首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Taxus cuspidata callus, vanadyl sulfate (10 mg l–1) induced a high (146 g g–1 dry wt) production of 10-deacetylbaccatin III in comparison to 7 g g–1 dry wt of the control. The content of paclitaxel in this species increased from 16 g g–1 to 74 g g–1 dry wt when 20 mg phenylalanine l–1 was used. In T. media, p-aminobenzoic acid induced the highest content of 10-deacetylbaccatin III (481 g g–1 dry wt) versus 181 g g–1 in the control. Paclitaxel increased from 89 to 139 g g–1 dry wt after adding chitosan (20 mg l–1) to the cultures.  相似文献   

2.
Reichman  S. M.  Asher  C. J.  Mulligan  D. R.  Menzies  N. W. 《Plant and Soil》2001,235(2):151-158
A frequently desired outcome when rehabilitating Zn toxic sites in Australia is to establish a self-sustaining native ecosystem. Hence, it is important to understand the tolerance of Australian native plants to high concentrations of Zn. Very little is known about the responses of Australian native plants, and trees in particular, to toxic concentrations of Zn. Acacia holosericea, Eucalyptus camaldulensis and Melaleuca leucadendra plants were grown in dilute solution culture for 10 weeks. The seedlings (42 days old) were exposed to six Zn treatments viz., 0.5, 5, 10, 25, 50 and 100 M. The order of tolerance to toxic concentrations of Zn was E. camaldulensis> A. holosericea> M. leucadendra, the critical external concentrations being approximately 20, 12 and 1.5 M, respectively. Tissue Zn concentrations increased as solution Zn increased for all species. Root tissue concentrations were higher than shoot tissue concentrations at all solution Zn concentrations. The critical tissue Zn concentrations were approximately 85 and 110 g g–1 DM for M. leucadendra, 115 and 155 g g–1 DM for A. holosericea and 415 and 370 g g–1 DM for E. camaldulensis for the youngest fully expanded leaf and total shoots, respectively. The results from this paper provide the first comprehensive combination of growth responses, critical external concentrations, critical tissue concentrations and plant toxicity symptoms for three important Australian genera, viz., Eucalyptus, Acacia and Melaleuca, for use in the rehabilitation of potentially Zn toxic sites.  相似文献   

3.
Synopsis Arsenic persists in Chautauqua Lake, New York waters 13 years after cessation of herbicide (sodium arsenite) application and continues to cycle within the lake. Arsenic concentrations in lake water ranged from 22.4–114.81 g l–1, = 49.0 ag l–1. Well water samples generally contained less than 10 g l–1 arsenic. Arsenic concentrations in lake water exceeded U.S. Public Health Service recommended maximum concentrations (10 g l–1) and many samples exceeded the maximum permissible limit (50 g l–1). Fish accumulated arsenic from water but did not magnify it. Fish to water arsenic ratios ranged from 0.4–41.6. Black crappie (Pomoxis nigromaculatus) contained the highest arsenic concentrations (0.14–2.04 g g–1 ), X = 0.7 g g–1) while perch (Perca flavescens), muskellunge (Esox masquinongy) and largemouth bass (Micropterus salmoides) contained the lowest concentrations (0.02–0.13 g g–1). Arsenic concentrations in fish do not appear to pose a health hazard for human consumers.  相似文献   

4.
Total mercury was measured in different compartments of Lake Xolotlán's (Managua) ecosystemviz., sediments, water, fish and men. Sediments from 18 localities at 5 depths inside the sediment (5, 10, 15, 20 and 25 cm) contained an average concentration of 0.62 g Hg.g–1±0.46 at the surface, with extreme values of 0.16 and 1.8 g.g–1. The highest concentration was observed at 25 cm depth in front of the chlor-alkaly factory (ELPESA). This maximum is associated with the period of highest production of this factory. The highest mercury concentrations in water were also measured close to the discharge of ELPESA,viz. 787 g.Hg–1 in January and 506 g.g–1 in April. The mean mercury concentrations measured in the muscles of the most consumed fish were 0.63 g.g–1±0.22 (extreme values 0.22 and 1.45) inCichlasoma managuense, and 0.07 g.g–1±0.14 (extreme values 0.004 and 0.63) inC. citrinellum. The concentration in the liver was 0.79 g.g–1±1.29 inC. managuense and 0.62 g.g–1±0.44 inC. citrinellum. Human hairs (n=98) of fishermen and their families contained 5.03 g.g–1±6.2 (extreme values 0.02 and 38.22). The mean concentration measured in men was 6.22 g.g–1±6.34 (n=58), and in women 3.39 g.g–1±5.7 (n=40). The average mercury concentration of hairs of workers of ELPESA was 91.24 g.g–1±156.9 (extreme values 0.46 and 724.53; n=32). We conclude that total mercury levels in the various ecosystem compartments are very high and mercury contamination in the lake may be considered as dangerous for human health.  相似文献   

5.
Bañuelos  G.S.  Zambrzuski  S.  Mackey  B. 《Plant and Soil》2000,224(2):251-258
This two-part study compared the efficacy of different plant species to extract Se from soils irrigated with Se-laden effluent. The species used were: Brassica napus L. (canola), Brassica juncea Czern L. and Coss (Indian mustard), and Hordeum vulgare L. (barley). In Study 1 we irrigated the plants with a saline effluent containing 0.150 mg Se L–1, while in Study 2, the same species were planted in a saline soil selenized with 2 mg Se L–1. Plants were simultaneously harvested 120 days after planting. In Study 1, there were only slight effects of treatment on dry matter (DM) yield. Plant Se concentrations averaged 21 g Se g–1DM for the Brassica species, and 4.0 g Se g–1 DM for barley. Total Se added to soils via effluent decreased by 40% for Brassica species and by 20% for barley. In Study 2, total DM decreased for all species grown in saline soils containing Se. Plant Se concentrations averaged 75 g g–1 DM for Brassica species and 12 g Se g–1 DM for barley. Total Se added to soils prior to planting decreased by 40% for Brassica species and up to 12% for barley. In both studies, plant accumulation of Se accounted for at least 50% of the Se removed in soils planted to Brassica and up to 20% in soils planted to barley. Results show that although the tested Brassica species led to a significant reduction in Se added to soil via use of Se-laden effluent, additional plantings are necessary to further decrease Se content in the soil.  相似文献   

6.
Compartmentation and flux characteristics of ammonium in spruce   总被引:1,自引:0,他引:1  
Using 13NH 4 + as a tracer, compartmental analyses for NH 4 + were performed in non-mycorrhizal roots of intact Picea glauca (Moench) Voss. seedlings at four different concentration regimes of external NH 4 + ([NH 4 + ]o), i.e. 0, 10, 100, and 1500 M. Three kinetically distinct compartments were identified, with half-lives of exchange of approximately 2 s, 30 s, and 14 min, assumed to represent surface adsorption, Donnan free space, and cytoplasm, respectively. No significant differences were found in half-lives of exchange with changes in [NH 4 + ]o. Influx was calculated to be 0.96 mol·g–1·h–1 in N-deprived plants (measured at 10 M [NH 4 + ]o), while under steady-state conditions it was 0.21 mol·g–1h–1 at 10 M [NH 4 + ]o, 1.96 mol·g–1–1 at 100 M [NH 4 + ]o, and 6.45 mol·g–1·h–1 at 1.5 mM [NH 4 + ]o. Efflux measured over the same range constituted approximately 9% of influx in N-deprived plants, 10% at 10 M, 28% at 100 M, and 35% at 1.5 mM [NH 4 + ]o. Cytoplasmic [NH 4 + ] was estimated at 6 m M in N-deprived plants, 2 mM at 10 M [NH 4 + ]o, 14 mM at 100 M, and 33 mM at 1.5 mM. Free-space [NH 4 + ] was 84 M, 50 M, 700 M, and 8 mM, respectively. In comparison with previously published data on fluxes and compartmentation of NO 3 in white-spruce seedlings, results of this study identify a pronounced physiological preference of this species for NH 4 + over NO 3 as an inorganic N source in terms of uptake and intracellular accumulation. The significant ecological importance of this N-source preference is discussed.The research was supported by a Natural Sciences and Engineering Research Council, Canada, grant to Dr. A.D.M. Glass and a University of British Columbia Graduate Fellowship to Herbert J. Kronzucker. Our thanks go to Dr. M. Adam and Mr. P. Culbert at the particle accelerator facility TRIUMF on the University of British Columbia campus for providing 13N, to Drs. R.D. Guy and S. Silim for providing plant material, and to Dr. M.Y. Wang, Mr. J. Bailey, Mr. J. Mehroke and Mr. P. Poon for essential assistance in experiments.  相似文献   

7.
G.-H. An 《Biotechnology letters》2001,23(12):1005-1009
Catabolites related to tricarboxylic acid cycle affected growth and carotenogenesis in Phaffia rhodozyma. Glutamate, glutamine, aspartate, asparagine and proline at 75 mM of N increased biomass from 2 g l–1 to 2.9–4.7 g l–1 but decreased carotenoid from 420 g g–1 yeast to 200–260 g g–1 yeast in strain 67-385. However, simple nitrogen sources did not decrease carotenoid formation. Tricarboxylic acid intermediates repressed carotenogenesis to a less degree than the corresponding amino acids. Carotenoid hyper-producing mutants were impaired in nitrogen utilization. These results indicated that nitrogen assimilation and the concentrations of tricarboxylic acid cycle intermediates are involved in regulation of carotenoid biosynthesis.  相似文献   

8.
The effect of 2-hydroxybenzoate (2-OHB, salicylate) on the mineralization rate of [14C]naphthalene, the population density of naphthalene-degrading bacteria, and the concentration of genes encoding for naphthalene dioxygenase in a soil bacterial community was investigated. Six different concentrations of 2-OHB (10, 20, 50, 100, 150 and 200 g g–1 soil) were tested in 100-g portions of soil. The addition of 10, 20 or 50 g 2-OHB g–1 soil produced a general increase in total soil bacterial population density, whereas the addition of 100 g or 200 g 2-OHB g–1 soil specifically increased the proportion of naphthalene degraders relative to the total population. The addition of 50 g 2-OHB g–1 soil produced a fourfold increase (the maximum observed) in the rate of naphthalene mineralization relative to the rate in unamended soil. The concentration of 2-OHB ( 100 g/g) added to soil correlated with the population density of naphthalene degraders (r=0.961). Addition of up to 200 g 2-OHB g–1 correlated with the abundance of DNA sequences homologous to known naphthalene dioxygenase genes (nahAB) (r=0.958). However, mineralization of [14C]naphthalene was stimulated significantly only by the addition of 50 g 2-OHB g–1 soil. Results of the mineralization experiments were supported by the detection of nahAB mRNA extracted directly from soil. The specificity of the effect of 2-OHB on naphthalene biodegradation was confirmed in a control experiment using equivalent concentrations of 4-OHB which repressed naphthalene mineralization by about 50%. Addition of ammonium nitrate to the soil also increased the rate of naphthalene mineralization. Ammonium nitrate added together with 2-OHB reduced the mineralization enhancement effect of either compound alone. The study confirmed that specific induction of biodegradative genes can enhance chemical pollutant removal in situ. Correspondence to: O. A. Ogunseitan  相似文献   

9.
Certain yeast cells on solid nutrient medium produced colonies surrounded by a light zone of selenite absorption. This screening procedure resulted in the selection of 22 strains out of 200 isolates with different Se4+-absorbing capacity ranging from 16 to 98.8 g Se4+ g–1 l–1 h–1. The highest rate of Se4+ elimination from the Na2SeO3 solution was observed with an oval shaped, cream pigmented fermentative yeast, tentatively called Candida sp. strain MS4. This strain was isolated from wastewater and found to accumulate selenium oxyanions. Se4+ uptake involved both inactive and active phenomena. The amounts of selenium (initial concentration 2 mg Se4+ l–1) removed from aqueous solution by inactive and active phenomena were 667 g Se4+ g–1 l–1, and 1580 g Se4+ g–1 l–1, respectively. The strain also removed selenate inactively (135 g Se6+ g–1 l–1).  相似文献   

10.
This study addresses the temporal distribution of forms of phosphorus in the soil of a temporarily flooded riparian forest of the valley of the river Garonne (Southwest of France). A sequential extraction for forms of phosphorus of increasing chemical stability was used. During the study period (13 months), the forest was flooded a few days during March and May. In winter, resin-Pi concentration was high (26 g g–1) in comparison to spring values (<9 g g–1). NaHCO3-Po, NaHCO3-Pi or NaOH-Pi concentrations increased during winter (up to 74, 124 and 78 g g–1 respectively) and decreased significantly during spring (32, 44 and 32 g g–1 respectively). This pattern was attributed to simultaneous mineralization and plant uptake during the growing season and to the flood events (erosional processes and P-release). During summer and fall, resin-Pi concentration increased significantly (up to 26 g g–1 in October). NaHCO3-Po concentrations remained low during spring and summer (<33 g g–1), and increased significantly in fall (>45 g g–1 NaHCO3-Pi or NaOH-Pi increased in late spring or summer (90 g g–1 and 68 g g–1 respectively). Increasing concentrations of the labile forms during late spring or summer were ascribed to the warm temperature and soil dryness that limited plant growth. HCl-Pi increased regularly after the floods (174 g g–1 before the flood events to 254 g g–1 after the floods). Residual P presented a similar pattern i.e. 214 g g–1 and 279 g g–1 respectively before and after the flood events. This pattern was attributed to a progressive incorporation of flood deposits to the soil.  相似文献   

11.
George  T.S.  Gregory  P.J.  Robinson  J.S.  Buresh  R.J.  Jama  B. 《Plant and Soil》2002,246(1):53-63
A field experiment in western Kenya assessed whether the agroforestry species Tithonia diversifolia (Hemsley) A. Gray, Tephrosia vogelii Hook f., Crotalaria grahamiana Wight & Arn. and Sesbania sesban (L) Merill. had access to forms of soil P unavailable to maize, and the consequences of this for sustainable management of biomass transfer. The species were grown in rows at high planting density to ensure the soil under rows was thoroughly permeated by roots. Soil samples taken from beneath rows were compared to controls, which included a bulk soil monolith enclosed by iron sheets within the tithonia plot, continuous maize, and bare fallow plots. Three separate plant biomass samples and soil samples were taken at 6-month intervals, over a period of 18 months. The agroforestry species produced mainly leaf biomass in the first 6 months but stem growth dominated thereafter. Consequently, litterfall was greatest early in the experiment (0–6 months) and declined with continued growth. Soil pH increased by up to 1 unit (from pH 4.85) and available P increased by up to 38% (1 g P g–1) in agroforestry plots where biomass was conserved on the field. In contrast, in plots where biomass was removed, P availability decreased by up to 15%. Coincident with the declines in litterfall, pH decreased by up to 0.26 pH units, plant available P decreased by between 0.27 and 0.72 g g–1 and Po concentration decreased by between 8 and 35 g g–1 in the agroforestry plots. Declines in Po were related to phosphatase activity (R2=0.65, P<0.05), which was greater under agroforestry species (0.40–0.50 nmol MUB s–1 g–1) than maize (0.28 nmol MUB s–1 g–1) or the bare fallow (0.25 nmol MUB s–1 g–1). Management of tithonia for biomass transfer, decreased available soil P by 0.70 g g–1 and Po by 22.82 g g–1. In this study, tithonia acquired Po that was unavailable to maize. However, it is apparent that continuous cutting and removal of biomass would lead to rapid depletion of P stored in organic forms.  相似文献   

12.
A glasshouse experiment was conducted to study the effect of Ni on the growth and nutrients concentration in wheat (Triticum aestivum Cv. WH 291) in the presence and absence of applied N as urea. Responses to N application were observed up to 120 g N g–1 soil. No response to Ni was observed in the dry matter yield of wheat tops (leaves + stem) in the absence of applied N while in the presence of applied N, significant yield increases were obtained at 12.5g Ni g–1 soil. Nickel was not toxic to wheat up to 50g Ni g–1 soil in the presence of 120g N g–1 soil. Nitrogen and Ni concentration in wheat tops and roots increased with increasing levels of applied N and Ni, respectively. Applied Ni had an antagonistic effect on N concentration. Similarly, N reduced the Ni concentration in the wheat tissues. Positive growth responses to Ni were associated with 22 and 15g Ni g–1 in wheat tops, in the presence of applied N at 60 and 120g N g–1 soil, while Ni toxicity was associated with 63, 92.5 and 112.5g Ni g–1 in wheat tops, in the absence and presence of applied N at 60 and 120g N g–1 soil, respectively.  相似文献   

13.
Pesticides and heavy metals in Danish streambed sediment   总被引:2,自引:0,他引:2  
Kronvang  B.  Laubel  A.  Larsen  S. E.  Friberg  N. 《Hydrobiologia》2003,494(1-3):93-101
The role of streambed sediment as a sink for pesticides and heavy metals was investigated in 30 Danish lowland streams. The investigated streams drain catchments varying in hydrology, topography, soil type and land use. The <250 m newly accumulated fraction of the uppermost 1–2 cm layer of streambed sediment was analysed for 19 old and modern pesticides and 9 heavy metals. DDE was present in the sediment of all the streams. Of the herbicides, fungicides and insecticides currently in use, the most frequently detected was diuron (50.0%), fenpropimorph (66.7%) and lambda-cyhalothrin (6.7%), respectively. The pesticides detected in the highest concentration were fenpropimorph (1700 ng g–1), propiconazole (130 ng g–1) and isoproturon (110 ng g–1). The heavy metals are listed in order of increasing median concentration: Cd (0.80 g g–1), Co (9.1 g g–1), As (12.0 g g–1), Ni (19.0 g g–1), Cr (19.2 g g–1), Pb (19.7 g g–1), Cu (20.1 g g–1), V (28.5 g g–1), Zn (103 g g–1). The average number of pesticides detected in the 27 streams draining predominantly agricultural catchments was (3.7±2.0) being higher (p=0.077) than in the three streams draining non-agricultural catchments (1.7±0.6). Pesticides were significantly related to catchment size, soil type and hydrological regime. Several heavy metals (Cr, Cu, Pb, V and Zn) were related to urban activity and soil type.  相似文献   

14.
The outer membrane protein, OmpC, from Escherichia coli was used to display metal-binding poly-histidine peptides on the surface of this bacterium. SDS-PAGE analysis of outer membrane protein preparations confirmed the expression of the metal-binding epitopes inserted in position 162 of the mature OmpC protein. Display of these epitopes was confirmed by epifluorescence microscopy of cells bound to Ni2+-NTA-agarose beads and metal adsorption experiments. The cells harboring one or two copies of the metal binding epitope were able to adsorb 3 to 6 times more Zn2+ (13.8 mol g–1 cell), Fe3+ (35.3 mol g–1 cell), and Ni2+ (9.9 mol g–1 cell) metallic ions than control cells expressing the wild-type OmpC.  相似文献   

15.
Thirteen yeast strains were isolated from deep-sea sediment samples collected at a depth of 4500 m to 6500 m in the Japan Trench. Amongst them, strain N6 possessed high tolerance against Cu2+ and could grow on yeast extract/peptone/dextrose/agar containing 50 mM CuSO4. Analysis of the 18S rDNA sequence indicates strain N6 belongs to the genus Cryptococcus. In contrast, the type strain of C. albidus, a typical marine yeast Rhodotorula ingeniosa and Saccharomyces cerevisiae did not grow at high concentrations of CuSO4. Superoxide dismutase (SOD) catalyzes the scavenging of superoxide radicals. The activity of SOD in cell extract of strain N6 was very weak (<1 mU g–1 total protein) when the strain was grown in the absence of CuSO4. However, the activity was stimulated (25.8 mU g–1 total protein) when cells were grown with 1 mM CuSO4 and further enhanced to 110 mU g–1 total protein with 10 mM CuSO4. Catalase activity was increased only 1.4 or 1.1-fold with 1 mM or 10 mM CuSO4 in the growth medium, respectively. These results suggest that SOD may have a role in the defensive mechanisms against high concentrations of CuSO4 in strain N6.  相似文献   

16.
George  T.S.  Gregory  P.J.  Robinson  J.S.  Buresh  R.J. 《Plant and Soil》2002,246(1):65-73
The aim of this work was to assess whether agroforestry species have the ability to acquire P from pools unavailable to maize. Tithonia diversifolia(Hemsley) A. Gray, Tephrosia vogelii Hook f., Zea mays and Lupinus albusL. were grown in rhizopots and pH change and depletion of inorganic and organic P pools measured in the rhizosphere. Plants were harvested at the same growth stage, after 56 days for maize and white lupin and 70 days for tithonia and tephrosia, and the rhizosphere sampled. The rhizosphere was acidified by tithonia (pH change –0.3 units to pH 4.8) and lupins (–0.2 units to 4.9), alkalinised by tephrosia (+0.4 units to pH 5.4), and remained unchanged with maize growth. Concurrent with acidification in the rhizosphere of tithonia there was a decline in resin-P (0.8 g P g–1). However, there was also a decline in NaOH extractable inorganic P (NaOH-Pi) (5.6 g P g–1 at the root surface) and organic P pools (NaOH-Po) (15.4 g P g–1 at 1.5 mm from the root), which would not be expected without specific P acquisition mechanisms. Alkalinisation of tephrosia rhizosphere was accompanied by changes in all measured pools, although the large depletion of organic P (21.6 g P g–1 at 5 mm from the root) suggests that mineralisation, as well as desorption of organic P, was stimulated. The size of changes of both pH and P pools varied with distance away from the rhizoplane. Decline of more recalcitrant P pools with the growth of the agroforestry species contrasted with the effect of maize growth, which was negligible on resin-P and NaOH-Pi, but led to an accumulation of P as NaOH-Po (14.2 g P g–1 at 5 mm from the root). Overall the depletion of recalcitrant P pools, particularly Po, suggests that the growth of tithonia and tephrosia enhance desorption and dissolution of P, while also enhancing organic P mineralisation. Both species appear to have potential for agroforestry technologies designed to enhance the availability of P to crops, at least in the short term.  相似文献   

17.
In potassium-limited chemostat cultures of Paracoccus denitrificans the maximum specific growth rate (µmax) was found to depend on the input potassium concentration: At 0.21mM µmax was 0.10–0.11 h-1; at 0.44 mM 0.15–0.16 h-1 and at 0.66 mM 0.20–0.21 h-1. The plots of the specific rates of oxygen-, succinate-and potassium consumption against gave straight lines. The intracellular potassium concentration was a linear function of and varied from 1% (0.13 M) at a value of 0.034 h-1 to 2.2% (0.29 M) at =0.26 h-1; the potassium concentration gradient and the potassium concentration in the culture fluid in the steady state were dependent on the input potassium concentration. The potassium concentration gradient varied from 8,900-1,200. At all values 20–25% of the total energy production was used for potassium transport. 350,100 and 30 ATP molecules were calculated to be required to maintain one potassium ion intracellular during 1 h at values of 0.034, 0.197 and 0.257 h-1 respectively. It is concluded that the amount of circulation of potassium is dependent on the potassium concentration gradient or on the potassium concentration in the culture in the steady state. The dependency of µmax on the input potassium concentration was explained by the assumption that at low input potassium concentrations the net uptake of potassium (influx-efflux) is not rapidly enough to maintain the high potassium gradient in the existing cells and to establish it in the newly formed cells. At high values and at high input potassium concentrations µmax is limited by the specific rate of oxygen consumption, which was found to be 11–12 mmol O2 g dry weight-1 h-1 at µmax for potassium-, succinate-and sulphate-limited chemostat cultures.  相似文献   

18.
A new extraction protocol has been developed to obtain high quality DNAfrom Laminaria japonica, which involves enzymatic dissociation ofsporophyte tissues and subsequent elimination of the remainingpolysaccharides with cetyltrimethyl ammonium bromide. Unicells isolatedfrom frozen kelp tissues with alginate lyase prepared from the abalone Haliotis diversicolor were used to extract total DNA; the yield wasapproximately 13 to 22.5 g DNA g-1 (wet sporophyteweight). The average size of genomic DNA was around 23 kb estimated byagarose gel electrophoresis, and the purity of total DNA determinedspectrophotometrically as the ratio of OD260/OD280 wasabout 1.7. The extracted kelp DNA (20–40 ng) could be usedsuccessfully as a template for polymerase chain reaction (PCR) under theoptimized conditions (100 M dNTP, 0.2 M primer, 1.0unit Taq DNA polymerase). The random amplified polymorphicDNA (RAPD) patterns were highly reproducible. These results suggest thatthe contamination by soluble polysaccharides which interferes with RAPDreproducibility was largely controlled. This RAPD-suited method for DNAextraction from kelp sporophytes using enzyme treatment providedsufficient material, and was inexpensive and convenient to carry out.  相似文献   

19.
The influence of copper (0–32 M) and iron (0–108 M) on growth and astaxanthin production by Phaffia rhodozyma was studied. Copper below 3.2 M increased the astaxanthin content of the cells (from 220 to 287 g g–1) but at the expense of a slightly decreased growth (from 11.3 to 10.2 mg ml–1). In contrast, iron below 1 M decreased both the growth and astaxanthin content of the cells. Using copper limitation instead of toxic respiratory inhibitors to improve astaxanthin production has obvious advantages from the product quality, environmental and process operation points of view.  相似文献   

20.
Compartmentation and flux characteristics of nitrate in spruce   总被引:8,自引:0,他引:8  
The radiotracer13N was used to undertake compartmental analyses for NO 3 in intact non-mycorrhizal roots ofPicea glauca (Moench) Voss. seedlings. Three compartments were defined, with half-lives of exchange of 2.5 s, 20 s, and 7 min. These were identified as representing surface adsorption, apparent free space, and cytoplasm, respectively. Influx, efflux, and net flux as well as cytoplasmic and apparent-free-space nitrate concentrations were estimated for three different concentration regimes of external nitrate. After exposure to external NO 3 for 3 d, influx was calculated to be 0.09 mol·g–1·h–1 (at 10 M [NO 3 ]o), 0.5mol·g–1·h–1 (at 100 M [NO inf3 sup– ]o), and 1.2 mol · g–1· h–1 (at 1.5 mM [NO 3 ]o). Efflux increased with increasing [NO 3 ]o, constituting 4% of influx at 10 M, 6% at 100 M, and 21% at 1.5 mM. Cytoplasmic [NO 3 ] was estimated to be 0.3 mM at 10 uM [NO 3 ]o, 2mM at 100 M [NO 3 ]o, and 4mM at 1.5 mM [NO 3 ]o, while free-space [NO 3 ] was 16 M, 173 M, and 2.2 mM, respectively. A series of experiments was carried out to confirm the identity of the compartments resolved by efflux analysis. Pretreatment at high temperature or application of 2-chloro-ethanol, sodium dodecyl sulphate or hydrogen peroxide made it possible to distinguish the metabolic (cytoplasmic) phase from the remaining two (physical) phases. Likewise, varying [Pi] of the medium altered efflux and thereby [NO 3 ]cyt, but did not affect [NO 3 ]free space.Abbreviations and Symbols [NO 3 ]cyt cytoplasmic NO 3 concentration - [NO 3 ]free space apparent-free-space NO 3 concentration - [NO 3 ]o concentration of NO 3 in the external solution - NO 3 flux - co efflux from the cytoplasm - oc influx to the cytoplasm - net net flux - xylem flux to the xylem - red/vac combined flux to reduction and the vacuole The research was supported by a Natural Sciences and Engineering Research Council, Canada, grant to Dr. A.D.M. Glass and by a University of British Columbia Graduate Fellowship to Herbert J. Kronzucker. Our thanks go to Dr. M. Adam and Mr. P. Culbert at the particle accelerator facility TRIUMF on the University of British Columbia Campus for providing13NO 3 , Drs. R.D. Guy and S. Silim for providing plant material, and Dr. M.Y. Wang, Mr. J. Mehroke and Mr. P. Poon for assistance in experiments and for helpful discussions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号