] of 2.2 +/- 0.1 and 3.2 +/- 0.8 in the two strains, respectively. To an equal extent in both strains, ethanol elimination was accompanied by an ethanol-acetaldehyde exchange with an intermolecular transfer of hydrogen atoms, indicating the occurrence of dehydrogenase activity. This exchange was also observed in perfused deer mouse livers. Based on calculations it was estimated that at least 50% of ethanol elimination in ADH- deer mice was caused by the action of dehydrogenase systems. NADPH-supported cytochrome P-450-dependent ethanol oxidation in liver microsomes from ADH+ and ADH- deer mice was not stereoselective and occurred with a D(V/K) of 3.6. The D(V/K) value of catalase-dependent oxidation was 1.8, whereas a kinetic isotope effect of cytosolic ADH in the ADH+ strain was 3.2. Mitochondria from both ADH+ and ADH- deer mice catalyzed NAD+-dependent ethanol oxidation and NADH-dependent acetaldehyde reduction. The kinetic isotope effects of NAD+-dependent ethanol oxidation in the mitochondrial fraction from ADH+ and ADH- deer mice were 2.0 +/- 0.1 and 2.3 +/- 0.3, respectively. The results indicate only a minor contribution by cytochrome P-450 to ethanol elimination, whereas the isotope effects are consistent with ethanol oxidation by the catalase-H2O2 system in ADH- deer mice in addition to the dehydrogenase systems.  相似文献   

18.
In the pyrimidine biosynthetic pathway, N-carbamyl-L-aspartate (CA-asp) is converted to L-dihydroorotate (DHO) by dihydroorotase (DHOase). The mechanism of this important reaction was probed using primary and secondary 15N and 13C isotope effects on the ring opening of DHO using isotope ratio mass spectrometry (IRMS). The reaction was performed at three different temperatures (25, 37, and 45 degrees C for hamster DHOase; 37, 50, and 60 degrees C for Bacillus caldolyticus), and the product CA-asp was purified for analysis. The primary and secondary kinetic isotope effects for the ring opening of the DHO were determined from analysis of the N and C of the carbamyl group after hydrolysis. In addition, the beta-carboxyl of the residual aspartate was liberated enzymatically by transamination to oxaloacetate with aspartate aminotransferase and then decarboxylation with oxaloacetate decarboxylase. The 13C/12C ratio from the released CO2 was determined by IRMS, yielding a second primary isotope effect. The primary and secondary isotope effects for the reaction catalyzed by DHOase showed little variation between enzymes or temperatures, the primary 13C and 15N isotope effects being approximately 1% on average, while the secondary 13C isotope effect is negligible or very slightly normal (>1.0000). These data indicate that the chemistry is at least partially rate-limiting while the secondary isotope effects suggest that the transition state may have lost some bending and torsional modes leading to a slight lessening of bond stiffness at the carbonyl carbon of the amide of CA-asp. The equilibrium isotope effects for DHO --> CA-asp have also been measured (secondary 13K(eq) = 1.0028 +/- 0.0002, primary 13K(eq) = 1.0053 +/- 0.0003, primary 15K(eq) = 1.0027 +/- 0.0003). Using these equilibrium isotope effects, the kinetic isotope effects for the physiological reaction (CA-asp --> DHO) have been calculated. These values indicate that the carbon of the amide group is more stiffly bonded in DHO while the slightly lesser, but still normal, values of the primary kinetic isotope effect show that the chemistry remains at least partially rate-limiting for the physiological reaction. It appears that the ring opening and closing is the slow step of the reaction.  相似文献   

19.
The effects of deuterium oxide (D2O) and temperature on the properties of endplate channels were studied in voltage-clamped muscle fibers from the frog Rana pipiens. Studies were performed at temperatures of 8, 12, 16, and 20 degrees C. The single channel conductance (gamma) and mean channel lifetime (tau) were calculated from fluctuation analysis of the acetylcholine-induced end-plate currents. The reversal potential was determined by interpolation of the acetylcholine-induced current-voltage relation. The mean reversal potential was slightly more negative in D2O Ringer's (-7.9 +/- 0.1 mV [+/- SEM]) compared with H2O Ringer's (-5.2 +/- 0.6 mV, P less than 0.01). The single channel conductance was decreased in D2O. This decrease was greater than could be accounted for by the increased viscosity of D2O solutions, and the amount of the decrease was greater at higher temperatures. For example, gamma was 38.4 +/- 1.3 pS (+/- SEM) in H2O Ringer's and 25.7 +/- 1.0 pS in D2O Ringer's for a holding potential of -70 mV at 12 degrees C. The mean channel lifetime was significantly shorter in D2O, and the effect was greater at lower temperatures. There was not a strong effect of solvent on the temperature dependence of gamma. On the other hand, the temperature dependence of the reciprocal mean channel lifetime, alpha (where alpha = 1/tau), was strongly dependent upon the solvent. The single channel conductances showed no demonstrable voltage dependence over the range of -90 to -50 mV in both solvents. The reciprocal mean channel lifetime showed a voltage dependence, which could be described by the relation alpha = B exp(AV). The slope A was not strongly affected by either temperature or the solvent. On the other hand, the intercept B was a strong function of temperature and was weakly dependent upon the solvent, with most values greater in D2O. The D2O effects on alpha were what would be expected if they were due to the properties of D2O as a solvent (solvent isotope effects), while the D2O effects on gamma must also include the exchange of D for H in the vicinity of the selectivity filter (primary and/or secondary kinetic isotope effects).  相似文献   

20.
Patel MP  Blanchard JS 《Biochemistry》2001,40(17):5119-5126
The recent identification of the enzyme in Mycobacterium tuberculosis that catalyzes the NADPH-dependent reduction of the unique low molecular weight disulfide mycothione, mycothione reductase, has led us to examine the mechanism of catalysis in greater detail. The pH dependence of the kinetic parameters V and V/K for NADPH, NADH, and an active analogue of mycothione disulfide, des-myo-inositol mycothione disulfide, has been determined. An analysis of the pH profiles has allowed the tentative assignment of catalytically significant residues crucial to the mechanism of disulfide reduction, namely, the His444-Glu449 ion pair and Cys39. Solvent kinetic isotope effects were observed on V and V/K(DIMSSM), yielding values of 1.7 +/- 0.2 and 1.4 +/- 0.2, respectively, but not on V/K(NADPH). Proton inventory studies (V versus mole fraction of D(2)O) were linear, indicative of a single proton transfer in a solvent isotopically sensitive step. Steady-state primary deuterium kinetic isotope effects on V have been determined using NADPH and NADH, yielding values of 1.27 +/- 0.03 and 1.66 +/- 0.14, respectively. The pre-steady-state primary deuterium kinetic isotope effect on enzyme reduction has values of 1.82 +/- 0.04 and 1.59 +/- 0.06 for NADPH and NADH, respectively. The steady-state primary deuterium kinetic isotope effect using NADH coincide with that obtained under single turnover conditions, suggesting the complete expression of the intrinsic primary kinetic isotope effect. Rapid reaction studies on the reductive half-reaction using NADPH and NADH yielded maximal rates of 129 +/- 2 and 20 +/- 1 s(-1), respectively, while similar studies of the oxidation of the two-electron reduced enzyme by mycothiol disulfide yielded a maximum rate of 190 +/- 10 s(-1). These data suggest a unique flavoprotein disulfide mechanism in which the rate of the oxidative half-reaction is slightly faster than the rate of the reductive half-reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号