首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
HLA and disease: predictions for HLA haplotype sharing in families.   总被引:8,自引:3,他引:5       下载免费PDF全文
An analysis of published data on the segregation of HLA haplotypes in families with more than one individual affected with insulin-dependent diabetes mellitus or multiple sclerosis yields three conclusions: (1) In families with unaffected parents, affected sib pairs are much more often HLA haplotype identical in sibships with two affected sibs than in sibships with three or four affected sibs (P less than .01). (2) In families with unaffected parents and HLA half-identical affected sibs, well siblings more often receive the single haplotype not found in the affected sibs than is expected by chance (P less than .05). (3) In families with one affected parent, well siblings of affected individuals may share with the affected child a haplotype from the unaffected parent less than 50% of the time (P less than .10). These results are consistent with the premise that in some non-Mendelian, familial, HLA-associated disease more than one gene may contribute to susceptibility to the disorder.  相似文献   

2.
Use of microsatellite loci to classify individuals by relatedness   总被引:19,自引:1,他引:18  
This study investigates the use of microsatellite loci for estimating relatedness between individuals in wild, outbred, vertebrate populations. We measured allele frequencies at 20 unlinked, dinucleotide-repeat microsatellite loci in a population of wild mice ( Mus musculus ), and used these observed frequencies to generate the expected distributions of pairwise relatedness among full sib, half sib, and unrelated pairs of individuals, as would be estimated from the microsatellite data. In this population one should be able to discriminate between unrelated and full-sib dyads with at least 97% accuracy, and to discriminate half-sib pairs from unrelated pairs or from full-sib pairs with better than 80% accuracy. If one uses the criterion that parent-offspring pairs must share at least one allele per locus, then only 15% of full-sib pairs, 2% of half-sib pairs, and 0% of unrelated pairs in this population would qualify as potential parent-offspring pairs. We verified that the simulation results (which assume a random mating population in Hardy-Weinberg and linkage equilibrium) accurately predict results one would obtain from this population in real life by scoring laboratory-bred full- and half-sib families whose parents were wild-caught mice from the study population. We also investigated the effects of using different numbers of loci, or loci of different average heterozygosities ( He ), on misclassification frequencies. Both variables have strong effects on misclassification rate. For example, it requires almost twice as many loci of He = 0.62 to achieve the same accuracy as a given number of loci of He = 0.75. Finally, we tested the ability of UPGMA clustering to identify family groups in our population. Clustering of allele matching scores among the offspring of four sets of independent maternal half sibships (four females, each mated to two different males) perfectly recovered the true family relationships.  相似文献   

3.
A new method for haplotype inference including full-sib information   总被引:1,自引:0,他引:1       下载免费PDF全文
Ding XD  Simianer H  Zhang Q 《Genetics》2007,177(3):1929-1940
Recent literature has suggested that haplotype inference through close relatives, especially from nuclear families, can be an alternative strategy in determining linkage phase and estimating haplotype frequencies. In the case of no possibility to obtain genotypes for parents, and only full-sib information being used, a new approach is suggested to infer phase and to reconstruct haplotypes. We present a maximum-likelihood method via an expectation-maximization algorithm, called FSHAP, using only full-sib information when parent information is not available. FSHAP can deal with families with an arbitrary number of children, and missing parents or missing genotypes can be handled as well. In a simulation study we compare FSHAP with another existing expectation-maximization (EM)-based approach (FAMHAP), the conditioning approach implemented in FBAT and GENEHUNTER, which is only pedigree based and assumes linkage equilibrium. In most situations, FSHAP has the smallest discrepancy of haplotype frequency estimation and the lowest error rate in haplotype reconstruction, only in some cases FAMHAP yields comparable results. GENEHUNTER produces the largest discrepancy, and FBAT produces the highest error rate in offspring in most situations. Among the methods compared, FSHAP has the highest accuracy in reconstructing the diplotypes of the unavailable parents. Potential limitations of the method, e.g., in analyzing very large haplotypes, are indicated and possible solutions are discussed.  相似文献   

4.
HLA and mate choice in humans.   总被引:13,自引:1,他引:12  
Evidence from studies in rodents suggests that mate selection is influenced by major-histocompatibility-complex haplotypes, with preferences for dissimilar partners. This study was initiated to determine whether avoidance of a mate with the same HLA haplotype as one's own might be occurring in the Hutterites, a North American reproductive isolate of European ancestry, notable for their large sibships, communal lifestyle, and limited number of five-locus HLA haplotypes (HLA-A, -B, -C, -DR, and -DQ). HLA haplotypes were known for 411 Hutterite couples. The number of couples expected to match for a haplotype was calculated in two ways: first, from population genotype frequencies, with account being taken of the nonrandom mating pattern with respect to colony lineages, and, second, from computer simulations using conservative founder assumptions and the exact genealogy of the 411 couples. We observed fewer matches for HLA haplotypes between spouses than expected (first method, P = .005; second method, P = .020-.067). Among couples who did match for a haplotype, the matched haplotype was inherited from the mother in 29 cases and from the father in 50 cases (P = .018). These results are consistent with the conclusion that Hutterite mate choice is influenced by HLA haplotypes, with an avoidance of spouses with haplotypes that are the same as one's own.  相似文献   

5.
Human-disease etiology can be better understood with phase information about diploid sequences. We present a method for estimating haplotypes, using genotype data from unrelated samples or small nuclear families, that leads to improved accuracy and speed compared to several widely used methods. The method, segmented haplotype estimation and imputation tool (SHAPEIT), scales linearly with the number of haplotypes used in each iteration and can be run efficiently on whole chromosomes.  相似文献   

6.
MOTIVATION: The search for genetic variants that are linked to complex diseases such as cancer, Parkinson's;, or Alzheimer's; disease, may lead to better treatments. Since haplotypes can serve as proxies for hidden variants, one method of finding the linked variants is to look for case-control associations between the haplotypes and disease. Finding these associations requires a high-quality estimation of the haplotype frequencies in the population. To this end, we present, HaploPool, a method of estimating haplotype frequencies from blocks of consecutive SNPs. RESULTS: HaploPool leverages the efficiency of DNA pools and estimates the population haplotype frequencies from pools of disjoint sets, each containing two or three unrelated individuals. We study the trade-off between pooling efficiency and accuracy of haplotype frequency estimates. For a fixed genotyping budget, HaploPool performs favorably on pools of two individuals as compared with a state-of-the-art non-pooled phasing method, PHASE. Of independent interest, HaploPool can be used to phase non-pooled genotype data with an accuracy approaching that of PHASE. We compared our algorithm to three programs that estimate haplotype frequencies from pooled data. HaploPool is an order of magnitude more efficient (at least six times faster), and considerably more accurate than previous methods. In contrast to previous methods, HaploPool performs well with missing data, genotyping errors and long haplotype blocks (of between 5 and 25 SNPs).  相似文献   

7.
In genetic studies the haplotype structure of the regarded population is expected to carry important information. Experimental methods to derive haplotypes, however, are expensive and none of them has yet become standard methodology. On the other hand, maximum likelihood haplotype estimation from unphased individual genotypes may incur inaccuracies. We therefore investigated the relative efficiency of haplotype frequency estimation when nuclear family information is included compared to estimation from experimentally derived haplotypes. Efficiency was measured in terms of variance ratios of the estimates. The variances were derived from the binomial distribution for experimentally derived haplotypes, and from the Fisher information matrix corresponding to the general likelihood function of the haplotype frequency parameters, including family information. We subsequently compared these variance ratios to the variance ratios for the case of estimation from individual genotypes. We found that the information gained from a single child compensates missing phase information to a high degree, resulting in estimates almost as reliable as those derived from observed haplotypes. Thus, if children have already been genotyped for other reasons, it is highly recommendable to include them into the estimation. If child information is not already present, it depends on the number of loci and the haplotype diversity if it is useful to genotype a single child just to reduce phase ambiguity. In general, if the number of loci is less than or equal to three or if the number of haplotypes with a frequency >5% is less than or equal to four, haplotype estimation from individuals is quite good already and the improvement gained from a single child can not compensate the genotyping effort for it. On the other hand, under scenarios with many loci and high haplotype diversity, haplotype frequency estimation from trios can be more efficient than haplotype frequency estimation from individuals also on a per genotype base.  相似文献   

8.
MOTIVATION: Haplotype reconstruction is an essential step in genetic linkage and association studies. Although many methods have been developed to estimate haplotype frequencies and reconstruct haplotypes for a sample of unrelated individuals, haplotype reconstruction in large pedigrees with a large number of genetic markers remains a challenging problem. METHODS: We have developed an efficient computer program, HAPLORE (HAPLOtype REconstruction), to identify all haplotype sets that are compatible with the observed genotypes in a pedigree for tightly linked genetic markers. HAPLORE consists of three steps that can serve different needs in applications. In the first step, a set of logic rules is used to reduce the number of compatible haplotypes of each individual in the pedigree as much as possible. After this step, the haplotypes of all individuals in the pedigree can be completely or partially determined. These logic rules are applicable to completely linked markers and they can be used to impute missing data and check genotyping errors. In the second step, a haplotype-elimination algorithm similar to the genotype-elimination algorithms used in linkage analysis is applied to delete incompatible haplotypes derived from the first step. All superfluous haplotypes of the pedigree members will be excluded after this step. In the third step, the expectation-maximization (EM) algorithm combined with the partition and ligation technique is used to estimate haplotype frequencies based on the inferred haplotype configurations through the first two steps. Only compatible haplotype configurations with haplotypes having frequencies greater than a threshold are retained. RESULTS: We test the effectiveness and the efficiency of HAPLORE using both simulated and real datasets. Our results show that, the rule-based algorithm is very efficient for completely genotyped pedigree. In this case, almost all of the families have one unique haplotype configuration. In the presence of missing data, the number of compatible haplotypes can be substantially reduced by HAPLORE, and the program will provide all possible haplotype configurations of a pedigree under different circumstances, if such multiple configurations exist. These inferred haplotype configurations, as well as the haplotype frequencies estimated by the EM algorithm, can be used in genetic linkage and association studies. AVAILABILITY: The program can be downloaded from http://bioinformatics.med.yale.edu.  相似文献   

9.
A S Sergeev 《Genetika》1991,27(11):2020-2033
One of the implicit assumptions of the single locus model, having been used so far in the analysis of linkage between the genetic marker locus and the disease predisposition locus, is the requirement of independent--from the rest of genotype--action of genotypes of the disease predisposition locus considered. In this communication, it is emphasized that the lack of this requirement makes problematical the theoretical substantiation of the affected sib-pair method in the linkage analysis. To remove this obstacle, explicit pointing out of independence of the action of the single locus genotypes on the rest of the genotype is necessary in formulating of the single locus model which, with due regard for this assumption, represents a special, perhaps, unique case of the gene action characterized by incomplete differential penetrances of the genotypes under conditions, when the genes of the rest of genotype involved to the disease, are fixed. In this connection, the mixed model of inheritance with the "major gene", proposed by Morton and MacLean (1974), is considered, on the basis of which the theoretical expectations of the proportions of the affected sib pairs, sharing the x = 2, 1, 0 haplotypes, identical by descent (IBD) in phenotypic matings with the h = 2, 1, 0 affected parents are derived. Based on the combinatorial analysis of IBD relationships in sib pairs and of the distribution of sibships of any size s greater than or equal to 2 by the numbers L = 2, 3, 4 haplotypes, inherited by s siblings, the empirical assessment of data on sibships of any size with r greater than or equal to 2 affected siblings is considered, which makes it possible to reduce the data observed on distribution of the numbers L in sibships, to that of the IBD relationships in the affected sib pairs. It is also pointed out that conditional probability approach, proposed by the author earlier, allows at the same time to obtain the empirical estimates of the recurrence risks, conditional both on phenotypes of siblings (r affected; s-r normal siblings), and on the number of L haplotypes inherited by sibships.  相似文献   

10.
Alcaïs A  Abel L 《Human heredity》2000,50(4):251-256
Sib pair linkage studies are now widely used to investigate the genetic factors implicated in complex quantitative traits. To increase the power of these approaches, it has been proposed to select extremely discordant (ED) sib pairs which are expected to contain the highest linkage information. However, it is known that sibships of larger size contain more linkage information than independent sib pairs. In this paper we compare, in terms of power and cost considerations, the ED strategy, which uses information on sib pairs only, to the recently developed 'Maximum Likelihood Binomial' sibship-oriented method performed on the whole sibships from which the ED sib pairs have been extracted. We show that the use of these whole sibships is an efficient alternative to approaches focusing on ED sib pairs only.  相似文献   

11.
The sibship disequilibrium test (SDT) is designed to detect both linkage in the presence of association and association in the presence of linkage (linkage disequilibrium). The test does not require parental data but requires discordant sibships with at least one affected and one unaffected sibling. The SDT has many desirable properties: it uses all the siblings in the sibship; it remains valid if there are misclassifications of the affectation status; it does not detect spurious associations due to population stratification; asymptotically it has a chi2 distribution under the null hypothesis; and exact P values can be easily computed for a biallelic marker. We show how to extend the SDT to markers with multiple alleles and how to combine families with parents and data from discordant sibships. We discuss the power of the test by presenting sample-size calculations involving a complex disease model, and we present formulas for the asymptotic relative efficiency (which is approximately the ratio of sample sizes) between SDT and the transmission/disequilibrium test (TDT) for special family structures. For sib pairs, we compare the SDT to a test proposed both by Curtis and, independently, by Spielman and Ewens. We show that, for discordant sib pairs, the SDT has good power for testing linkage disequilibrium relative both to Curtis''s tests and to the TDT using trios comprising an affected sib and its parents. With additional sibs, we show that the SDT can be more powerful than the TDT for testing linkage disequilibrium, especially for disease prevalence >.3.  相似文献   

12.
Effectiveness of computational methods in haplotype prediction   总被引:11,自引:0,他引:11  
Haplotype analysis has been used for narrowing down the location of disease-susceptibility genes and for investigating many population processes. Computational algorithms have been developed to estimate haplotype frequencies and to predict haplotype phases from genotype data for unrelated individuals. However, the accuracy of such computational methods needs to be evaluated before their applications can be advocated. We have experimentally determined the haplotypes at two loci, the N-acetyltransferase 2 gene ( NAT2, 850 bp, n=81) and a 140-kb region on chromosome X ( n=77), each consisting of five single nucleotide polymorphisms (SNPs). We empirically evaluated and compared the accuracy of the subtraction method, the expectation-maximization (EM) method, and the PHASE method in haplotype frequency estimation and in haplotype phase prediction. Where there was near complete linkage disequilibrium (LD) between SNPs (the NAT2 gene), all three methods provided effective and accurate estimates for haplotype frequencies and individual haplotype phases. For a genomic region in which marked LD was not maintained (the chromosome X locus), the computational methods were adequate in estimating overall haplotype frequencies. However, none of the methods was accurate in predicting individual haplotype phases. The EM and the PHASE methods provided better estimates for overall haplotype frequencies than the subtraction method for both genomic regions.  相似文献   

13.
Single nucleotide polymorphisms (SNPs) are widely used when investigators try to map complex disease genes. Although biallelic SNP markers are less informative than microsatellite markers, one can increase their information content by using haplotypes. However, assigning haplotypes (i.e., assigning phase) correctly can be problematic in the presence of SNP heterozygosity. For example, a doubly heterozygous individual, with genotype 12, 12, could have haplotypes 1-1/2-2 or 1-2/2-1 with equal probability; in the absence of additional information, there is no way to determine which haplotype is correct. Thus an algorithm that assigns haplotypes to such an individual will assign the wrong one 50% of the time. We have studied the frequency of haplotype misassignments, i.e., haplotypes that are misassigned solely because of inherent marker ambiguity (not because of errors in genotyping or calculation). We examined both SNPs and microsatellite markers. We used the computer programs GENEHUNTER and SIMWALK to assign the haplotypes. We simulated (a) families with 1-5 children, (b) haplotypes involving different numbers of marker loci (3, 5, 7 and 10 loci, all in linkage equilibrium), and (c) different allele frequencies. Misassignment rates are highest (a) in small families, (b) with many SNP loci, and (c) for loci with the greatest heterozygosity (i.e., where both alleles have frequency 0.5). For example, for triads (i.e., one-child families with both parents genotyped), misassignment rates for SNPs can reach almost 50%. Family sizes of 4-5 children are required in order to ensure a misassignment frequency of < or = 5% for ten-SNP haplotypes with allele frequencies of 0.25-0.5. For microsatellites, a family size of at least 2-3 children is necessary to keep haplotyping misassignments < or = 5%. Finally, we point out that it is misleading for a computer program to yield haplotype assignments without indicating that they may have been misassigned, and we discuss the implications of these misassignments for association and linkage analysis.  相似文献   

14.
Haplotype analysis has become increasingly important for the study of human disease as well as for reconstruction of human population histories. Computer programs have been developed to estimate haplotype frequencies statistically from marker phenotypes in unrelated individuals. However, there currently are few empirical reports on the accuracy of statistical estimates that must infer linkage phase. We have analyzed haplotypes at the CD4 locus on chromosome 12 that consist of a short tandem-repeat polymorphism and an Alu insertion/deletion polymorphism located 9.8 kb apart, in 398 individuals from 10 geographically diverse sub-Saharan African populations. Haplotype frequency estimates obtained using gene counting based on molecularly haplotyped (phase-known) data were compared with haplotype frequency estimates obtained using the expectation-maximization algorithm. We show that the estimated frequencies of common haplotypes do not differ significantly with the use of phase-known versus phase-unknown data. However, rare haplotypes are occasionally miscalled when their presence/absence must be inferred. Thus, for those research questions for which the common haplotypes are most important, frequency estimates based on the phase-unknown marker-typing results from unrelated individuals will be sufficient. However, in cases where knowledge of rare haplotypes is critical, molecular haplotyping will be necessary to determine linkage phase unambiguously.  相似文献   

15.
We compared the accuracy of haplotype inferences at a 6 Mb region on chromosome 7 where significant linkage between a brain oscillation phenotype and a cholinergic muscarinic receptor gene was previously reported. Individual haplotype assignments and haplotype frequencies were estimated using 5, 10, and 14 consecutive Illumina single-nucleotide polymorphisms (SNPs) within the 1-LOD unit support interval of the chromosome 7 linkage peak. Initially, haplotypes were constructed incorporating phase information provided by relatives using the pedigree analysis package MERLIN. Population-based haplotypes were inferred using the haplotype estimation software HAPLO.STATS and PHASE, using unrelated individuals. The 14 SNPs within this region exhibited markedly low linkage disequilibrium, and the average D' estimate between SNPs was 0.18 (range: 0.01-0.97). In comparison to the family-based haplotypes calculated in MERLIN, the computational inferences of individual haplotype assignments were most accurate when considering 5 consecutive SNPs, but decayed dramatically when considering 10 or 14 SNPs in both PHASE and HAPLO.STATS. When comparing the two haplotype inference methods, both PHASE and HAPLO.STATS performed poorly. These analyses underscore the difficulties of haplotype estimation in the presence of low linkage disequilibrium and stress the importance of careful consideration of confidence measures when using estimated haplotype frequencies and individual assignments in biomedical research.  相似文献   

16.
Association-based linkage disequilibrium (LD) mapping is an increasingly important tool for localizing genes that show potential influence on human aging and longevity. As haplotypes contain more LD information than single markers, a haplotype-based LD approach can have increased power in detecting associations as well as increased robustness in statistical testing. In this paper, we develop a new statistical model to estimate haplotype relative risks (HRRs) on human survival using unphased multilocus genotype data from unrelated individuals in cross-sectional studies. Based on the proportional hazard assumption, the model can estimate haplotype risk and frequency parameters, incorporate observed covariates, assess interactions between haplotypes and the covariates, and investigate the modes of gene function. By introducing population survival information available from population statistics, we are able to develop a procedure that carries out the parameter estimation using a nonparametric baseline hazard function and estimates sex-specific HRRs to infer gene-sex interaction. We also evaluate the haplotype effects on human survival while taking into account individual heterogeneity in the unobserved genetic and nongenetic factors or frailty by introducing the gamma-distributed frailty into the survival function. After model validation by computer simulation, we apply our method to an empirical data set to measure haplotype effects on human survival and to estimate haplotype frequencies at birth and over the observed ages. Results from both simulation and model application indicate that our survival analysis model is an efficient method for inferring haplotype effects on human survival in population-based association studies.  相似文献   

17.
Statistical estimation and pedigree analysis of CCR2-CCR5 haplotypes   总被引:4,自引:0,他引:4  
As more SNP marker data becomes available, researchers have used haplotypes of markers, rather than individual polymorphisms, for association analysis of candidate genes. In order to perform haplotype analysis in a population-based case-control study, haplotypes must be determined by estimation in the absence of family information or laboratory methods for establishing phase. Here, we test the accuracy of the Expectation-Maximization (EM) algorithm for estimating haplotype state and frequency in the CCR2-CCR5 gene region by comparison with haplotype state and frequency determined by pedigree analysis. To do this, we have characterized haplotypes comprising alleles at seven biallelic loci in the CCR2-CCR5 chemokine receptor gene region, a span of 20 kb on chromosome 3p21. Three-generation CEPH families (n=40), totaling 489 individuals, were genotyped by the 5'nuclease assay (TaqMan). Haplotype states and frequencies were compared in 103 grandparents who were assumed to have mated at random. Both pedigree analysis and the EM algorithm yielded the same small number of haplotypes for which linkage disequilibrium was nearly maximal. The haplotype frequencies generated by the two methods were nearly identical. These results suggest that the EM algorithm estimation of haplotype states, frequency, and linkage disequilibrium analysis will be an effective strategy in the CCR2-CCR5 gene region. For genetic epidemiology studies, CCR2-CCR5 allele and haplotype frequencies were determined in African-American (n=30), Hispanic (n=24) and European-American (n=34) populations.  相似文献   

18.
The maximum-likelihood-binomial (MLB) method, based on the binomial distribution of parental marker alleles among affected offspring, recently was shown to provide promising results by two-point linkage analysis of affected-sibship data. In this article, we extend the MLB method to multipoint linkage analysis, using the general framework of hidden Markov models. Furthermore, we perform a large simulation study to investigate the robustness and power of the MLB method, compared with those of the maximum-likelihood-score (MLS) method as implemented in MAPMAKER/SIBS, in the multipoint analysis of different affected-sibship samples. Analyses of multiple-affected sibships by means of the MLS were conducted by consideration of all possible sib pairs, with (weighted MLS [MLSw]) or without (unweighted MLS [MLSu]) application of a classic weighting procedure. In simulations under the null hypothesis, the MLB provided very consistent type I errors regardless of the type of family sample (sib pairs or multiple-affected sibships), as did the MLS for samples with sib pairs only. When samples included multiple-affected sibships, the MLSu led to inflation of low type I errors, whereas the MLSw yielded very conservative tests. Power comparisons showed that the MLB generally was more powerful than the MLS, except in recessive models with allele frequencies <.3. Missing parental marker data did not strongly influence type I error and power results in these multipoint analyses. The MLB approach, which in a natural way accounts for multiple-affected sibships and which provides a simple likelihood-ratio test for linkage, is an interesting alternative for multipoint analysis of sibships.  相似文献   

19.
Haplotype analyses have become increasingly common in genetic studies of human disease because of their ability to identify unique chromosomal segments likely to harbor disease-predisposing genes. The study of haplotypes is also used to investigate many population processes, such as migration and immigration rates, linkage-disequilibrium strength, and the relatedness of populations. Unfortunately, many haplotype-analysis methods require phase information that can be difficult to obtain from samples of nonhaploid species. There are, however, strategies for estimating haplotype frequencies from unphased diploid genotype data collected on a sample of individuals that make use of the expectation-maximization (EM) algorithm to overcome the missing phase information. The accuracy of such strategies, compared with other phase-determination methods, must be assessed before their use can be advocated. In this study, we consider and explore sources of error between EM-derived haplotype frequency estimates and their population parameters, noting that much of this error is due to sampling error, which is inherent in all studies, even when phase can be determined. In light of this, we focus on the additional error between haplotype frequencies within a sample data set and EM-derived haplotype frequency estimates incurred by the estimation procedure. We assess the accuracy of haplotype frequency estimation as a function of a number of factors, including sample size, number of loci studied, allele frequencies, and locus-specific allelic departures from Hardy-Weinberg and linkage equilibrium. We point out the relative impacts of sampling error and estimation error, calling attention to the pronounced accuracy of EM estimates once sampling error has been accounted for. We also suggest that many factors that may influence accuracy can be assessed empirically within a data set-a fact that can be used to create "diagnostics" that a user can turn to for assessing potential inaccuracies in estimation.  相似文献   

20.
Little was known about the sequence variability of the human Arrestin domain-containing 4 gene (ARRDC4). We sequenced its DNA from exon 2 to exon 8 in a sample of 92 Russians. Seven variants were identified; one of them has not been described yet. It causes an amino acid change from Thr to Met. Identified variants were genotyped in the complete sample of 253 unrelated men and women to analyze haplotype distribution. Fifteen haplotypes were inferred. Nine haplotypes had estimated frequencies > 1%. Ninety-five percent of all haplotypes were determined by five haplotype-tagging single nucleotide polymorphisms. Haplotypes form two clades. The two most common haplotypes cover 76% of all haplotypes. The certainty of the haplotype reconstruction does not depend on the haplotype-inferring algorithms, but is a result of the anomalous haplotype distribution of ARRDC4, which makes this gene a suitable candidate gene for haplotype association studies. Interestingly, there is a great evolutionary distance between the two most common haplotypes, which could suggest a more complicated coalescent process with either past gene flow, selections, or bottlenecks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号