首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast to most multimeric transmembrane complexes that oligomerize in the endoplasmic reticulum (ER), the gap junction protein connexin43 (Cx43) oligomerizes in an aspect of the Golgi apparatus. The mechanisms that prevent oligomerization of Cx43 and related connexins in the ER are not well understood. Also, some studies suggest that connexins can oligomerize in the ER. We used connexin constructs containing a C-terminal dilysine-based ER retention/retrieval signal (HKKSL) transfected into HeLa cells to study early events in connexin oligomerization. Using this approach, Cx43-HKKSL was retained in the ER and prevented from oligomerization. However, another ER-retained HKKSL-tagged connexin, Cx32-HKKSL, had the capacity to oligomerize. Because this suggested that Cx43 contains a motif that prevented oligomerization in the ER, a series of HKKSL-tagged and untagged Cx32/Cx43 chimeras was screened to define this motif. The minimal motif, which prevented ER oligomerization, consisted of the complete third transmembrane domain and the second extracellular loop from Cx43 on a Cx32 backbone. We propose that charged residues present in Cx43 and related connexins help prevent ER oligomerization by stabilizing the third transmembrane domain in the membrane bilayer.  相似文献   

2.
BACKGROUND INFORMATION: mRNA deadenylation [shortening of the poly(A) tail] is often triggered by specific sequence elements present within mRNA 3' untranslated regions and generally causes rapid degradation of the mRNA. In vertebrates, many of these deadenylation elements are called AREs (AU-rich elements). The EDEN (embryo deadenylation element) sequence is a Xenopus class III ARE. EDEN acts by binding a specific factor, EDEN-BP (EDEN-binding protein), which in turn stimulates deadenylation. RESULTS: We show here that EDEN-BP is able to oligomerize. A 27-amino-acid region of EDEN-BP was identified as a key domain for oligomerization. A mutant of EDEN-BP lacking this region was unable to oligomerize, and a peptide corresponding to this region competitively inhibited the oligomerization of full-length EDEN-BP. Impairing oligomerization by either of these two methods specifically abolished EDEN-dependent deadenylation. Furthermore, impairing oligomerization inhibited the binding of EDEN-BP to its target RNA, demonstrating a strong coupling between EDEN-BP oligomerization and RNA binding. CONCLUSIONS: These data, showing that the oligomerization of EDEN-BP is required for binding of the protein on its target RNA and for EDEN-dependent deadenylation in Xenopus embryos, will be important for the identification of cofactors required for the deadenylation process.  相似文献   

3.
Summary 3-Amino-3-deoxyguanosine-5-phosphorimidazolidate (ImpGnh 2) oligomerizes more rapidly and regiospecifically than related nucleotide derivatives on a d(CpCpCpCpC) template. The greater nucleophilicity of the amino group leads to efficient oligomerization even when the structure of the double-helical complex formed by the template and the substrate is not optimal for reaction. The use of amine-containing analogues should permit us to develop models of potentially prebiotic polymerization reactions that cannot be studied easily using natural nucleotides.  相似文献   

4.
Oligomerization of the Rev protein of human immuno-deficiency virus type 1 on its cognate response element is essential for export of the late viral mRNAs from the nucleus. Two regions of the protein, flanking the RNA binding site, have been defined as oligomerization sites after mutants (M4 and M7) had been reported to bind specifically to the response element but not to oligomerize in vivo or in vitro. These mutants are often used as paradigms for studies of Rev multimerization. We have re-examined the in vitro binding of these mutants to model Rev response elements, using improved gel mobility assays. We find that both mutants will form oligomers on the Rev response element, but have somewhat lower affinities for RNA than the wild-type protein. M7 has lower specific affinity, but shows little deficiency in oligomerization once binding starts. In contrast, M4 is multimerization deficient, as previously reported. Therefore, whilethe sites are correctly defined, it is inappropriate to employ the original M7 deletion mutant to study Rev oligomerization.  相似文献   

5.
The self-complementary 5'-phosphorylated dinucleoside 3' (N)----5' (P)-linked phosphoramidates with sequence GC (8a), CG (8b) and the tetranucleoside triphosphoramidate with sequence GCGC (10a) and CGCG (10b) have been synthesized and characterized by physicochemical and enzymatic methods. The dinucleosides 8a or 8b oligomerize in aqueous solution in the presence of a water-soluble carbodiimide. This process is efficient and regiospecific. In the case of GC it produces alternating 3' (N)----5' (P)-linked phosphoramidates up to 15 dimeric units in length with a yield in excess of 70%. The oligomerization of the CG isomer is much less efficient. The mechanism of oligomerization is discussed.  相似文献   

6.
Post-translational events, such as proteolysis, are believed to play essential roles in amyloid formation in vivo. Ribonuclease A forms oligomers by the three-dimensional domain-swapping mechanism. Here, we demonstrate the ability of ribonuclease S, a proteolytically cleaved form of ribonuclease A, to oligomerize efficiently. This unexpected capacity has been investigated to study the effect of proteolysis on oligomerization and amyloid formation. The yield of the RNase S dimer was found to be significantly higher than that of RNase A dimers, which suggests that proteolysis can activate oligomerization via the three-dimensional domain-swapping mechanism. Characterization by chromatography, enzymatic assays, and NMR spectroscopy indicate that the structure of the RNase S dimer is similar to that of the RNase A C-dimer. The RNase S dimer dissociates much more readily than the RNase A C-dimer does. By measuring the dissociation rate as a function of temperature, the activation enthalpy and entropy for RNase S dimer dissociation were found to resemble those for the release of the small fragment (S-peptide) from monomeric RNase S. Excess S-peptide strongly slows RNase S dimer dissociation. These results strongly suggest that S-peptide release is the rate-limiting step of RNase S dimer dissociation.  相似文献   

7.
Activation of many single-transmembrane receptors requires ligand-induced receptor oligomerization. We have examined the oligomerization of the atrial natriuretic peptide receptor, NPR-A, using epitope-tagged receptor in a co-immunoprecipitation assay. Unlike other single-transmembrane receptors, NPR-A oligomerized in a ligand-independent fashion. Extracellular receptor sequences were both necessary and sufficient for oligomer formation. NPR-A was also able to oligomerize with the related natriuretic peptide receptor, NPR-B. A truncated NPR-A lacking most of the cytoplasmic domain blocked activation of the full-length receptor, presumably through formation of an inactive heteromer. These results indicate that oligomerization of this single-transmembrane receptor is important for the transduction of a conformational change across the plasma membrane but are not consistent with models in which natriuretic peptide receptor oligomerization serves merely to bring intracellular domains together.  相似文献   

8.
Protein Wzc from Escherichia coli is a member of a newly defined family of protein-tyrosine autokinases that are essential for surface polysaccharide production in both Gram-negative and Gram-positive bacteria. Although the catalytic mechanism of the autophosphorylation of Wzc was recently described, the in vivo structural organization of this protein remained unclear. Here, we have determined the membrane topology of Wzc by performing translational fusions of lacZ and phoA reporter genes to the wzc gene. It has been shown that Wzc consists of two main structural domains: an N-terminal domain, bordered by two transmembrane helices, which is located in the periplasm of cells, and a C-terminal domain, harboring all phosphorylation sites of the protein, which is located in the cytoplasm. In addition, it has been demonstrated for the first time that Wzc can oligomerize in vivo to form essentially trimers and hexamers. Cross-linking experiments performed on strains expressing various domains of Wzc have shown that the cytoplasmic C-terminal domain is sufficient to generate oligomerization of Wzc. Mutant proteins, modified in either the ATP-binding site or the different phosphorylation sites, i.e. rendered unable to undergo autophosphorylation, have appeared to oligomerize into high molecular mass species identical to those formed by the wild-type protein. It was concluded that phosphorylation of Wzc is not essential to its oligomerization. These data, connected with the phosphorylation mechanism of Wzc, may be of biological significance in the regulatory role played by this kinase in polysaccharide synthesis.  相似文献   

9.
We have initiated a series of experiments to analyze the biosynthesis and oligomerization of Cx43 in cells containing other connexins through the expression of site-directed mutants and chimeric connexin polypeptides. Here we report studies concerning a mutant of Cx43 (Cx43tr) that has been truncated after amino acid 251 to remove most of the Cx43 carboxy-terminal region. In stably transfected HeLa cells, full length Cx43 localized primarily to appositional membranes while much more Cx43tr was observed in the cytoplasm. Both Cx43 and Cx43tr showed similar oligomerization profiles based on centrifugation through sucrose gradients. HeLaCx43tr cells showed limited transfer of microinjected Lucifer Yellow but did show electrical coupling. Co-expression of Cx43tr with Cx43 or Cx45 led to Cx43tr localization at appositional membranes and co-localization with the other connexins. Moreover, cells co-expressing Cx43tr with Cx43 or Cx45 showed extensive intercellular dye coupling. Thus, Cx43tr was able to oligomerize and form functional channels when expressed alone or with a compatible connexin, but it only formed plaques when co-expressed. These results suggest that the carboxyl tail of Cx43 is not important for oligomerization, but they implicate critical residues in the formation of gap junction plaques.  相似文献   

10.
We have initiated a series of experiments to analyze the biosynthesis and oligomerization of Cx43 in cells containing other connexins through the expression of site-directed mutants and chimeric connexin polypeptides. Here we report studies concerning a mutant of Cx43 (Cx43tr) that has been truncated after amino acid 251 to remove most of the Cx43 carboxy-terminal region. In stably transfected HeLa cells, full length Cx43 localized primarily to appositional membranes while much more Cx43tr was observed in the cytoplasm. Both Cx43 and Cx43tr showed similar oligomerization profiles based on centrifugation through sucrose gradients. HeLaCx43tr cells showed limited transfer of microinjected Lucifer Yellow but did show electrical coupling. Co-expression of Cx43tr with Cx43 or Cx45 led to Cx43tr localization at appositional membranes and co-localization with the other connexins. Moreover, cells co-expressing Cx43tr with Cx43 or Cx45 showed extensive intercellular dye coupling. Thus, Cx43tr was able to oligomerize and form functional channels when expressed alone or with a compatible connexin, but it only formed plaques when co-expressed. These results suggest that the carboxyl tail of Cx43 is not important for oligomerization, but they implicate critical residues in the formation of gap junction plaques.  相似文献   

11.
RNase A oligomerizes via the three-dimensional domain-swapping mechanism to form a variety of oligomers, including two dimers. One, called the N-dimer, forms by swapping of the N termini of the protein; the other, called the C-dimer, forms by swapping of the C termini. RNase B is identical in protein sequence and conformation to RNase A, but its Asn34 bears an oligosaccharide chain that might affect oligomerization. The ability of RNase B to oligomerize under two sets of conditions has been examined. The amount of oligomers formed via lyophilization was somewhat lower for RNase B than RNase A, and RNase B oligomerized more rapidly in 40% ethanol solution at high temperature than RNase A. The ratio of the N-dimer to C-dimer formed increased with the size of the carbohydrate chain under both sets of conditions. These results suggest that the oligosaccharide chain either favors productive collisions or stabilizes the oligomers, especially the N-dimer. Endoglycosidase H treatment of RNase B partially restored RNase A-like oligomerization. Derivatives of RNase A conjugated at the amine groups to polyethylene glycol chains showed a greatly reduced capacity for oligomerization, suggesting that oligomerization can be impeded sterically. Commercial preparations of RNase B eluted as two main peaks by cation exchange chromatography. Using chromatography, mass spectroscopy, and two-dimensional NMR, the major peak was identified as RNase B selectively deamidated at Asn67. This deamidated protein showed a >4 degrees C drop in thermal stability, disruption of the native structure of residues 67-69, and a decreased ability to oligomerize compared with unmodified RNase B.  相似文献   

12.
Asenjo A  Villanueva N 《FEBS letters》2000,467(2-3):279-284
Purified human respiratory syncytial virus (HRSV) P phosphoprotein from transfected HEp-2 cells is able to oligomerize forming tetramers. The bulk of constitutive P protein phosphorylation (99. 8%) (serine residues 116, 117, 119, 232 and 237) can be removed without affecting protein oligomerization. However, dephosphorylated P protein, produced in bacteria, is unable to oligomerize. This difference can be explained by a transient P protein phosphorylation, detected in HEp-2 cells, that could be essential for P protein oligomerization.  相似文献   

13.
Both pro-apoptotic Bax and anti-apoptotic Bcl-2 are structurally homologous to the pore-forming domain of bacterial toxins. Bax proteins oligomerize in the mitochondrial outer membranes forming pores that release cytochrome c from the mitochondrial intermembrane space. Bcl-2 proteins also form pores that, however, are much smaller than the Bax pore. It is unknown whether Bcl-2 forms monomeric or oligomeric pores. Here, we characterized the Bcl-2 pore formation in liposomes using biophysical and biochemical techniques. The results show that the Bcl-2 pore enlarges as the concentration of Bcl-2 increases, suggesting that the pore is formed by Bcl-2 oligomers. As expected from oligomerization-mediated pore-formation, the small pores are formed earlier than the large ones. Bcl-2 oligomers form pores faster than the monomer, indicating that the oligomerization constitutes an intermediate step of the pore formation. A Bcl-2 mutant with higher affinity for oligomerization forms pores faster than wild type Bcl-2. Bcl-2 oligomers were detected in the liposomal membranes under conditions that Bcl-2 forms pores, and the extent of oligomerization was positively correlated with the pore-forming activity. Therefore, Bcl-2 oligomerizes in membranes forming pores, but the extent of oligomerization and the size of the resulting pores are much smaller than that of Bax, supporting the model that Bcl-2 is a defective Bax.  相似文献   

14.
15.
Plant nucleotide binding site-leucine-rich repeat (NBS-LRR) proteins are similar to the nucleotide binding oligomerization domain (NOD) protein family in their domain structure. It has been suggested that most NOD proteins rely on ligand-mediated oligomerization for function, and we have tested this possibility with the N protein of tobacco (Nicotiana tabacum). The N gene for resistance to Tobacco mosaic virus (TMV) is a member of the Toll-interleukin receptor (TIR)-NBS-LRR class of plant disease resistance (R) genes that recognizes the helicase domain from the TMV replicase. Using transient expression followed by immunoprecipitation, we show that the N protein oligomerizes in the presence of the elicitor. The oligomerization was not affected by silencing Nicotiana benthamiana ENHANCED DISEASE SUSCEPTIBILITY1 and N REQUIREMENT GENE1 cofactors of N-mediated resistance, but it was abolished by a mutation in the P-loop motif. However, loss-of-function mutations in the RNBS-A motif and in the TIR domain retain the ability to oligomerize. From these results, we conclude that oligomerization is an early event in the N-mediated resistance to TMV.  相似文献   

16.
Gap junction channels composed of connexins connect cells, allowing intercellular communication. Their cellular assembly involves a unique quality-control pathway. Some connexins [including connexin43 (Cx43) and Cx46] oligomerize in the trans-Golgi network following export of stabilized monomers from the endoplasmic reticulum (ER). In contrast, other connexins (e.g., Cx32) oligomerize early in the secretory pathway. Amino acids near the cytoplasmic aspect of the third transmembrane domain have previously been shown to determine this difference in assembly sites. Here, we characterized the oligomerization of two connexins expressed prominently in the vasculature, Cx37 and Cx40, using constructs containing a C-terminal dilysine-based ER retention/retrieval signal (HKKSL) or treatment with brefeldin A to block ER vesicle trafficking. Both methods led to intracellular retention of connexins, since the cells lacked gap junction plaques. Retention of Cx40 in the ER prevented it from oligomerizing, comparable to Cx43. By contrast, ER-retained Cx37 was partially oligomerized. Replacement of two amino acids near the third transmembrane domain of Cx43 (L152 and R153) with the corresponding amino acids from Cx37 (M152 and G153) resulted in early oligomerization in the ER. Thus, residues that allow Cx37 to oligomerize early in the secretory pathway could restrict its interactions with coexpressed Cx40 or Cx43 by favoring homomeric oligomerization, providing a structural basis for cells to produce gap junction channels with different connexin composition.  相似文献   

17.
Nucleophosmin (NPM/B23) is a multifunctional nucleolar protein to which both tumor-suppressor and oncogenic functions have been attributed. NPM/B23 has a variety of binding partners including ribosomes, nucleic acids, the centrosome and tumor suppressors such as p53 and p19ARF. These disparate functions are likely due to its ability to oligomerize and display molecular chaperone activity. In this report we identify a single amino acid residue, Cys21, of nucleophosmin as important for the oligomerization and chaperone activity. Mutation of Cys21 to aromatic hydrophobic residues (e.g., Phe or Try), but not to a conserved polar residue (e.g., Ser) inhibited the pentameric oligomerization of NPM/B23. However, only Phe substitution of Cys21 drastically inhibited NPM/B23 chaperone activity. Interestingly, expression of Cys21Phe mutant in MCF7 cells demonstrated that this mutant protein does not co-polymerize with endogenous wild-type NPM/B23 and acts as negative dominant by destabilizing the endogenous dimer, trimer oligomerization. Taken together, the results in this study identify Cys21 as critical residue for NPM/B23 oligomerization and chaperone functions. In addition, Cys21 mutant provide a strong link between the oligomerization and chaperone functions of NPM/B23.  相似文献   

18.
The molecular organization of microsomal cytochromes P450 (P450s) and formation of complexes with P450 reductase have been studied previously with isolated proteins and in reconstituted systems. Although these studies demonstrated that some P450s oligomerize in vitro, neither oligomerization nor interactions of P450 with P450 reductase have been studied in living cells. Here we have used fluorescence resonance energy transfer (FRET) to study P450 oligomerization and binding to P450 reductase in live transfected cells. Cytochrome P450 2C2, but not P450 2E1, forms homo-oligomeric structures, and this self-association is mediated by the signal-anchor sequence. Because P450 2C2, in contrast to P450 2E1, is directly retained in the endoplasmic reticulum (ER), these results could suggest that oligomerization may prevent transport from the ER. However, P450 2C1 signal-anchor sequence chimera defective in ER retention also formed oligomers, and chimera containing the cytoplasmic domain of P450 2C2, which is directly retained in the ER, did not exhibit self-oligomerization, which indicates that oligomerization is not correlated with direct retention. By using FRET, we have also detected binding of P450 2C2 and P450 2E1 to P450 reductase. In contrast to self-oligomerization, the catalytic domain can mediate an interaction of P450 2C2 with P450 reductase. These results suggest that microsomal P450s may differ in their quaternary structure but that these differences do not detectably affect interaction with the reductase or transport from the ER.  相似文献   

19.
Poly (Leu-Lys) was shown to assist the oligomerization of activated nucleotide diphosphates. Short oligomers of pdGp are formed in dilute solution. Activated oligomers can complex to the polypeptide and polymerize to form longer oligomers. Oligomers up to the 18-mer can be obtained under these conditions from 1 × 10–3 M ImpdGpIm in the absence of a preformed polynucleotide template. The total yield of polymerization remains limited although 50% more pyrophosphate bonds are formed in the presence of polypeptide. However, the elongation effect is more significant since the yield of oligomers longer than the decamer is increased by a factor of 60. The possible prebiotic implications of these experiments are discussed.Abbreviations pdGp the 3,5-bisphosphate of dG - ImpdGpIm the 3,5-bisphosphoimidazolide of dG - KEDTA ethylenediamine tetraacetic acid, potassium salt - Bis-Tris bis(2-hydroxymethyl)iminotris(hydroxymethyl)methane Correspondence to: B. Barbier  相似文献   

20.
Poly(C, G) random copolymer templates direct the oligomerization of 2-Me-ImpG and 2-MeImpC, resulting in the production of a variety of oligo(G, C)s. The efficiency of monomer incorporation into newly synthesized oligomers is greater for 2-MeImpG than for 2-MeImpC, and decreases for both monomers as the guanine content of the template increases. The relatively low efficiency of oligomerization on guanine-rich templates is largely a consequence of intra- and intermolecular template self-structure. The problem of template self-structure is clearly a major obstacle to the development of a system of self-replicating polynucleotides. The distribution of oligomeric products can be characterized in detail using high-pressure liquid chromatography on an RPC-5 column. Oligomers are separated on the basis of chain length, base composition and phosphodiester-linkage isomerism. Oligomers up to about the 12-mer, with base composition Gn, Gn-1C and Gn-2C2, have been identified. The 3' to 5' regiospecificity of the products is high, particularly for oligomers with base composition Gn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号