首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triphenylbutyrin, a triglyceride prodrug of 4-phenylbutyric acid, has potential for use in drug delivery systems. Immobilized Candida antarctica lipase B catalyzed the synthesis of triphenylbutyrin by glycerolysis of 4-phenylbutyrate with glycerol in a solvent-free system. The use of 4-phenylbutyate with a leaving alcohol moiety in the acyl-transfer reaction can shift the equilibrium of the reaction toward the synthesis of triphenylbutyrin, since the alcohol by-product can be removed by vacuum. A 97% yield of triphenylbutyrin was achieved in a solvent-free system at a reaction temperature of 75 °C by combination of molecular sieves to limit the hydrolysis side reaction and a vacuum system to shift the reaction equilibrium in a solvent-free system.  相似文献   

2.
Lipase-catalyzed esterification of conjugated linoleic acid (CLA) with l-carnitine in solvent-free system and acetonitrile was studied. Three lipases (Novzym 435, Amamo AY30 and Amano AYS) have been assayed as suitable biocatalysts in the reaction. It was found that Amano AY30 was the most effective biocatalyst in both solvent-free system and acetonitrile. The conversion rate varied from 8.05 to 60.9% in terms of reaction conditions such as the amount of lipase, the presence of water, the amount of molecular sieves and reaction time. The conversions of substrate in solvent-free system were higher than that in acetonitrile. When the substrates were 1 mmol CLA and 1 mmol l-carnitine, the maximum conversion (60.9%) was obtained in solvent-free system with 150 mg lipase AY30, 50% water content and 150 mg molecular sieves at the reaction time of 24 h. A novel CLA ester product was successfully isolated and characterized by ESI-MS and 1H NMR.  相似文献   

3.
微水体系中荧光假单胞菌脂肪酶催化合成单甘酯   总被引:4,自引:0,他引:4  
研究了无溶剂微水体系中荧光假单胞菌脂肪酶 (PFL)催化油脂甘油解合成单甘酯的反应因素以及多温程非均相固液反应对单甘酯产率的影响。以初始体系最低共熔点 (PFL)取代临界温度学说中的油脂初熔点 ,通过考察不同IEP体系的甘油解 ,发现PFL酶促油脂甘油解时存在碳链基质特异性的函数关系 ,即反应物油脂中饱和碳残基的质量百分含量 (C16+C18)与单甘酯产率间符合以下多项式:Y =- 0.0006X3 +0.0592X2-0.8909X+26.753(13%<X<76.5%),式中X为C16+C18,Y为40℃时等温反应条件下的单甘酯产率。IEP为40℃时,最适等温反应条件如下:加水量3%~4.5%,加酶量为500μ/g油酯摩尔比1:2.5-5.0(油酯:甘油)反应温度40℃.实验条件下多步等程序降温反应48h后单甘酯最高产率为81.4%.  相似文献   

4.
Enzymatic synthesis of mono-, di-, and triacyglycerols from (poly)unsaturated fatty acids (linoleic, oleic, and conjugated linoleic acids) has been studied as a solvent-free reaction in a packed-bed reactor containing an immobilized lipase from Mucor miehei. The extents of the esterification reactions of interest are primarily determined by the molar ratio of glycerol to fatty acid because the presence of excess glycerol as a immiscible phase is responsible for reducing the activity of the water produced by the esterification reactions. For molar ratios of fatty acid to glycerol of less than 1.5, the percentage of the fatty acid esterified decreases quasi-linearly with an increase in this molar ratio. By appropriate manipulation of the fluid-residence time, one can control the relative proportions of the various acylglycerols in the effluent stream. At the outlet of the reactor, one observes excellent spontaneous separation of the glycerol and acylglycerol/fatty acid phases. At 50 degrees C and a fluid residence time of 1 hour, as much as 90% of the fatty acid can be esterified when the molar ratio of fatty acid to glycerol is 0.33 or less.  相似文献   

5.
非水相酶促合成癸酸偏甘油酯的研究   总被引:5,自引:0,他引:5  
对无溶剂非水相中癸酸与甘油的酶促酯化反应进行了研究,发现Pseudomonas fluoresces脂肪酶(PFL)、Mucor miehei脂肪酶(MML)和Candida antarictica脂肪酶(CAL)均有较好的催化活性。CAL酶促转化癸酸的最适反应条件为:60℃,加酶量为20~100u/g,初始加水量为甘油质量的12%。CAL的1,3位置专一性在最终产物中未表达。CAL酶催化剂的失活主要与机械磨损有关,反应5批次后酶活残留量为96.4%。敞开物系、真空脱水或分子筛脱水均为有效脱水方式。敞开物系中反应物量比不影响平衡转化率而会影响单甘酯平衡产率。用碳酸氢钠水溶液萃取可有效脱除产品中的残余癸酸,终产品酸价为0.68mg KOH/g。提高甘油比例并使用非脱水原料,无外加水结合部分流加癸酸的工艺,可以减少减压脱水或敞开反应的时间,5h后癸酸最高转化率可达96.9%。   相似文献   

6.
A novel immobilized lipase (from Candida rugosa) on hydrophobic and superparamagnetic microspheres was prepared and used as a biocatalyst to catalyze esterification reactions in diverse solvents and reaction systems. The results showed that the immobilized lipase had over 2-fold higher activities in higher log P value solvents. An exponential increase of lipase activity against log P of two miscible solvent mixtures was observed for the first time. Both free and immobilized lipase achieved its maximum activity at the range of water activity (a(w)) 0.5-0.8 or higher. At a(w) 0.6, the immobilized lipase exhibited markedly higher activities in heptane and a solvent-free system than did the native lipase. In multicompetitive reactions, the alcohol specificity of the lipase showed a strong chain-length dependency, and the immobilized enzyme exhibited more preference for a longer-chain alcohol, which is different from previous reports. The immobilized lipase showed higher specificities for butyric acid and the medium-chain-length fatty acids (C(8)-C(12)). Then, the immobilized lipase was extended to solvent-free synthesis of glycerides from glycerol and fatty acids. Recovered by magnetic separation, the immobilized lipase exhibited good reusability in repeated batch reaction, indicating its promising feature for biotechnology application.  相似文献   

7.
An aliphatic polythioester was enzymatically prepared by the direct polycondensation of mercaptoalkanoic acid using immobilized lipase of Candida antarctica (lipase CA) in bulk. The commercially available 11-mercaptoundecanoic acid was polymerized by lipase CA in bulk in the presence of molecular sieves 4A as a water absorbent at 110 degrees C for 48 h to produce poly(11-mercaptoundecanoate) with an M(w) of 34 000 in high yield. The 104.5 degrees C melting temperature (T(m)) of poly(11-mercaptoundecanoate) was about 20 degrees C higher than that of the corresponding polyoxyester, poly(11-hydroxyundecanoate). The polythioester was readily transformed by lipase into the corresponding cyclic oligomers mainly consisting of the dimer, which were readily repolymerized by the ring-opening polymerization using lipase as a sustainable chemical recycling.  相似文献   

8.
The kinetics of enzymatic esterification of glycerol with oleic acid, in equimolar ratio, catalyzed by immobilized Mucor miehei lipase in a solvent system in the presence of the molecular sieves was carried out at 37°C at different Lipozym and solvent (n-hexane) concentrations and the molecular sieve contents were studied in a batch stirred-tank reactor (BSTR). The reactions were followed by the determination of reaction conversions during 45 h. The experimental data of enzymatic esterification of glycerol with oleic acid in a solvent system in the presence of molecular sieves showed minimal deviation from the calculated value in the irreversible second order kinetic model. On the basis of the experimental data, we found an empirical correlation between concentrations of Lipozym, concentrations of solvent (n-hexane), contents of the molecular sieve and the reaction rate constant, k1.  相似文献   

9.
This paper reports on the synthesis of triglycerides by enzymatic esterification of polyunsaturated fatty acids (PUFA) with glycerol. The lipase Novozym 435 (Novo Nordisk, A/S) from Candida antarctica was used to catalyze this reaction. The main factors influencing the degree of esterification and triglyceride yield were the amount of enzyme, water content, temperature and glycerol/fatty acid ratio. The optimum reaction conditions were established as: 100 mg of lipase; 9 ml hexane; 50°C; glycerol/PUFA concentrate molar ratio 1.2:3; 0% initial water; 1 g molecular sieves added at the start of reaction; and an agitation rate of 200 rpm. Under these conditions, a triglyceride yield of 93.5% was obtained from cod liver oil PUFA concentrate; the product contained 25.7% eicosapentaenoic acid and 44.7% docosahexaenoic acid. These optimized conditions were used to study esterification from a PUFA concentrate of the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. With the first, a triglyceride yield of 96.5%, without monoglycerides and very few diglycerides, was obtained after 72 h of reaction; the resulting triglycerides had 42.5% eicosapentaenoic acid. A triglyceride yield of 89.3% was obtained from a P. cruentum PUFA concentrate at 96 h of reaction, which contained 43.4% arachidonic acid and 45.6% EPA. These high triglyceride yields were also achieved when the esterification reaction was scaled up 5-fold.  相似文献   

10.
为了增加芦丁的脂溶性从而使其具有更优秀的抗氧化活性,以硬脂酸和月桂酸为酰基供体,在脂肪酶Novozym 435催化下对芦丁选择性酯化.经色谱柱提纯,得到两种带不同长度烃基的芦丁脂肪酸酯.用红外光谱和核磁共振波谱对芦丁硬脂酸进行了结构鉴定,表明该类酯化物的酯化反应位为鼠李糖的C4′″位羟基.以高效液相色谱监测酯化反应进程,分子筛添加时间对酯化率的研究结果显示,分子筛对酯化率和反应速率有提高的作用.分子筛添加时间对酯化率有影响.对于硬脂酸为酰基供体的情况,反应24h后添加分子筛的酯化反应可以得到最大的酯化转化率46%.以月桂酸为酰基供体的酯化反应,反应11 h后添加分子筛可以得到最大的酯化转化率64.5%.  相似文献   

11.
Simple alkyl ester derivatives of restaurant grease were prepared using a lipase from Pseudomonoas cepacia immobilized within a phyllosilicate sol-gel matrix as biocatalyst. Alcoholysis reactions of grease were carried out in solvent-free media using a one-step addition of alcohol to the reaction mixture. The immobilized lipase was active from 40 to 70 °C. Ester yields (60–97%) were highest when using a ratio of reactants of 2 mmol grease to 8 mmol alcohol and the biocatalyst was 10% (w/w) of grease in the presence of molecular sieves.  相似文献   

12.
填充床反应器中酶法连续合成甘油二酯的研究   总被引:2,自引:0,他引:2  
近年来,1,3-甘油二酯(DAG)由于其广泛用途及健康作用日益受到人们的重视。报道了一种无溶剂条件下填充床反应器中连续酶促合成1,3-DAG的方法。研究了填充柱的长径比、进料体积流速、温度、底物摩尔比对酯化率和1,3-DAG产量的影响。结果表明固定化酶填充柱长径比7.8,亚油酸、甘油摩尔比1∶2 ,进料速度1.2mL/min ,65℃条件下酯化反应可实现脂肪酸酯化率、1,3-DAG纯度及生产效率的统一。填充床反应器中固定化酶连续催化酯化反应的一个主要问题即体系水分清除困难。实验研究了采用过量甘油吸附脱水的可行性,亚油酸、甘油摩尔比为1∶2时,可明显改善固定化酶的稳定性,增加LipozymeRMIM的使用寿命。连续运行10d ,残余酶活仍保持在80 %以上,而对照组则仅为52%。  相似文献   

13.
Sayari A  Mejdoub H  Gargouri Y 《Biochimie》2000,82(2):153-159
Turkey pancreatic lipase (TPL) was purified from delipidated pancreases. Pure TPL (glycerol ester hydrolase, EC 3.1.1.3) was obtained after ammonium sulfate fractionation, Sephacryl S-200 gel filtration, anion exchange chromatography (DEAE-Sepharose) and size exclusion column using high performance liquid chromatography system (HPLC). The pure lipase, which is not a glycoprotein, was presented as a monomer having a molecular mass of about 45 kDa. The lipase activity was maximal at pH 8.5 and 37 degrees C. TPL hydrolyses the long chains triacylglycerols more efficiently than the short ones. A specific activity of 4300 U/mg was measured on triolein as substrate at 37 degrees C and at pH 8.5 in the presence of colipase and 4 mM NaTDC. This enzyme presents the interfacial activation when using tripropionin as substrate. TPL was inactivated when the enzyme was incubated at 65 degrees C or at pH less than 5. Natural detergent (NaTDC), synthetic detergent (Tween-20) or amphipatic protein (beta-lactoglobulin A) act as potent inhibitors of TPL activity. To restore the lipase activity inhibited by NaTDC, colipase should be added to the hydrolysis system. When lipase is inhibited by synthetic detergent or protein, simultaneous addition of colipase and NaTDC was required to restore the TPL activity. The first 22 N-terminal amino acid residues were sequenced. This sequence was similar to those of mammal's pancreatic lipases. The biochemical properties of pancreatic lipase isolated from bird are similar to those of mammals.  相似文献   

14.
Immobilized Mucor miehei lipase catalyzes synthesis reactions between glycerol and oleic acid. No organic solvent is necessary to solubilize the substrates, which allows for the use of a reaction medium solely composed of the necessary substrates. Water produced in the reaction evaporates due to the high temperature used for the process. A conversion of 86% of oleic acid into triolein is obtained when using the substrates in stoichiometric amounts. Varying the ratio of glycerol over oleic acid allows for the preferential synthesis of one of the glycerides. Some batch reactors have been set up using different means of removing the water: spontaneous evaporation, molecular sieves, vacuum, and dry air bubbling.  相似文献   

15.
Enzymatic synthesis of ethyl glucoside lactate in non-aqueous system   总被引:1,自引:0,他引:1  
Ethyl glucoside lactate, a novel α-hydroxy acid derivative, was synthesized by transesterification in non-aqueous phase using immobilized lipase as biocatalyst. Parameters such as solvent type, substrate concentration, reaction temperature, and enzyme concentration were investigated to optimize the lipase-catalyzed transesterification. In solvent-free system with butyl lactate as both acyl donor and solvent, a 71% conversion was achieved. In order to investigate the effect of initial water content, the reactions were carried out in the mediums treated with molecular sieves. The results showed that conversion and initial rate decreased with the increase of water content. The conversion and initial rate reached to 95% and 67.4 mM/h, respectively, by carrying out the reaction under reduced pressure, which was employed to eliminate butanol and the initial water.  相似文献   

16.
A Penicillium simplicissimum strain has been found to produce an inducible extracellular lipase. Triolein was the best inducer for the enzyme production with the highest activity being achieved after 48 h of incubation. The purified lipase showed a molecular weight of 56,000 by SDS-PAGE. The enzyme exhibited a high ratio of apolar amino acids. The lipase was stable in the pH range of 5-7 and at 50 degrees C for 15 min. The optimum assay conditions were 37 degrees C and pH 5.0. The enzyme showed a high stability in water immiscible organic solvents. Lipase from P. simplicissimum is nonspecific and hydrolyses each of the three bonds of triacylglycerols.  相似文献   

17.
Glycerol carbonate was synthesized from renewable glycerol and dimethyl carbonate using lipase in solvent-free reaction system in which excess dimethyl carbonate played as the reaction medium. A variety of lipases have been tested for their abilities to catalyze transesterification reaction, and Candida antartica lipase B and Novozyme 435 exhibited higher catalytic activities. The silica-coated glycerol with a 1:1 ratio was supplied to prevent two-phase formation between hydrophobic dimethyl carbonate and hydrophilic glycerol. Glycerol carbonate was successfully synthesized with more than 90% conversion from dimethyl carbonate and glycerol with a molar ratio of 10 using Novozyme 435-catalyzed transesterification at 70 °C. The Novozyme 435 [5% (w/w) and 20% (w/w)] and silica gel were more than four times recycled with good stability in a repeated batch operation for the solvent-free synthesis of glycerol carbonate.  相似文献   

18.
An extracellular lipase was isolated from the cell-free broth of Bacillus sp. GK 8. The enzyme was purified to 53-fold with a specific activity of 75.7 U mg(-1) of protein and a yield of 31% activity. The apparent molecular mass of the monomeric protein was 108 kDa as estimated by molecular sieving and 112 kDa by SDS-PAGE. The proteolysis of the native molecule yields a low molecular weight component of 11.5 kDa that still retains the active site. It was stable at the pH range of 7.0-10.0 with optimum pH 8.0. The enzyme was stable at 50 degrees C for 1 h with a half life of 2 h, 40 min, and 18 min at 60, 65, and 70 degrees C, respectively. With p-nitrophenyl laurate as substrate the enzyme exhibited a K(m) and V(max) of 3.63 mM and 0.26 microM/min/ml, respectively. Activity was stimulated by Mg(2+) (10 mM), Ba(2+) (10 mM), and SDS (0.1 mM), but inhibited by EDTA (10 mM), phenylmethane sulfonyl fluoride (100 mM), diethylphenylcarbonate (10 mM), and eserine (10 mM). It hydrolyzes triolein at all positions. The fatty acid specificity of lipase is broad with little preference for C(4) and C(18:1). Thermostability of the proteolytic fragment at 60 degrees C was observed to be 37% of the native protein. The native enzyme was completely stable in ethylene glycol and glycerol (30% v/v each) for 60 min at 65 degrees C.  相似文献   

19.
The present study reports the improved enzymatic synthesis of ethyl valerate (green apple flavor) by esterification reaction of ethanol and valeric acid in heptane medium. Lipase from Thermomyces lanuginosus (TLL) was immobilized by physical adsorption on polyhydroxybutyrate (PHB) particles and used as a potential biocatalyst. The effect of certain parameters that influence the ester synthesis was evaluated by factorial design. The experimental conditions that maximized the synthesis of ethyl valerate were 30.5°C, 18% m/v of biocatalyst (TLL–PHB), absence of molecular sieves, agitation of 234?rpm, and 1,000?mM of each reactant (ethanol and valeric acid). Under these conditions, conversion percentage ≈92% after 105?min of reaction was observed. Soluble TLL was also used as biocatalyst and the highest conversion was of 82% after 120?min of reaction. Esterification reaction performed in a solvent-free system exhibited conversion of 13% after 45?min of reaction catalyzed by immobilized lipase, while the soluble lipase did not exhibit catalytic activity. The synthesis of the ester was confirmed by Fourier transform infrared spectroscopy and gas chromatography–mass spectrometry analyses. After six consecutive cycles of ethyl valerate synthesis, the prepared biocatalyst retained ≈86% of its original activity.  相似文献   

20.
We have isolated a lipolytic strain from palm fruit that was identified as a Rhizopus oryzae. Culture conditions were optimized and highest lipase production amounting to 120 U/ml was achieved after 4 days of cultivation. The extracellular lipase was purified 1200-fold by ammonium sulfate precipitation, sulphopropyl-Sepharose chromatography, Sephadex G 75 gel filtration and a second sulphopropyl-Sepharose chromatography. The specific activity of the purified enzyme was 8800 U/mg. The lipolytic enzyme has a molecular mass of 32 kDa by SDS-polyacrylamide gel electrophoresis and gel filtration. The enzyme exhibited a single band in active polyacrylamide gel electrophoresis and its isoelectric point was 7.6. Analysis of Rhizopus oryzae lipase by RP-HPLC confirmed the homogeneity of the enzyme preparation. Determination of the N-terminal sequence over 19 amino acid residues showed a high homology with lipases of the same genus. The optimum pH for enzyme activity was 7.5. Lipase was stable in the pH range from 4.5 to 7.5. The optimum temperature for lipase activity was 35 degrees C and about 65% of its activity was retained after incubation at 45 degrees C for 30 min. The lipolytic enzyme was inhibited by Triton X100, SDS, and metal ions such as Fe(3+), Cu(2+), Hg(2+) and Fe(2+). Lipase activity against triolein was enhanced by sodium cholate or taurocholate. The purified lipase had a preference for the hydrolysis of saturated fatty acid chains (C(8)-C(18)) and a 1, 3-position specificity. It showed a good stability in organic solvents and especially in long chain-fatty alcohol. The enzyme poorly hydrolyzed triacylglycerols containing n-3 polyunsaturated fatty acids, and appeared as a suitable biocatalyst for selective esterification of sardine free fatty acids with hexanol as substrate. About 76% of sardine free fatty acids were esterified after 30 h reaction whereas 90% of docosahexaenoic acid (DHA) was recovered in the unesterified fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号