首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In a clonal strain of rat pituitary tumour cells (GH4C1 cells), thyroliberin stimulated prolactin secretion and synthesis: effects that could be demonstrated after 5 min and 4–5 h of treatment, respectively. Within 0.5–5 min after addition of thyroliberin, maximal increases (2–4 hold) in cellular cyclic GMP concentrations were observed, and this rise preceded or occurred simultaneously with that of cyclic AMP. After 60 min of treatment the concentrations of the cyclic nucleotides had returned to control values. Half maximal and maximal stimulation of cyclic GMP elevations were obtained with approx. 2·109 and approx. 27·10?9 thyroliberin, respectively. Aminophylline increased both cyclic GMP and cyclic AMP, and potentiated the stimulatory effects of thyroliberin on both cyclic nucleotides. The dibutyryl derivative of cyclic GMP (10?4–10?6 M) stimulated prolactin synthesis, but not hormone release. Prostaglandin E2 (3·10?7 M) stimulated cellular cyclic AMP concentrations, but did not affect cyclic GMP levels. We conclude that thyroliberin in the GH4C1 ccell strain stimulates cyclic GMP formation, in addition to elevate cyclic AMP concentrations. The stimulatory effect on cyclic GMP is probably not secondary to the rise in cyclic AMP concentration, since prostaglandin E2 elevates only cyclic GMP is involved in the action of thyroliberin on prolactin, the present results suggest a role on hormone synthesis.  相似文献   

2.
1. The effects of thyroliberin were studied in cultured rat pituitary-tumour cells that synthesize and secrete prolactin (the GH4C1 cell strain). 2. Prolactin and cyclic AMP were measured by radioimmunological methods, and a cyclic AMP-dependent protein kinase was characterized by using histone as substrate. 3. Prolactin release was studied after 5-60min of treatment, and synthesis after 48h of treatment with thyroliberin. One-half maximum stimulation of release and synthesis were observed at 0.25 and at 4nM respectively. 4. Cyclic AMP was temporarily increased in cell suspensions after treatment with thyroliberin, and one-half maximum stimulation was observed at 25nM. 5. Dibutyryl cyclic AMP increased prolactin release and synthesis, one-half maximum effects being obtained at 20 micronM. 6. A cyclic AMP-dependent protein kinase, which was one-half maximally stimulated at 30 nM-cyclic AMP, was demonstrated. 7. An increase in the activity ratio (-cyclic AMP/+cyclic AMP) of the cyclic AMP-dependent protein kinase was observed after treatment with thyroliberin. Total protein kinase activity in the presence of cyclic AMP was unaltered. The time-course of enzyme activation was similar to that of cyclic AMP formation and corresponded to the time when prolactin release was first observed. 8. It is concluded that thyroliberin induces cyclic AMP formation, resulting in the activation of a cyclic AMP-dependent protein kinase.  相似文献   

3.
The effects of prostaglandin (PG) E1, E2, A1, F1alpha, F2alpha or D2 on the rat renal cortical, outer medullary and inner medullary adenylate cyclase-cyclic AMP systems were examined. While high concentrations (8X10-4M) of each prostaglandin stimulated adenylate cyclase activity in each area of the kidney, PGE1 was the only prostaglandin to stimulate at 10-7M. PGA's were the only prostaglandins tested besides PGE's which stimulated adenylate cyclase at less than 10-4M. This effect of PGA's was limited to the outer medulla. PGD2 was the least stimulatory. Observations with renal slices yielded qualitatively similar results. The PGE's were the most potent in each area with PGA's only stimulatory in the outer medulla. O2 deprivation (5% O2) lowered the slice cyclic AMP content in each area of the kidney. In the cortex and outer medulla, prostaglandin mediated increases in cyclic AMP content were either lower or absent at 5% O2 compared to 95% O2. However, in the inner medulla PGE stimulation was observed only at 5% O2 and not 95% O2. No other prostaglandins were found to increase inner medullary cyclic AMP content at 95% or 5% O2. These results illustrate that the adenylate cyclase-cyclic AMP system responds uniquely to prostaglandins in each area of the kidney. Consideration of these results along with correlative observations suggests that inner medullary produced PGE's may act as local modulators of inner medullary adenylate cyclase.  相似文献   

4.
We have utilized ionophores to test whether stimulation of chondrocyte prostaglandin biosynthesis is accompanied by an increase in cyclic nucleotide levels in these cells. Radioimmunoassay of prostaglandin E2, 6-oxo-prostaglandin F1 alpha (the stable metabolite of prostaglandin I2) and prostaglandin F2 alpha showed that synthesis of each was stimulated by the divalent-cation ionophore, A23187 after short-term incubation (1-7 min) in serum-free medium. No stimulation of thromboxane B2 was detected. Two monovalent ionophores, lasalocid and monensin failed to stimulate prostaglandin biosynthesis after short-term incubation. Ionophore A23187-stimulated prostaglandin biosynthesis was variably and partially inhibited by sodium meclofenamate, indomethacin and aspirin, but not by sodium salicylate. Ionophore A23187-stimulated prostaglandin biosynthesis was accompanied by a 7.5-fold increase in cyclic AMP levels after 15 min. Sodium meclofenamate, indomethacin and aspirin which inhibited prostaglandin E2 biosynthesis also reduced cyclic AMP levels. Exogenous prostaglandin E2 (1 microgram/ml) stimulated cyclic AMP biosynthesis, which was not inhibited by aspirin. These results indicated that prostaglandins can be considered as one of the local effectors controlling cyclic AMP production in articular cartilage.  相似文献   

5.
Prostaglandin production was studied in fetal and adult type II alveolar epithelial cells. Two culture systems were employed, fetal rat lung organotypic cultures consisting of fetal type II cells and monolayer cultures of adult lung type II cells. Dexamethasone, thyroxine, prolactin and insulin, hormones which influence lung development, each reduced the production of prostaglandin E and F alpha by the organotypic cultures. The fetal cultures produced relatively large quantities of prostaglandin E and F alpha and smaller quantities of 6-keto-prostaglandin F1 alpha and thromboxane B2. However, prostaglandin E2 production was predominant. In contrast, the adult type II cells in monolayer culture produced predominantly prostacyclin (6-keto-prostaglandin F1 alpha) along with smaller quantities of prostaglandin E2 and F2 alpha. The type II cells were relatively unresponsive to prostaglandins. Exogenously added prostaglandin E, had no effect on cell growth, and only a minimal effect on cyclic AMP levels in the monolayer cultures.  相似文献   

6.
The involvement of cyclic AMP in mediating regulatory peptide-controlled prolactin release from GH3 pituitary tumour cells was investigated. Cholera toxin and forskolin elicited concentration-dependent increases in both GH3 cell cyclic AMP content and prolactin release. The maximum rise in prolactin release with these agents was 2-fold over basal. 8-Bromo-cyclic AMP produced a similar stimulation of prolactin release. The phosphodiesterase inhibitor isobutylmethylxanthine also produced an increase in prolactin release and GH3 cell cyclic AMP content. However, the magnitude of the stimulated prolactin release exceeded that obtained with any other agent. Thyrotropin-releasing hormone (thyroliberin) and vasoactive intestinal polypeptide produced a concentration-dependent rise in both cell cyclic AMP content and prolactin release. However, only vasoactive intestinal polypeptide elicited an increase in cell cyclic AMP content at concentrations relevant to the stimulation of prolactin release. Vasoactive intestinal polypeptide and thyrotropin-releasing hormone, when used in combination, were additive with respect to prolactin release. Vasoactive intestinal polypeptide and forskolin, at concentrations that were maximal upon prolactin release, were, when used in combination, synergistic upon GH3 cell cyclic AMP content but were not additive upon prolactin release. In conclusion the evidence supports a role for cyclic AMP in the mediation of vasoactive intestinal polypeptide- but not thyrotropin-releasing hormone-stimulated prolactin release from GH3 cells. A quantitative analysis indicates that a 50-100% rise in cyclic AMP suffices to stimulate cyclic AMP-dependent prolactin release fully.  相似文献   

7.
Agents known to affect intracellular levels of cyclic AMP in many diverse systems have been tested for their effect on the chemotaxis induced by Escherichia coli culture filtrates, spontaneous motility and cyclic AMP levels of rabbit peritoneal neutrophils. Prostaglandin E1 and A1 but not prostaglandin F2alpha increased neutrophil cyclic AMP levels and, correspondingly, only the former two prostaglandins inhibited chemotaxis. Nevertheless, a quantitative relationship between prostaglandin stimulation of cyclic AMP and inhibition of chemotaxis could not be found. Epinephrine, isoproterenol, and, to a much lesser extent, norepinephrine increased neutrophil cyclic AMP through beta adrenergic stimulation. Only epinephrine and isoproterenol inhibited chemotaxis, but the inhibition was variable and not related to the ability of these catecholamines to increase intracellular cyclic AMP. Cholera toxin increased neutrophil cyclic AMP after a 30-min lag period which paralled its inhibitory effect on chemotaxis and spontaneous motility. However, the effect on chemotaxis require 50 ng/ml of toxin whereas the effect on cyclic AMP was manifested at 2 ng/ml of toxin. Prior to 30-min preincubation there was no effect of even 1250 ng/ml of toxin on either cyclic AMP or chemotaxis. Choleragenoid prevented the effects of toxin on both cyclic AMP and chemotaxis. The bacterial chemotactic factor obtained from E. coli culture filtrates did not effect a measurable change in levels of neutrophil cyclic AMP. The data indicate that even though cyclic AMP is not, in the main sequence of events, triggering the chemotactic response, increases in neutrophil cyclic AMP may modulate the movement and thus the chemotactic responsiveness of the neutrophil.  相似文献   

8.
The choroid plexus is a major site of CSF production. When primary cultures of bovine choroid plexus epithelial cells were exposed to 1 micrograms/ml cholera toxin, a 50-fold increase of intracellular cyclic AMP was found 1 h later. Exposure of cells to 10(-5) M isoproterenol, 10(-4) M prostaglandin E1, 10(-5) M histamine, and 10(-5) M serotonin caused increases of intracellular cyclic concentrations of 100-, 50-, 20-, and 4-fold, respectively. From 5 to 15 min were required for these maximal responses to occur. Many other molecules including prolactin, vasopressin, and corticotropin did not alter cellular cyclic AMP levels. The accumulation of cyclic AMP could be inhibited by specific antagonists: propranolol inhibited the isoproterenol-mediated stimulation while diphenhydramine and metiamide inhibited the histamine response. In addition, diphenhydramine inhibited serotonin-dependent cyclic AMP accumulation. Combinations of isoproterenol, prostaglandin E1, histamine, and serotonin elicited additive responses as measured by cyclic AMP accumulation with one exception, i.e., serotonin inhibited the histamine response. Our findings suggest that distinct receptor sites on choroid plexus epithelia exist for isoproterenol, prostaglandin E1, and histamine. Efflux of cyclic AMP into the extracellular medium was found to be a function of the intracellular cyclic AMP levels over a wide range of concentrations. Our studies provide direct evidence for hormonal regulation of cyclic AMP metabolism in epithelial cells of the choroid plexus.  相似文献   

9.
In order to study the mechanisms whereby mediators of inflammation exert their exudative effects, we used isolated rat mesentery placed as a separation membrane between the two compartments of a diffusion cell. In this experimental arrangement, the permeability coefficient of albumin (PA) can be easily computed from the equilibration rate of 125I-labelled albumin added to one compartment. Histamine, bradykinin, serotonin and prostaglandins A1, A2, E1, E2, F1 alpha and F2 alpha all increased PA to some extent, the maximal values being approx. +60%. Dibutyryl-cyclic AMP, theophylline and isoproterenol also increased PA, thus suggesting involvement of cyclic AMP. Direct measurements of this nucleotide confirmed this hypothesis; furthermore, a linear relation between cyclic AMP levels and PA could be demonstrated. In contrast, cyclic GMP is probably not involved in the control of PA. Calcium-depleted tissues had a low PA (approx. 40% below controls), and did not respond to exogenous prostaglandin E1. These results suggest that transmesenteric passage of albumin is at least partly controlled by cyclic AMP and intracellular Ca2+ levels.  相似文献   

10.
Prostaglandins F1 alpha and F2 alpha, at high concentrations (greater than or equal to 28 microM) enhanced cyclic AMP accumulation in dog thyroid slices. At lower concentrations, they inhibited the cyclic AMP accumulation induced by thyrotropin (TSH), prostaglandin E1, and cholera toxin. This effect was rapid in onset and of short duration, calcium-dependent and suppressed by methylxanthines. Prostaglandin F alpha also inhibited TSH-induced secretion and activated iodide binding to proteins. These characteristics are similar to those of carbamylcholine action, except that prostaglandins F did not enhance cyclic GMP accumulation. The effect of prostaglandin F alpha was not inhibited by atropine, phentolamine and adenosine deaminase and can therefore not be ascribed to an induced secretion of acetylcholine, norepinephrine or adenosine. It is suggested that prostaglandins F act by increasing influx of extracellular Ca2+. Arachidonic acid also inhibited the TSH-induced cyclic AMP accumulation. However this effect was specific for TSH, it was enhanced in the absence of calcium and was not inhibited by methylxanthines or by indomethacin at concentrations which completely block its conversion to prostaglandin F alpha. Arachidonic acid action is sustained. This suggests that arachidonic acid inhibits thyroid adenylate cyclase at the level of its TSH receptor and that this effect is not mediated by prostaglandin F alpha or any other cyclooxygenase product.  相似文献   

11.
The effect of prostaglandin analogues on the cyclic AMP level in cultured chondrocytes were examined. Prostaglandin E1 at 0.4 to 30 microM, increased the intracellular concentration of cyclic AMP in chondrocytes. Its effect was rapid, being evident within 1 min and reaching a maximum in 10 to 20 min. The maximum level was sustained until 30 min after its addition and then decreased gradually. Prostaglandin D2 and E2 also increased the cyclic AMP level in chondrocytes, but they had less effect than prostaglandin E1. Prostaglandin A1 had no effect on the nucleotide level in chondrocytes, although they markedly increased the level in fibroblasts. The time course of stimulation of cyclic AMP accumulation in chondrocytes by prostaglandin E1, D2 or E2 was quite different from that by parathyroid hormone (PTH): the effect of prostaglandin was slower and more sustained than that of PTH. PTH potentiated the effect of prostaglandin E1, E2, or D2 on the cyclic AMP level in chondrocytes and that the combined effects of prostaglandin and PTH were more than additive. Addition of an inhibitor of cyclic nucleotide phosphodiesterase with prostaglandin, PTH or both produced a synergistic effect on the accumulation of cyclic AMP in the chondrocytes. These findings suggest that prostaglandin E1, E2, and D2 increase the synthesis of cyclic AMP and that the combined effect of the prostaglandins and PTH on the cyclic AMP level in chondrocytes is partly attributed to the synergistic synthesis of cyclic AMP in the cells.  相似文献   

12.
The concentrations of cyclic adenosine 3′,5′-monophosphate (cyclic AMP) and prostaglandins E and F (PGE and PGF) were determined in follicular fluid collected from follicles of prepubertal gilts at various times after treatment with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) to induce ovulation. The concentrations of cyclic AMP, PGE and PGF in the follicular fluid after PMSG treatment but prior to hCG injection were about 1 pmol/ml, 1 ng/ml and 0.2 ng/ml, respectively. After hCG administration, the follicular fluid levels of cyclic AMP increased markedly, reaching a peak (400-fold increase) about 4 h after injection and then declined gradually to pre-hCG levels. A second rise (2.5- to 5-fold increase) occurred about 30 h after hCG with the levels being sustained up to the expected time of ovulation. In contrast, the levels of PGE and PGF remained relatively constant until 28–30 h after hCG treatment. Thereafter, the concentrations of both prostaglandins began to rise with the increases becoming more pronounced and reaching maximal values as the expected time of ovulation approached. These data provide further evidence for a physiological role of follicular prostaglandins in the process of ovulation but do not support an obligatory role for prostaglandins in the acute gonadotropin stimulation of cyclic AMP formation.  相似文献   

13.
The possible effects of phospholipase A and phospholipase C on the rate of uridine incorporation into RNA in mammary gland explants of mice were tested. Phospholipase C had no effect on the rate of uridine incorporation, but it did suppress the action of prolactin on this metabolic parameter. In contrast, phospholipase A was found to stimulate the rate of uridine incorporation into RNA in a manner similar to that of prolactin. The time-courses for the onset of the prolactin and phospholipase A effects were the same. Also, the phospholipase A effect was nonadditive to the effect produced by a maximally stimulatory concentration of prolactin. Finally it was observed that, like the prolactin effect, the phospholipase A effect was abolished by incubation with dibutyryl cyclic AMP, theophylline, quinine, indomethacin and prostaglandin E1. Further, the phospholipase A effect was nonadditive to the prolactin-like effects produced by the cyclic GMP, prostaglandin F2alpha or arachidonic acid. These data therefore suggest that prolactin and phospholipase A stimulate RNA synthesis in mammary gland explants via similar processes.  相似文献   

14.
The concentrations of cyclic adenosine 3', 5'-monophosphate (cyclic AMP) and prostaglandins E and F (PGE and PGF) were determined in follicular fluid collected from follicles of prepubertal gilts at various times after treatment with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) to induced ovulation. The concentrations of cyclic AMP, PGE and PGF in the follicular fluid after PMSG treatment but prior to hCG injection were about 1 pmol/ml, 1 ng/ml and 0.2 ng/ml, respectively. After hCG administration, the follicular fluid levels of cyclic AMP increased markedly, reaching a peak (400-fold increase) about 4 h after injection and then declined gradually to pre-hCG levels. A second rise (2.5- to 5-fold increase) occurred about 30 h after hCG with the levels being sustained up to the expected time of ovulation. In contrast, the levels of PGE and PGF remained relatively constant until 28-30 h after hCG treatment. Thereafter, the concentrations of both prostaglandins began to rise with the increases becoming more pronounced and reaching maximal values as the expected time of ovulation approached. These data provide further evidence for a physiological role of follicular prostaglandins in the process of ovulation but do not support an obligatory role for prostaglandins in the acute gonadotropin stimulation of cyclic AMP formation.  相似文献   

15.
Cyclic AMP induces synthesis of prostaglandin E1 in platelets   总被引:1,自引:0,他引:1  
Although platelets are known to synthesize small amounts of prostaglandin E1 the control of the formation of this prostanoid has not been investigated. Incubation of human platelet-rich plasma with various compounds which are known to increase cyclic AMP concentration in platelets and inhibit platelet aggregation also increased intracellular prostaglandin E1 synthesis. The prostaglandin E1 was isolated by high pressure liquid chromatography and definitively identified by negative and positive ionization mass spectroscopy. The amounts of prostaglandin E1 formed were proportional to the concentration of cyclic AMP in platelets. Prostacyclin (10 nM) which is the most potent stimulator of cyclic AMP formation increased intracellular cyclic AMP by 4.6 fold and prostaglandin E1 level by 3 fold over the basal levels. Addition of theophylline, a cyclic AMP phosphodiesterase inhibitor, together with prostacyclin increased cyclic AMP concentration 8.7-fold and prostaglandin E1 level 12-fold compared to basal concentrations. Dibutyryl cyclic AMP (2 mM) and 8-bromo cyclic AMP (0.1 mM) increased prostaglandin E1 levels by 3 fold and 2 fold over the basal level, respectively. Prostaglandin D2 (3 microM) when added to platelet-rich plasma increased the cyclic nucleotide levels by 2 fold concomitant with 2 fold increase in prostaglandin E1 concentration. In contrast prostaglandin E2 or prostaglandin F2 alpha which had no effect on cyclic AMP level did not affect the prostaglandin E1 synthesis. Addition of 2',5'-dideoxyadenosine, an inhibitor of adenylate cyclase, to platelet-rich plasma inhibited both the increase of intracellular prostaglandin E1 and cyclic AMP levels induced by prostacyclin.  相似文献   

16.
1. Specific radioimmunoassays for the prostaglandins E2, A2 and F2alpha were used to study the synthesis of prostaglandins by gastroscopically obtained small biopsy specimens of human gastric corpus mucosa. 2. Both prostaglandin E2 and prostaglandin F2alpha were found to be synthesized from arachidonic acid by themicrosomal fraction of human gastric mucosa. The synthesis of prostaglandin E2 exceeded that of prostagladin F2alpha by a factor of about 10. 3. Synthesis of prostaglandin A2 or prostaglandin B2 was not observed under the same incubation conditions. 4. Indometacin effectively inhibited synthesis of both prostaglandin E2 (ID50 4.2 microng/ml) and prostaglandin F2alpha (ID50 1.8 microng/ml) by human gastric mucosa, while paracetamol even in a concentration of 310 microng/ml did not influence prostaglandin synthesis. The anti-ulcer agent carbenoxolone, which has been shown to inhibit prostaglandin inactivation, at the same concentration only slightly inhibited (about 20%) prostaglandin synthesis. 5. The results support the hypothesis that the gastro-intestinal effects or side effects of several drugs are mediated by an influence on the enzymes of prostaglandin synthesis or inactivation.  相似文献   

17.
Arachidonic acid is released from specific glycerophospholipids in human amnion and is used to synthesize prostaglandins that are involved in parturition. In an investigation of the regulation of prostaglandin production in amnion, the effects of isoproterenol on discs of amnion tissue maintained in vitro were examined. Isoproterenol caused a large but transitory increase in the amount of cyclic AMP in amnion discs and this was accompanied by a sustained stimulation of the release of arachidonic acid (but not palmitic acid or stearic acid) and prostaglandin E2. The dependencies of cyclic AMP accumulation, arachidonic acid mobilization and prostaglandin E2 release on the concentration of isoproterenol were similar, each response was maximal at 10(-6) M isoproterenol and was inhibited by propranolol. Dibutyryl cyclic AMP stimulated the release of prostaglandin E2 from amnion discs. Although prostaglandin E2, when added to amnion discs caused an accumulation of cyclic AMP, it did not appear to mediate isoproterenol-induced accumulation of cyclic AMP since the latter effect was insensitive to indomethacin in concentrations at which prostaglandin production was inhibited greatly. These data support the proposition that catecholamines, found in increasing amounts in amniotic fluid during late gestation, may be regulators of prostaglandin production by the amnion.  相似文献   

18.
Cyclic AMP levels in primary monolayer cultures of epithelial cells prepared from mid-pregnant mice are stimulated by prostaglandin E1 and E2. Prostaglandin F1alpha and F2alpha have only a slight effect upon cyclic AMP levels. In the absence of phosphodiesterase inhibitors the rise in cyclic AMP produced by PGE1 is only transient and the levels return to normal within 30 minutes. High concentrations (16 mM) of theophylline are needed to prevent this decline, suggesting that the phosphodiesterase activity of epithelial cells in culture is high. However, theophylline alone produced only a small increase in basal cyclic AMP levels even over a 2-hour period indicating that basal cyclic AMP is turned over more slowly than cyclic AMP produced in response to stimulation with PGE1. Both PGE and PGF synthesis were monitored using radioimmunoassay procedures previously reported. The observed levels were found to decrease as cell density increased and were sensitive to the addition of agents such as collagen and naproxen.  相似文献   

19.
Two different independent processes are operating in cultured thyroid cells to regulate adenylate cyclase/cyclic AMP responsiveness to thyroid stimulators (thyrotropin and prostaglandin E2): firstly, refractoriness or negative regulation [preceding paper], which is specific for each thyroid stimulator, is not mediated by cyclic AMP and is not accompanied by alteration of adenylate cyclase activity; secondly, positive regulation which is characterized by an augmentation of the cyclic AMP response stimulated by thyrotropin and prostaglandin E2. This process is not specific for each thyroid stimulator and is a state of increased susceptibility of cyclic AMP synthesis to stimulation, accompanied by increased activity of the catalytic subunit of adenylate cyclase. Positive regulation is apparently mediated by increased intracellular cyclic AMP levels. It is a time-dependent and dose-dependent process. Very low concentrations (5-50 micronU/ml) of thyrotropin augmented cyclic AMP synthesis stimulated by thyrotropin and prostaglandin E2 whereas higher concentrations (above 0.1 mU/ml) augmented prostaglandin E2 stimulation but induced refractoriness to thyrotropin. Prostaglandin E2 (0.1 to 10 micronM) augmented thyrotropin stimulation and dibutyryl adenosine 3':5'-monophosphate (0.3 to 2 mM) augmented thyrotropin and prostaglandin E2 stimulation. Positive regulation is a slow process which develops within days and increases up to day 5 in culture. Experiments using inhibitors suggested that protein synthesis is required for the full expression of the increase in adenylate cyclase activity induced by the studied thyroid stimulators.  相似文献   

20.
Prostaglandin biosynthesis and prostaglandin-stimulated cyclic AMP accumulation were studied in 3T3-L1 fibroblasts as they differentiated into adipocytes. Incubation of 3T3-L1 membranes with [1-14C]prostaglandin H2, and subsequent radio-TLC analysis, showed that prostacyclin (prostaglandin I2) is the principal enzymatically synthesized prostaglandin in this cell line. Confirmation of the radiochemical data was obtained by demonstrating the presence of 6-keto-prostaglandin F1 alpha, the stable hydrolysis product of prostaglandin I2, by gas chromatography-mass spectrometry. In support of previous work, indomethacin, the prostaglandin endoperoxide synthetase (EC 1.14.99.1) inhibitor, accelerated 3T3-L1 differentiation. More importantly, the incubation of 3T3-L1 cells with insulin and the prostaglandin I2 synthetase inhibitor 9,11-azoprosta-5,13-dienoic acid (azo analog I) also enhanced the rate of cellular differentiation, even though this compound does not inhibit the synthesis of other prostaglandins. The repeated addition of exogenous prostaglandin I2 to 3T3-L1 cells inhibited insulin- and indomethacin-mediated differentiation. When 3T3-L1 cells were exposed to various prostaglandins and the cyclic AMP levels were measured, prostaglandin I2 proved to be the most potent stimulator of cyclic AMP accumulation, followed by prostaglandin E1 greater than prostaglandin H2 much greater than prostaglandin E2, while prostaglandin D2 was inactive. As 3T3-L1 cells differentiate, the ability of prostaglandin I2 or prostaglandin H2 to stimulate cyclic AMP accumulation progressively diminishes. It is suggested that 3T3-L1 differentiation may be controlled by the rate of prostaglandin I2 synthesis and/or sensitivity of the adenylate cyclase to prostaglandin I2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号