首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lignin content and enzymes involved in lignification were measured in leaf discs of reed canarygrass (Phalaris arundinacea L.) inoculated with Helminthosporium avenae and floated on water or solutions of cycloheximide (25 μg/ml). Fungal germ tubes did not penetrate localized lignified swellings, which formed beneath penetration sites, in the outer epidermal wall of discs floated on water. Within 18 hours, inoculated discs on water had higher lignin content and higher activity of the enzymes phenylalanine ammonia lyase, tyrosine ammonia lyase, hydroxycinnamate-CoA ligase and peroxidase than noninoculated discs on water. When inoculated tissues were floated on cycloheximide solutions, increases in lignin content and enzyme activities associated with lignin biosynthesis were inhibited, and the tissue was susceptible to fungal penetration. Lignin biosynthesis at the site of attempted fungal penetration may play an important role in the resistant response of reed canarygrass to leaf-infecting fungi.  相似文献   

2.
Methane yield from switchgrass and reed canarygrass grown in Eastern Canada   总被引:2,自引:0,他引:2  
Methane yields from silage made from switchgrass- and reed canarygrass-seeded plots with two N application rates and three harvest dates were assessed in Eastern Canada. The average specific methane yield from reed canarygrass-seeded plots (0.187 NL CH4 g VS(-1)) was less than from switchgrass-seeded plots (0.212 NL CH4 g VS(-1)). Switchgrass did not establish well and made up only a small proportion of the DM yield. As a consequence, the average methane yield per hectare from reed canarygrass-seeded plots (1.37 GL CH4 ha(-1)) was significantly greater than switchgrass-seeded plots (0.91 GL CH4 ha(-1)). Increased N fertilization reduced specific methane yields but increased methane yield per hectare, primarily because of increased DM yield. Delaying harvest resulted in decreased methane yields per hectare and specific methane yields, particularly for reed canarygrass. Further long-term research could help identify important factors influencing methane yields from crops during a complete stand life cycle.  相似文献   

3.
Hossain Z  McGarvey B  Amyot L  Gruber M  Jung J  Hannoufa A 《Planta》2012,235(3):485-498
Brassinosteroids (BRs) play a crucial role in plant growth and development and DIMINUTO 1 (DIM1), a protein involved in BR biosynthesis, was previously identified as a cell elongation factor in Arabidopsis thaliana. Through promoter expression analysis, we showed that DIM1 was expressed in most of the tissue types in seedlings and sectioning of the inflorescence stem revealed that DIM1 predominantly localizes to the xylem vessels and in the interfascicular cambium. To investigate the role of DIM1 in cell wall formation, we generated loss-of-function and gain-of-function mutants. Disruption of the gene function caused a dwarf phenotype with up to 38 and 23% reductions in total lignin and cellulose, respectively. Metabolite analysis revealed a significant reduction in the levels of fructose, glucose and sucrose in the loss-of-function mutant compared to the wild type control. The loss-of-function mutant also had a lower S/G lignin monomer ratio relative to wild type, but no changes were detected in the gain-of-function mutant. Phloroglucinol and toluidine blue staining showed a size reduction of the vascular apparatus with smaller and disintegrated xylem vessels in the inflorescence stem of the loss-of-function mutant. Taken together, these data indicate a role for DIM1 in secondary cell wall formation. Moreover, this study demonstrated the potential role of BR hormones in modulating cell wall structure and composition.  相似文献   

4.
5.

Background  

Recent discoveries highlighting the metabolic malleability of plant lignification indicate that lignin can be engineered to dramatically alter its composition and properties. Current plant biotechnology efforts are primarily aimed at manipulating the biosynthesis of normal monolignols, but in the future apoplastic targeting of phenolics from other metabolic pathways may provide new approaches for designing lignins that are less inhibitory toward the enzymatic hydrolysis of structural polysaccharides, both with and without biomass pretreatment. To identify promising new avenues for lignin bioengineering, we artificially lignified cell walls from maize cell suspensions with various combinations of normal monolignols (coniferyl and sinapyl alcohols) plus a variety of phenolic monolignol substitutes. Cell walls were then incubated in vitro with anaerobic rumen microflora to assess the potential impact of lignin modifications on the enzymatic degradability of fibrous crops used for ruminant livestock or biofuel production.  相似文献   

6.
7.
8.
Auxin-induced cell expansion in relation to cell wall extensibility   总被引:3,自引:0,他引:3  
Decapitation of 30 mm oat coleoptiles, which are commonly usedfor growth tests, resulted in a decrease in their elastic extensibility(DE) but not in their plastic extensibility (DP). By auxin treatmentunder osmotic stress, old coleoptile (45 mm) cells showed noincrease in subsequent expansion in water, whereas RNA synthesisin these cells was stimulated just as in young ones. Auxin increasedthe DE of young coleoptile cell walls but not that of old ones.Significant increase of DE occurred in only 10 min, and themaximum level of DE was reached in 15 min of the auxin treatment.An antiauxin (2,4,6-trichlorophenoxyacetic acid), mitomycinC and cycloheximide inhibited auxin-induced increases in expansionand DE (or Rex, reversible extensibility) of young coleoptilecells. (Received July 23, 1968; )  相似文献   

9.
The growth inhibition and the lysis of Saccharomyces cerevisiae caused by 2-deoxy-d-glucose (2-DG) were shown to be a consequence of unbalanced cellular growth and division. The lysis, but not the repression of growth and osmotic fragility of cells, could be suppressed by the addition of mannitol as an osmotic stabilizer. This result, as well as the morphological changes observed in the cells and changes in the chemical composition of the cell walls, showed that S. cerevisiae grown in the presence of 2-DG formed weakened cell walls responsible for the osmotic fragility. Evidence is presented for the first time demonstrating the incorporation of 2-DG into yeast cell wall material. Other data suggest that the inhibition of yeast growth by 2-DG results from an interference of phosphorylated metabolites of 2-DG with metabolic processes of glucose and mannose involved in the synthesis of structural cell wall polysaccharides.  相似文献   

10.
Summary Phanerochaete chrysosporium (ME-446) mineralized 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in high N medium and in malt extract medium in which lignin peroxidases (LIPs) and manganese peroxidases (MNPs) are not produced; furthermore,per mutant of ME-446, which lacks LIPs and MNPs, mineralized 2,4,5-T as well as the wild type. These results indicate that LIPs and MNPs are not required for 2,4,5-T degradation byP. chrysosporium.  相似文献   

11.
Abstract. The alkaloids of reed canarygrass respond to changes in soil moisture and nitrogen fertility. Gramine and hordenine levels increased under field conditions of moisture deprivation and this effect was enchanced when nitrogen fertilizer was applied. The level of 5-methoxy-N-methyltryptamine was affected mainly by the nitrogen amendment. Exceptional alkaloid levels in reed canarygrass are interpreted in relation to climatic and plant osmotic parameters. Improved TLC fluorescence scanning procedures are presented for quantifying reed canarygrass alkaloids.  相似文献   

12.
The high degree of structural complexity of plant cell wall polysaccharides has led to suggestions that some components might function as latent signal molecules that are released during pathogen infections and elicit defensive responses by the plant. However, there has been a paucity of genetic evidence supporting the idea that variation in cell wall composition plays a role in the outcome of host-pathogen interactions. Recently, several genetic studies have provided new lines of evidence implicating cell wall polysaccharides as factors in host-pathogen interactions.  相似文献   

13.
Abstract The effect of various incubation conditions and media composition on ligninolytic activity by selected strains of white-rot fungi was determined in solid media. When compared to conventional methods using liquid media or woody substrates, this method is fast, simple and also quantitative. Manganese-dependent peroxidase was easily detected in all strains studied. However, detection of lignin peroxidase required optimisation of both growth medium and enzyme assay conditions. Using this method, we showed that the role of nitrogen and oxygen in ligninolytic activity varies and that conditions must be optimised for each individual even within the same species. Furthermore, several white rot fungi produced manganesedependent peroxidase during the primary growth phase. Keywords: Manganese-dependent peroxidase; Lignin peroxidase; White rot fungus  相似文献   

14.
The correlation between hypocotyl elongation, cell wall loosening and changes in cell wall polysaccharides was studied using intact lettuce seedlings grown in the dark or in light together with gibberellic acid (GA) and/or 5-fluorodeoxyuridine (FUDR). The following results were obtained:
1) The production of pectic, hemicellulosic and cellulosic polysaccharides look place in parallel with hypocotyl elongation, which was substantially affected by different growth conditions.
2) The mole percentage sugar composition of pectic and hemicellulosic polysaccharides changed in response to dark, light, GA, or FUDR treatments.
3) The amounts of xylose and glucose in hemicellulosic polysaccharides and those of galactosc, rhumnose and uronic acid in pectic polysaccharides increased in parallel with hypocotyl elongation.
4) Statistical analysis of the quantitative relationship between sugars composing polysaccharides revealed that the uronic acid content changed in parallel with those of rhamnose and galactose in pectic polysaccharides, and the content of xylose varied in parallel with those of fucose and glucose.
5) The content of hemicellulosic polysaccharides was correlated with cell wall loosening represented by a decrease in the minimum stress-relaxation time. Changes in the stress-relaxation time value were correlated with those in the content of araltinose and galactose in hemicellulosic polysaccharides.
Based on these results, the relationship between hypocotyl elongation, changes in cell wall polysaccharides, and cell wall loosening is discussed with respect to the effect of GA and FUDR on hypocotyl elongation.  相似文献   

15.
Cellulose binding domains (CBD) in the carbohydrate binding module family 1 (CBM1) are structurally conserved regions generally linked to catalytic regions of cellulolytic enzymes. While widespread amongst saprophytic fungi that subsist on plant cell wall polysaccharides, they are absent amongst most plant pathogenic fungal cellulases. A genome wide survey for CBM1 was performed on the highly destructive plant pathogen Phytophthora infestans, a fungal-like Stramenopile, to determine if it harbored cellulolytic enzymes with CBM1. Only five genes were found to encode CBM1, and none were associated with catalytic domains. Surveys of other genomes indicated that the CBM1-containing proteins, lacking other domains, represent a unique group of proteins largely confined to the Stramenopiles. Immunolocalization of one of these proteins, CBD1, indicated that it is embedded in the hyphal cell wall. Proteins with CBM1 domains can have plant host elicitor activity, but tests with Agrobacterium-mediated in planta expression and synthetic peptide infiltration failed to identify plant hypersensitive elicitation with CBD1. A structural basis for differential elicitor activity is proposed.  相似文献   

16.
With the extensive spread of invasive species throughout North America and Europe there is an urgent need to better understand the morphological and physiological characteristics of successful invasive plants and the evolutionary mechanisms that allow introduced species to become invasive. Most ecological studies have focused on morphological differences and changes in community dynamics, and physiological studies have typically explored the differences between native and invasive species. In this study, 15 different genotypes of Phalaris arundinacea from both its native (European) and invasive (North American) range were grown in a common garden experiment to monitor the physiological differences between native and invasive genotypes. Here we present data that suggests high variability exists in the physiological traits among genotypes of P. arundinacea, yet genotypes from the native range are not necessarily physiologically inferior to the hybridized invasive genotypes. Previous work has shown that multiple introductions of P. arundinacea from various European locations to the United States resulted in numerous hybridization events, yielding more genetic variability and phenotypic plasticity in the invasive range. Of the genotypes studied, both morphological and physiological traits of genotypes with French origin were significantly different from the plants from the Czech Republic, North Carolina, and Vermont. The lack of clear differences between native and invasive genotypes indicates that physiological traits may be highly conserved in P. arundinacea and enhanced photosynthetic rates are not indicative of successful invasive genotypes. Instead, morphological traits and defensive secondary compound metabolism may play a more important role in the success of P. arundinacea within its invasive range, and patterns of genetic variation in physiological traits between invasive and native range may be more important than the mean traits of each region when explaining reed canarygrass’ invasive potential in North America.  相似文献   

17.
Rubbing young internodes ofBryonia dioica results in a reduced elongation and an increased diameter of the internodes. In the present study activities of some enzymes involved in the lignification process and levels of lignification were compared in rubbed and non-rubbed internodes. Rubbing caused an increase in the activities of phenylalanine ammonia-lyase and soluble and ionically- and covalently-bound cell wall peroxidases. Sensitivity of the covalently-bound wall peroxidase assay was markedly increased if syringaldazine was used as a substrate. Mechanical perturbation induced an increase in lignin, lignin monomer (sinapylic, coniferylic and p-coumarylic alcohols) content and the number of lignifying vessels. Conversely, rubbing resulted in a decrease in cellulose content. The hypothetical interpretation of the thigmomorphogenetic response through cell wall lignification and hence rigidification is consistent with all the presented results. A comparison is possible between this accelerated lignification and induced lignification as a mechanism of disease resistance. the thigmomorphogenetic response inBryonia dioica can be considered as a mechanism of resistance in order to withstand further environmental mechanical perturbation.Research partly supported by the Belgian FRFC grant 2.9009 to T.G. and by the French CNRS (LA 45, RCP 474).  相似文献   

18.
研究了小麦根系对铝毒的反应与不同根段细胞壁的组分及细胞壁对铝的吸附解吸性能的关系。结果表明,30μmol/LAlCl3可迅速抑制根系伸长,在铝处理30h时其根长仅为对照的30.2%;小麦根系相对伸长率随着铝浓度的提高而急剧降低,30μmol/LAlCl3处理24h对根系伸长的抑制率高达70.9%。小麦根系中距根尖0~10mm根段的铝含量和细胞壁中果胶糖醛酸含量明显高于距根尖10~20mm根段;距根尖0~10mm根段细胞壁对铝的吸附量明显大于距根尖10~20mm根段,而前者吸附态铝的解吸率低于后者;铝浓度从10μmol/L提高到20μmol/L时细胞壁对铝的吸附量增加,但对铝的解吸没有明显影响。采用1.0mol/LNH3·H2O对细胞壁预处理2h降低果胶甲基酯化程度后,铝吸附量降低了20.9%,但对铝解吸率没有影响。由此可见,小麦根尖是铝毒的主要位点,细胞壁果胶含量和果胶甲基酯化程度对小麦不同根段细胞壁对铝的吸附、积累具有重要作用,铝与细胞壁的结合是根系对铝毒胁迫反应的重要原因。  相似文献   

19.
The role of lignin peroxidases (LIPs) and manganese peroxidases (MNPs) of Phanerochaete chrysosporium in decolorizing kraft bleach plant effluent (BPE) was investigated. Negligible BPE decolorization was exhibited by a per mutant, which lacks the ability to produce both the LIPs and the MNPs. Also, little decolorization was seen when the wild type was grown in high-nitrogen medium, in which the production of LIPs and MNPs is blocked. A lip mutant of P. chrysosporium, which produces MNPs but not LIPs, showed about 80% of the activity exhibited by the wild type, indicating that the MNPs play an important role in BPE decolorization. When P. chrysosporium was grown in a medium with 100 ppm of Mn(II), high levels of MNPs but no LIPs were produced, and this culture also exhibited high rates of BPE decolorization, lending further support to the idea that MNPs play a key role in BPE decolorization. When P. chrysosporium was grown in a medium with no Mn(II), high levels of LIPs but negligible levels of MNPs were produced and the rate and extent of BPE decolorization by such cultures were quite low, indicating that LIPs play a relatively minor role in BPE decolorization. Furthermore, high rates of BPE decolorization were seen on days 3 and 4 of incubation, when the cultures exhibit high levels of MNP activity but little or no LIP activity. These results indicate that MNPs play a relatively more important role than LIPs in BPE decolorization by P. chrysosporium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号