首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The graphene oxide (GO) was covalently coupled to the surfaces of silica gel (SiO2) microspheres by amide bond to get the graphene oxide@silica gel (GO@SiO2). Then, the GO@SiO2 was reduced with hydrazine to the reduced graphene oxide@silica gel (rGO@SiO2), and the cellulose derivatives were physically coated on the surfaces of rGO@SiO2 to prepare a chiral stationary phase (CSP) for high performance liquid chromatography. Under the optimum experimental conditions, eight benzene‐enriched enantiomers were separated completely, and the resolution of trans‐stilbene oxide perfectly reached 4.83. Compared with the blank column of non‐bonded rGO, the separation performance is better on the new CSP, which is due to the existence of rGO to produce special retention interaction with analytes, such as π‐π stacking, hydrophobic effect, π‐π electron‐donor–acceptor interaction, and hydrogen bonding. Therefore, the obtained CSP shows special selectivity for benzene‐enriched enantiomers, improves separation selectivity and efficiency, and rGO plays a synergistic effect with cellulose derivatives on enantioseparation.  相似文献   

2.
Coating cellulose tris (3,5‐dimethylphenylcarbamate) (CDMPC) on silica gels with large pores have been demonstrated as an efficient way for the preparation of chiral stationary phase (CSP) for high‐performance liquid chromatography (HPLC). During the process, a number of parameters, including the type of coating solvent, amount of coating, and the method for subsequent solvent removing, have been proved to affect the performance of the resultant CSPs. Coating times and the concentration of coating solution, however, also makes a difference to CSPs' performance by changing the arrangement of cellulose derivatives while remaining the coating amount constant, have much less been studied before, and thereby, were systematically investigated in this work. Results showed that CSPs with more coating times exhibited higher chiral recognition and column efficiency, suggesting that resolution was determined by column efficiency herein. Afterwards, we also investigated the effect of coating amount on the performance of CSPs, and it was shown that the ability of enantio‐recognition did not increase all the time as the coating amount; and four of seven racemates achieved best resolution when the coating amount reached to 18.37%. At the end, the reproducibility of CDMPC‐coated CSPs were further confirmed by two methods, ie, reprepared the CSP‐0.15‐3 and reevaluated the effect of coating times.  相似文献   

3.
《Chirality》2017,29(3-4):147-154
Separations of six dihydropyridine enantiomers on three commercially available cellulose‐based chiral stationary phases (Chiralcel OD‐RH, Chiralpak IB, and Chiralpak IC) were evaluated with high‐performance liquid chromatography (HPLC). The best enantioseparation of the six chiral drugs was obtained with a Chiralpak IC (250 × 4.6 mm i.d., 5 μm) column. Then the influence of the mobile phase including an alcohol‐modifying agent and alkaline additive on the enantioseparation were investigated and optimized. The optimal mobile phase conditions and maximum resolution for every analyte were as follows respectively: n‐hexane/isopropanol (85:15, v /v) for nimodipine (R  = 5.80) and cinildilpine (R  = 5.65); n‐hexane/isopropanol (92:8, v /v) for nicardipine (R  = 1.76) and nisoldipine (R  = 1.92); and n‐hexane/isopropanol/ethanol (97:2:1, v /v/v) for felodipine (R  = 1.84) and lercanidipine (R  = 1.47). Relative separation mechanisms are discussed based on the separation results, and indicate that the achiral parts in the analytes' structure showed an important influence on the separation of the chiral column.  相似文献   

4.
L ‐Dibenzoyl tartaric acid was mono‐esterified with benzyl alcohol, and then chlorinated with SOCl2 to give (2S,3S)‐1‐(benzyloxy)‐4‐chloro‐1,4‐dioxobutane‐2,3‐diyl dibenzoate (Selector 1 ). (1R,2R)‐1,2‐Diphenylethylenediamine was mono‐functionalized with phenyl isocyanate and phenylene diisocyanate in sequence to give (1R,2R)‐1,2‐diphenyl‐2‐(3‐phenylureido)ethyl 4‐ isocyanatophenylurea (Selector 2 ). Two brush‐type chiral stationary phases (CSPs) of single selector were prepared by separately immobilizing selectors 1 and 2 on aminated silica gel. Selectors 1 and 2 were simultaneously immobilized on aminated silica gel to give a mixed selector CSP. The enantioseparation ability of these CSPs was studied. The CSP of selector 1 has strongest separation ability, while the enantioseparation ability of the mixed selector CSP is relatively lower. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
《Chirality》2017,29(8):430-442
Six chiral derivatives of xanthones (CDXs) were covalently bonded to silica, yielding the corresponding xanthonic chiral stationary phases (XCSPs). The new XCSPs were packed into stainless‐steel columns with 150 x 4.6 mm i.d. Moreover, the greening of the chromatographic analysis by reducing the internal diameter (150 x 2.1 mm i.d.) of the liquid chromatography (LC) columns was also investigated. The enantioselective capability of these phases was evaluated by LC using different chemical classes of chiral compounds, including several types of drugs. A library of CDXs was evaluated in order to explore the principle of reciprocity as well as the chiral self‐recognition phenomenon. The separation of enantiomeric mixtures of CDXs was investigated under multimodal elution conditions. The XCSPs provided high specificity for the enantiomeric mixtures of CDXs evaluated mainly under normal‐phase elution conditions. Furthermore, two XCSPs were prepared with both enantiomers of the same xanthonic selector in order to confirm the inversion order elution.  相似文献   

6.
Jin JY  Lee W 《Chirality》2007,19(2):120-123
The liquid chromatographic separation of the enantiomers of several N-hydrazide derivatives of 2-aryloxypropionic acids was performed on a crown ether type chiral stationary phase derived from (18-crown-6)-2,3,11,12-tetracarboxylic acid. The behavior of chromatographic parameters by the change of mobile phases and additives for the resolution of these analytes was investigated. The enantiomers of all analytes were base-line resolved with a mobile phase of 100% methanol containing 20 mM H2SO4. These results are the first reported for enantiomer resolution of chiral acids of 2-aryloxypropionic acids as their N-hydrazide derivatives.  相似文献   

7.
Phenylcarbonate, benzoylformate, and p-toluenesulfonylcarbamate of cellulose and five new benzoylcarbamate derivatives of both cellulose and amylose were synthesized and their chiral recognition abilities were evaluated as chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC). Cellulose benzoylcarbamate has a higher chiral recognition ability compared to phenylcarbonate, p-toluenesulfonylcarbamate, and benzoylformate of cellulose. The benzoylcarbamate derivatives exhibited a characteristic chiral recognition for the racemates, which bear a hydrogen atom capable of hydrogen bonding to the carbonyl group of the benzoylcarbamates. The structures of the benzoylcarbamates were investigated by CD spectroscopy.  相似文献   

8.
Huang SH  Bai ZW  Yin CQ  Li SR  Pan ZQ 《Chirality》2007,19(2):129-140
Two new chiral polymers of different molecular weights were synthesized by the copolymerization of (1R,2R)-(+)-1,2-diphenylethylenediamine, phenyl diisocyanate and terephthaloyl chloride. The polymers were immobilized on aminated silica gel to afford two chiral stationary phases. The polymers and the corresponding chiral stationary phases were characterized by Fourier transform-IR, elemental analysis, 1H and 13C NMR. The surface coverages of chiral structural units on the chiral stationary phases were estimated as 0.27 and 0.39 mmol/g, respectively. The enantioseparation ability of these chiral stationary phases was evaluated with a variety of chiral compounds by high-performance liquid chromatography. The effects of the organic additives, the composition of mobile phases, and the injection amount of sample on enantioseparation were investigated. A comparison of enantioseparation ability between these two chiral stationary phases was made. It was believed that the chain length of polymeric chiral selector significantly affected the enantioseparation ability of corresponding chiral stationary phase.  相似文献   

9.
Racemic cyclohexylaminoglutethimide (±ChAG) and its acetylated metabolite (±ChAG) were resolved by a direct chromatographic method using a Chiracel OD column without derivatization. Maximum resolutions (R) of 4.89 and 0.74 were obtained for the enantiomers of cyclohexylaminoglutethimide and its acetylated metabolite, respectively.  相似文献   

10.
Tang S  Li X  Wang F  Liu G  Li Y  Pan F 《Chirality》2012,24(2):167-173
Four regioselective-carbamoylated cellulose derivatives having two different substituents at 2-, 3-, and 6-position were prepared and evaluated as chiral stationary phases (CSPs) for high-performance liquid chromatography. Investigations showed that the nature and arrangement of the substituents significantly influenced the chiral recognition abilities of the heterosubstituted cellulose derivatives and each derivative exhibited characteristic enantioseparation. Some racemates were better resolved on these derivatives than the corresponding homogeneously substituted cellulose derivatives including a commercial CSP, Chiralcel OD. Racemic compounds shown in this study were most effectively discriminated on cellulose 2,3-(3-chloro-4-methylphenylcarbamate)-6-(3,5-dimethylphenylcarbamate) and 2,3-(3,5-dimethylphenylcarbamate)-6-(3-chloro-4-methylphenylcarbamate).  相似文献   

11.
Park JY  Jin KB  Hyun MH 《Chirality》2012,24(5):427-431
3-Amino-5-phenyl (or 5-methyl)-1,4-benzodiazepin-2-ones, which are chiral precursors of anti-respiratory syncytial virus active agents, were resolved on three different chiral stationary phases (CSPs) based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid or (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6. Among the three CSPs, the CSP that is based on (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 and containing residual silanol group-protecting n-octyl groups on the silica surface was found to be most effective with the use of 80% ethanol in water containing perchloric acid (10 mM) and ammonium acetate (1.0 mM) as a mobile phase. The separation factors (α) and resolutions (R(S) ) were in the range of 1.90-3.21 and 2.79-5.96, respectively. From the relationship between the analyte structure and the chromatographic resolution behavior, the chiral recognition mechanism on the CSP based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid was proposed to be different from that on the CSP based on (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6. In addition, the chromatographic resolution behavior of the most effective CSP was investigated as a function of the composition of aqueous mobile phase containing organic and acidic modifier and ammonium acetate.  相似文献   

12.
Yin CQ  He BJ  Huang SH  Zhang JY  Bai ZW  Li ZY 《Chirality》2008,20(7):846-855
Four dendrimers were synthesized on aminopropyl-modified silica gel using methyl acrylate and ethylene diamine as building blocks by divergent method. Four generations of chiral stationary phases (CSPs) were prepared by coupling of L-2-(p-toluenesulfonamido)-3-phenylpropionyl chloride to corresponding dendrimers. The derivatives prepared on silica gel were characterized by FT-IR, (1)H NMR, and elemental analysis. The selector loadings of these four generations of CSPs generally showed a decrease tendency with the increase of generation numbers of dendrimers. The enantioseparation properties of these CSPs were preliminarily investigated by high-performance liquid chromatography. The CSP derived from the three-generation dendrimer exhibited the best enantioseparation capability. Effects of the mobile phase composition and molecular structures of racemic mixtures on enantioseparation were further studied.  相似文献   

13.
Cellulose triphenylcarbamate derivatives have been used as stationary phases for resolution of the enantiomers of the β-blockers propranolol and bupranolol by TLC. The derivatives examined were: cellulose trisphenylacarbamate (1), cellulose tris(2,3-dichlorophenyl carbamate) (2), cellulose tris(2,4-dichlorophenyl carbamate) (3), cellulose tris(2,6-dichlorophenyl carbamate) (4), cellulose tris (2,3-dimethylphenyl carbamate) (5), cellulose tris(3,4-dichlorophenyl carbamate) (6), cellulose tris(3,5-dichlorophenyl carbamate) (7), and cellulose tris(3,5-dimethylphenyl carbamate) (8). A variety of mobile phases were used to achieve useful separations and the effects of solvent polarity are also discussed. The best resolution of rac-propranolol was obtained on CSP 8 (RfR = 0.26, RfS = 0.06, α = 4.33) in mobile phase hexane:propan-2-ol (80:20 v/v). The best resolution of rac-bupranolol was obtained on CSP 5 (RfR = 0.29, RfS = 0.09, α = 3.22) in mobile phase hexane:propan-2-ol (80:20 v/v). These results demonstrated the potential of cellulose triphenylcarbamates as chiral stationary phases in TLC and indicate that this is potentially a useful method for the direct, simple, and rapid (within 30 min) resolution of racemates in the analytical control of enantiomeric purity. Physical aspects such as problems in cracking of the CSP, adhesion to plate, and interference of spot detection due to triphenylcarbamate chromphores are also discussed, along with the method employed to overcome them. Chirality 9:139–144, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
A chiral anion-exchanger stationary phase based on cinchonidine (CD) was developed. Two columns were packed with and without endcapping (EC) treatment (CD-chiral stationary phase[CD-CSP(EC)] and [CD-CSP], respectively) and studied for their ability to separate N-2,4-dinitrophenyl α-amino acids (DNP-amino acids) enantiomers over a temperature range of 10-40 °C with a hydro-organic buffer mobile phase. The more hydrophobic, endcapped stationary phase showed significantly larger retentive capacity than the non-endcapped one. The apparent thermodynamic transfer parameters of the enantiomers from the mobile to both CSPs were estimated from van't Hoff plots within the cited temperature range. Similar studies with two natural quinine-based columns (QN-CSP and QN-CSP(EC)) were previously reported. In this work, a critical comparison in the chiral recognition ability to DNP-amino acids of these cinchonidine and QN-based chiral columns was drawn. It has been found that QN-based CSPs show greater chiral recognition capability towards these derivatives than CD-CSPs. The influence of the QN methoxy group on the equilibrium constants of the enantioselective interaction between these DNP-amino acids with these two cinchona CSPs could be assessed.  相似文献   

15.
Direct enantiomer separation of hypericin, pseudohypericin, and protohypericin was accomplished by high‐performance liquid chromatography (HPLC) using immobilized polysaccharide‐type chiral stationary phases (CSPs). Enantioselectivities up to 1.30 were obtained in the polar‐organic elution mode whereby for hypericin and pseudohypericin Chiralpak IC [chiral selector being cellulose tris(3,5‐dichlorophenylcarbamate)] and for protohypericin Chiralpak IA (chiral selector being the 3,5‐dimethylphenylcarbamate of amylose) gave favorable results. Enantiomers were distinguished by on‐line electronic circular dichroism detection. Optimized enantioselective chromatographic conditions were the basis for determining stereodynamic parameters of the enantiomer interconversion process of hypericin and pseudohypericin. Rate constants delivered by computational simulation of dynamic HPLC elution profiles (stochastic model, consideration of peak tailing) were used to calculate averaged enantiomerization barriers (ΔG) of 97.6–99.6 kJ/mol for both compounds (investigated temperature range 25–45°C). Complementary variable temperature off‐column (i.e., in solution) racemization experiments delivered ΔG = 97.1–98.0 kJ/mol (27–45°C) for hypericin and ΔG = 98.9–101.4 kJ/mol (25–55°C) for pseudohypericin. An activation enthalpy of ΔH# = 86.0 kJ/mol and an activation entropy of ΔS# = ?37.7 J/(K mol) were calculated from hypericin racemization kinetics in solution, whereas for pseudohypericin these figures amounted to 74.1 kJ/mol and ?82.6 J/(K mol), respectively. Although the natural phenanthroperylene quinone pigments hypericin and pseudohypericin as well as their biological precursor protohypericin are chiral and can be separated by enantioselective HPLC low enantiomerization barriers seem to prevent the occurrence of an excess of one enantiomer under typical physiological conditions—at least as long as stereoselective intermolecular interactions with other chiral entities are absent. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Various cellulose-2,3-bis-arylcarbamate-6-O-arylesters and cellulose-2,3-bis-arylester-6-O-arylcarbamates, designed to test the possible combined effects of the known tris-arylcarbamate and tris-arylester classes, were synthesized with high regioselectivity at O-C(6), and their use as CSP s in liquid chromatography for enantiomeric separations was investigated. The separations obtained with the synthesized CSP s were compared to the separations achieved on a self-packed reference column, consisting of cellulose-tris-(3,5-dimethylphenyl-carbamate) as CSP standard. Among the synthesized, regioselectively substituted cellulose derivatives, 2,3-bis-O-(3,5-dimethylphenylcarbamate)-6-O-benzoate-cellulose and 2,3-bis-O-(benzoate)-6-O-(3,5-dichlorophenylcarbamate)-cellulose gave the best CSP s for the separation of the test racemates. CSP s from regioselectively substituted cellulose derivatives seem to exhibit higher selectivities than cellulose-tris-(3,5-dimethylphenylcarbamate) for certain classes of racemic compounds. Chirality 10:294–306, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) was coated on large-pore silica gels and used as a chiral stationary phase (CSP) for high-performance liquid chromatographic separation of enantiomers. The influences of pore size of silica gel, coating amount of CDMPC, coating solvent, and column temperature on chiral discrimination were investigated. CSPs prepared with a large-pore silica gel having a small surface area showed higher chiral recognition. The amount of CDMPC adsorbed on the silica gel influenced the chiral recognition of some racemates. Loading capacity of racemates increased with an increase of the amount of CDMPC supported on the silica gel, and a CSP coated with 45% CDMPC by weight can be used for both analytical and semi-preparative scale separations. The CDMPC, coated using acetone as the coating solvent, exhibited, in many cases, higher enantioselectivity than that obtained with tetrahydrofuran F as the coating solvent. © 1996 Wiley-Liss, Inc.  相似文献   

18.
A novel biselector bonded-type multifunctional chiral stationary phase (MCSP) was prepared by covalently crosslinking dialdehyde cellulose (DAC) with 6-monodeoxy-6-monoamino-β-cyclodextrine (CD) via Schiff base reaction. The biselector bonded-type MCSP had good chiral and achiral chromatographic performance in normal phase (NP) and reversed phase (RP) modes. Seven and eight enantiomers were successfully separated on the prepared biselector bonded-type MCSP in NP and RP modes, respectively. The biselector bonded-type MCSP showed enhanced chiral resolution ability compared with single selector chiral stationary phases due to the simultaneous introduction of DAC and 6-monodeoxy-6-monoamino-β-CD on the surface of silica gel. Aromatic compounds including polycyclic aromatic hydrocarbons, anilines, phenols, phenylates, and aromatic acids were choosed as analytes to investigate the achiral chromatographic performance of the biselector bonded-type MCSP in NP and RP modes. Chromatographic evaluation results showed that the above aromatic compounds were essentially capable of achieving baseline separation by hydrophobic interaction, π-π interaction, and π-π electron-donor-acceptor interaction. Moreover, the host-guest inclusion effect of 6-monodeoxy-6-monoamino-β-CD and the multiple interactions made the biselector bonded-type MCSP have good steric selectivity. The preparation method of the biselector bonded-type MCSP was simple and provided a new idea and strategy for the preparation of the subsequent novel biselector MCSP.  相似文献   

19.
We present a method for the enantioselective analysis of albendazole sulfoxide (ABZSO) in plasma for application in clinical pharmacokinetic studies. ABZSO enantiomers were separated on a 5-μm Chiralcel OB-H® column (4.6 × 150 mm) using hexane:ethanol (93:7, v/v) as the mobile phase and fluorescence detection. ABZSO was extracted with chloroform:isopropanol (8:2, v/v) from 500-μl aliquots of acidified plasma, with full drug recovery. The proposed method presented quantitation limits of 20 ng/ml for (−)ABZSO and 50 ng/ml for (+)ABZSO and was linear up to a concentration of 5,000 ng/ml of each enantiomer. Chirality 9:722–726, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
A novel liquid chromatographic method was developed for enantiomeric separation of lorcaserin hydrochloride on Chiralpak IA column containing chiral stationary phase immobilized with amylose tris (3.5‐dimethylphenylcarbamate) as chiral selector. Baseline separation with resolution greater than 4 was achieved using mobile phase containing mixture of n‐hexane/ethanol/methanol/diethylamine (95:2.5:2.5:0.1, v/v/v/v) at a flow rate of 1.2 mL/min. The limit of detection and limit of quantification of the S‐enantiomer were found to be 0.45 and 1.5 μg/mL, respectively; the developed method was validated as per ICH guideline. The influence of column oven temperatures studied in the range of 20°C to 50°C on separation was studied; from this, retention, separation, and resolution were investigated. The thermodynamic parameters ΔH°, ΔS°, and ΔG° were evaluated from van't Hoff plots,(Ink′ versus 1/T) and used to explain the strength of interaction between enantiomers and immobilized amylose–based chiral stationary phase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号