首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphological engineering techniques have recently gained popularity as they are used for increasing the productivity of a variety of metabolites and enzymes in fungi growing in submerged cultures. Their action is mainly associated with the changes they evoke in fungal morphology. Traditional morphological engineering approaches include manipulation of spore concentration, pH-shifting and mechanical stress exerted by stirring and aeration. As the traditional methods proved to be insufficient, modern techniques such as changes of medium osmolality or addition of mineral microparticles to the media (microparticle-enhanced cultivation, MPEC) were proposed. Despite the fact that this area of knowledge is still being developed, there are a fair amount of scientific articles concerning the cultivations of filamentous fungi with the use of these techniques. It was described that in Ascomycetes fungi both MPEC or change of osmolality successfully led to the change of mycelial morphology, which appeared to be favorable for increased productivity of secondary metabolites and enzymes. There are also limited but very promising reports involving the successful application of MPEC with Basidiomycetes species. Despite the fact that the mineral microparticles behave differently for various microorganisms, being strain and particle specific, the low cost of its application is a great benefit. This paper reviews the application of the modern morphology engineering techniques. The authors critically assess the advantages, shortcomings, and future prospects of their application in the cultivation of fungi.  相似文献   

2.
Filamentous fungi produce a wide range of relevant biotechnological compounds. The close relationship between fungal morphology and productivity has led to a variety of analytical methods to quantify their macromorphology. Nevertheless, only a µ-computed tomography (µ-CT) based method allows a detailed analysis of the 3D micromorphology of fungal pellets. However, the low sample throughput of a laboratory µ-CT limits the tracking of the micromorphological evolution of a statistically representative number of submerged cultivated fungal pellets over time. To meet this challenge, we applied synchrotron radiation-based X-ray microtomography at the Deutsches Elektronen-Synchrotron [German Electron Synchrotron Research Center], resulting in 19,940 3D analyzed individual fungal pellets that were obtained from 26 sampling points during a 48 h Aspergillus niger submerged batch cultivation. For each of the pellets, we were able to determine micromorphological properties such as number and density of spores, tips, branching points, and hyphae. The computed data allowed us to monitor the growth of submerged cultivated fungal pellets in highly resolved 3D for the first time. The generated morphological database from synchrotron measurements can be used to understand, describe, and model the growth of filamentous fungal cultivations.  相似文献   

3.
Changing fungal morphology with the use of morphological engineering techniques leads to improving the production of metabolites by filamentous fungi in the submerged culture. Adding mineral microparticles is one such simple method to change fungal pellet size. Here, it was studied for a lovastatin producer, Aspergillus terreus ATCC 20542. The experiments were conducted in shake flasks and 10 μm talc microparticles were added to the preculture. Intrapellet oxygen concentration profiles were determined by an oxygen microprobe. Talc microparticles caused a decrease of A. terreus pellets diameter from about 2000 to 900 μm, dependent on their concentration in the preculture. Smaller pellets produced more lovastatin, whose titre exceeded then 120 mg L?1, utilising more lactose. The decrease in pellet size resulted in changes of oxygen concentration profiles in the pellets. The estimated critical pellet diameter, at which the non‐oxygenated zone was observed in the centre of the pellets, was 1700 μm. Smaller pellets were fully penetrated by oxygen. To conclude, facilitated diffusion of oxygen into the pellets of smaller diameter and their less dense structure made lactose utilisation by A. terreus more efficient, which ultimately increased lovastatin production in the runs with talc microparticles added, compared to the control runs.  相似文献   

4.
The biodegradation of photographic gelatin grade (Bloom 225) material was studied by viscometry in aqueous solution (at 37 °C, 6.67% w/w) using filamentous fungi isolated and identified from cinematographic film stored in different Spanish archives. From viscosity data, different variables such as molecular weight and chain scission were calculated. To ensure initial spore suspension concentration was standardized for all the biodegradation experiments, a correlation between transmittance at 530 nm of fungal spore suspensions and the corresponding cytometric determination of populations was established for all the fungal strains studied in this work. The bioassay experiments were carried out at 25 and 4 °C using an initial concentration of fungi of 4.5×105 conidia/mL except in the case of the genus Alternaria, where the concentration was 10 times lower. The fungal strains were three species of Aspergillus, i.e., A .ustus, A. nidulans var. nidulans, A. versicolor, seven Penicillium chrysogenum strains, and Cladosporium cladosporioides, Alternaria alternata, Mucor racemosus, Phoma glomerata, and Trichoderma longibrachiatum. All were gelatinase positive. Through the viscosity decay profiles with bioassay-time and the corresponding calculated chain scission, the relative quantitative gelatinase efficiency of these fungi has been evaluated.  相似文献   

5.
Twenty-one strains belonging to 18 species of basidiomycetes from different ecological groups of fungi were isolated from natural sources. Light and electron microscopy was used to determine the morphological properties of the cultures, which confirmed their classification as basidiomycetes and facilitated their identification in monocultures. The capacity of the fungal strains for biosynthesis of antibiotics was determined by one- or two-stage cultivation on seven nutrient media. It was established that, under submerged cultivation, antimicrobial substances were formed by 13 strains (81.25%) of 12 fungal species (Armillaria sp., Coprinus comatus, Flammulina velutipes, Hypsizygus ulmarius, Lentinus tigrinus, Lycoperdon pyriforme, Macrolepiota procera, Panellus serotinus, Pholiota aurivella, Pholiota lenta, Rhodocollybia maculate, and Sparassis crispa). The antibiotics formed were efficacious against bacterial test strains, including the methicillin-resistant strain Staphylococcus aureus (MRSA) and the strain Leuconostoc mesenteroides VKPM B-4177 that is resistant to the glycopeptide antibiotics. No antibiotic activity was revealed against fungal test cultures (Aspergillus niger INA 00760 and Saccharomyces cerevisiae RIA 259).  相似文献   

6.
Filamentous fungi are widely used in the production of biotechnological compounds. Since their morphology is strongly linked to productivity, it is a key parameter in industrial biotechnology. However, identifying the morphological properties of filamentous fungi is challenging. Owing to a lack of appropriate methods, the detailed three-dimensional morphology of filamentous pellets remains unexplored. In the present study, we used state-of-the-art X-ray microtomography (µCT) to develop a new method for detailed characterization of fungal pellets. µCT measurements were performed using freeze-dried pellets obtained from submerged cultivations. Three-dimensional images were generated and analyzed to locate and quantify hyphal material, tips, and branches. As a result, morphological properties including hyphal length, tip number, branch number, hyphal growth unit, porosity, and hyphal average diameter were ascertained. To validate the potential of the new method, two fungal pellets were studied—one from Aspergillus niger and the other from Penicillium chrysogenum. We show here that µCT analysis is a promising tool to study the three-dimensional structure of pellet-forming filamentous microorganisms in utmost detail. The knowledge gained can be used to understand and thus optimize pellet structures by means of appropriate process or genetic control in biotechnological applications.  相似文献   

7.
Effects of ultrasound amplitude and duty cycle on cultures of Aspergillus terreus are reported in a 25 l slurry bubble column sonobioreactor. Fermentations were carried out batchwise. A 2k-factorial design with added central points was used. Sonication at any cycle and amplitude level did not affect biomass growth rate and yield relative to nonsonicated control, but did affect growth morphology. Ultrasound disrupted fungal pellets and caused the biomass to grow mainly as dispersed hyphae. Production of lovastatin was reduced by medium- and high-cycle sonication. Sonication affected broth rheology. In view of these results, sonication can be used to modify growth morphology and broth rheology without affecting growth rate and yield of filamentous fungi.  相似文献   

8.
Filamentous fungi and yeasts associated with the marine algae Adenocystis utricularis, Desmarestia anceps, and Palmaria decipiens from Antarctica were studied. A total of 75 fungal isolates, represented by 27 filamentous fungi and 48 yeasts, were isolated from the three algal species and identified by morphological, physiological, and sequence analyses of the internal transcribed spacer region and D1/D2 variable domains of the large-subunit rRNA gene. The filamentous fungi and yeasts obtained were identified as belonging to the genera Geomyces, Antarctomyces, Oidiodendron, Penicillium, Phaeosphaeria, Aureobasidium, Cryptococcus, Leucosporidium, Metschnikowia, and Rhodotorula. The prevalent species were the filamentous fungus Geomyces pannorum and the yeast Metschnikowia australis. Two fungal species isolated in our study, Antarctomyces psychrotrophicus and M. australis, are endemic to Antarctica. This work is the first study of fungi associated with Antarctic marine macroalgae, and contributes to the taxonomy and ecology of the marine fungi living in polar environments. These fungal species may have an important role in the ecosystem and in organic matter recycling.  相似文献   

9.
Lovastatin, a hypocholesterolemic agent, is a secondary metabolite produced by filamentous microorganism Aspergillus terreus in submerged batch cultivation. Lovastatin production by pellets and immobilized siran cells was investigated in an airlift reactor. The process was carried out by submerged cultivation in continuous mode with the objective of increasing productivity using pellet and siran supported growth of A terreus. The continuous mode of fermentation improves the rate of lovastatin production. The effect of dilution rate and aeration rate were studied in continuous culture. The optimum dilution rate for pellet was 0.02 h−1 and for siran carrier was 0.025 h−1. Lovastatin productivity using immobilized siran carrier (0.0255 g/L/h) was found to be greater than pellets (0.022 g/L/h). The productivity by both modes of fermentation was found higher than that of batch process which suggests that continuous cultivation is a promising strategy for lovastatin production.  相似文献   

10.
The biodegradation of photographic gelatin grade (Bloom 225) material was studied by viscometry in aqueous solution (at 37 °C, 6.67% w/w) using filamentous fungi isolated and identified from cinematographic film stored in different Spanish archives. From viscosity data, different variables such as molecular weight and chain scission were calculated. To ensure initial spore suspension concentration was standardized for all the biodegradation experiments, a correlation between transmittance at 530 nm of fungal spore suspensions and the corresponding cytometric determination of populations was established for all the fungal strains studied in this work. The bioassay experiments were carried out at 25 and 4 °C using an initial concentration of fungi of 4.5×105 conidia/mL except in the case of the genus Alternaria, where the concentration was 10 times lower. The fungal strains were three species of Aspergillus, i.e., A .ustus, A. nidulans var. nidulans, A. versicolor, seven Penicillium chrysogenum strains, and Cladosporium cladosporioides, Alternaria alternata, Mucor racemosus, Phoma glomerata, and Trichoderma longibrachiatum. All were gelatinase positive. Through the viscosity decay profiles with bioassay-time and the corresponding calculated chain scission, the relative quantitative gelatinase efficiency of these fungi has been evaluated.  相似文献   

11.
12.
Yeasts and filamentous fungi carried by the gynes of leaf-cutting ants   总被引:1,自引:1,他引:0  
Insect-associated microbes exhibit a wide range of interactions with their hosts. One example of such interactions is the insect-driven dispersal of microorganisms, which plays an essential role in the ecology of several microbes. To study dispersal of microorganisms by leaf-cutting ants (Formicidae: Attini), we applied culture-dependent methods to identify the filamentous fungi and yeasts found in two different body parts of leaf-cutting ant gynes: the exoskeleton and the infrabuccal pocket. The gynes use the latter structure to store a pellet of the ants’ symbiotic fungus during nest founding. Many filamentous fungi (n = 142) and yeasts (n = 19) were isolated from the gynes’ exoskeleton. In contrast, only seven filamentous fungi and three yeasts isolates were recovered from the infrabuccal pellets, suggesting an efficient mechanism utilized by the gynes to prevent contamination of the symbiotic fungus inoculum. The genus Cladosporium prevailed (78%) among filamentous fungi whereas Aureobasidium, Candida and Cryptococcus prevailed among yeasts associated with gynes. Interestingly, Escovopsis, a specialized fungal pathogen of the leaf-cutting ant-fungus symbiosis, was not isolated from the body parts or from infrabuccal pellets of any gynes sampled. Our results suggest that gynes of the leaf-cutter ants Atta laevigata and A. capiguara do not vertically transmit any particular species of yeasts or filamentous fungi during the foundation of a new nest. Instead, fungi found in association with gynes have a cosmopolitan distribution, suggesting they are probably acquired from the environment and passively dispersed during nest foundation. The possible role of these fungi for the attine ant–microbial symbiosis is discussed.  相似文献   

13.
A screening was carried out on 69 fungal strains isolated from alkaline-calcareous, neutral and alkaline-sodic soils, as well as from their associated plant material, to determine their ability to grow at alkaline pH. A total of 32 fungi were selected for their ability to produce alkaline keratinase activity in submerged shaken cultures supplemented with soybean meal (SM) and tryptone and on cow hair (CH) under solid state fermentation conditions. Although several fungal strains produced keratinolytic activity on both SM and CH, they differed in the levels detected. Among them, Aspergillus niger, Cladosporium cladosporioides, Metarrhizium anisopliae, Neurospora tetrasperma and Westerdikella dispersa were the best producers, with levels higher than 1.2 U ml−1. Different fungal species are here reported for the first time for their ability to produce keratinolytic activity at alkaline pH.  相似文献   

14.
Eucalyptus citriodora Hook, is frequently cultivated tree in India for its wood and medicinal usages. The endophytic and epiphytic fungi were estimated from healthy leaves of E. citriodora growing in the premise of Banaras Hindu University, Varanasi, India. A total of 33 fungal species were isolated from leaf segments. Of 33 taxa, 20 were recorded as endophytes, while 22 as epiphytes. Nine, out of 33 species were found to be common in leaf tissues and surfaces (Alternaria alternata, Aspergillus fumigatus, A. terreus, Cladosporium cladosporioides, Drechslera rostrata, Humicola grisea, Nigrospora oryzae, Penicillium cristata, and Pestalotia sp.). Out of 478 fungal isolates, 279 were epiphytic while only 199 were endophytic. Most isolates were anamorphic filamentous fungi which often don’t produce sexual spores. The Sorensen’s index of similarity between endophytes and epiphytes (leaf surface colonizers) was found to be at 0.300. Diversity index of fungal species was higher in endophytes than epiphytes. The frequency of colonization differs greatly in both myco-populations. Cladosporium cladosporioides (26%) was dominant species on leaf surfaces while Botrytis cinerea (10.5%) was dominant in leaf tissues. Out of 16 endophytic isolates evaluated for antagonistic test, 8 (50%) gave the antagonistic activity against variety of fungi representing pathogens to both humans and plants.  相似文献   

15.
Lipid-accumulating fungi may be able to produce biodiesel precursors from agricultural wastes. As a first step in understanding and evaluating their potential, a mathematical model was developed to describe growth, lipid accumulation and substrate consumption of the oleaginous fungus Umbelopsis isabellina (also known as Mortierella isabellina) in submerged chemostat cultures. Key points of the model are: (1) if the C-source supply rate is limited, maintenance has a higher priority than growth, which has a higher priority than lipid production; (2) the maximum specific lipid production rate of the fungus is independent of the actual specific growth rate. Model parameters were obtained from chemostat cultures of U. isabellina grown on mineral media with glucose and NH4 +. The model describes the results of chemostat cultures well for D > 0.04 h−1, but it has not been validated for lower dilution rates because of practical problems with the filamentous fungus. Further validation using literature data for oleaginous yeasts is described in part II of this paper. Our model shows that not only the C/N-ratio of the feed, but also the dilution rate highly influences the lipid yield in chemostat cultures.  相似文献   

16.
The diversity of endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane plants and its isoline was evaluated by cultivation followed by amplified rDNA restriction analysis (ARDRA) of randomly selected strains. Transgenic and non-transgenic cultivars and their crop management (herbicide application or manual weed control) were used to assess the possible non-target effects of genetically modified sugarcane on the fungal endophytic community. A total of 14 ARDRA haplotypes were identified in the endophytic community of sugarcane. Internal transcribed spacer (ITS) sequencing revealed a rich community represented by 12 different families from the Ascomycota phylum. Some isolates had a high sequence similarity with genera that are common endophytes in tropical climates, such as Cladosporium, Epicoccum, Fusarium, Guignardia, Pestalotiopsis and Xylaria. Analysis of molecular variance indicated that fluctuations in fungal population were related to both transgenic plants and herbicide application. While herbicide applications quickly induced transient changes in the fungal community, transgenic plants induced slower changes that were maintained over time. These results represent the first draft on composition of endophytic filamentous fungi associated with sugarcane plants. They are an important step in understanding the possible effects of transgenic plants and their crop management on the fungal endophytic community.  相似文献   

17.
The aerobiology can play a key role in protecting the rice crop since many fungi can cause serious damage to agricultural areas. In this way, the ideal time to implement different security measures can be identified. To determine the presence of potentially pathogenic fungi in the air of the rice agroecosystem, a weekly monitoring of viable fungi was carried out using a volumetric sampler. Collected fungi were quantified, isolated, and identified based on their morphological characteristics. The results obtained demonstrated that the annual average concentration of filamentous fungi in the atmosphere of rice agroecosystem studied was 1,225 cfu m−3 levels ranging between 115 cfu m−3 (April) and 2,865 cfu m−3 (August). Pyricularia grisea was detected in the air for 5 months, since the second week of June until the first week of October, and highest average concentration (25 cfu m−3) was observed in August. Of the meteorological factors evaluated, temperature and relative air humidity influence the concentration of propagules of P. grisea in the air. Besides, other fungi were detected such as Curvularia, Bipolaris, Alternaria, and Cercospora, all with relevance to rice cultivation. This is the first characterization of aeromycological biodiversity in the studied region.  相似文献   

18.
Efficient RNA isolation is a prerequisite for gene expression studies and it has an increasingly important role in the study of plant–fungal pathogen interactions. However, RNA isolation is difficult in filamentous fungi. These organisms are notorious for their rigid cell walls and the presence of high levels of carbohydrates, excreted from the fungal cells during submerged growth, which interferes with the extraction procedures. Although many commercial kits are already available for RNA isolation, they do not provide, in most cases, enough amount of pure RNA to be used in upstream applications. In the present work, we propose an easy and efficient protocol for isolating total RNA from the filamentous fungus Mycosphaerella fijiensis, the most important foliar pathogen of Musa spp. varieties worldwide. In addition, we applied the proposed protocol to the isolation of total RNA from banana leaves infected with the pathogen. Our methodology was developed based on the SDS method with modifications including a carbohydrate precipitation step. The protocol resulted in high-quality total RNA, from fungal mycelium grown in PDB medium and infected banana leaves, suitable for further molecular studies. The proposed methodology is also applicable to the ascomycete fungus Passalora fulva (syn. Cladosporum fulvum). Aminael Sánchez-Rodríguez and Orelvis Portal contributed equally to the article.  相似文献   

19.
Otomycosis is common throughout the world but barely studied in Spain. Our objective was to determine the microbiological and epidemiological characteristics of this pathology in Cadiz (Spain) between 2005 and 2010. Samples from patients with suspicion of otomycosis underwent a direct microscopic examination and culture on different media for fungi and bacteria. Mycological cultures were incubated at 30°C for at least seven days. Identification of fungi was based on colonial morphology and microscopic examination of fungal structure. From a total of 2,633 samples, microbial growth was present in 1,375 (52.2%) and fungal isolation in 390 (28.4%). We identified 228 yeasts and 184 filamentous fungi (13.4% of positive cultures and 47.2% of otomycosis), associated with yeasts in 22 cases (5.6%). The most frequent species were Aspergillus flavus (42.4%), A. niger (35.9%), A. fumigatus (12.5%), A. candidus (7.1%), A. terreus (1.6%), and Paecilomyces variotii (0.5%). Infection was predominant in men (54.9%) and patients beyond 55 years old (46.8%). The most common clinical symptoms were itching (98.9%), otalgia (59.3%), and hypoacusis (56.0%). Fall season reported the lowest number of cases (20.1%). Incidence of otomycosis and fungi producing otomycosis vary within the distinct geographical areas. In Cadiz, this infection is endemic due to warm temperatures, high humidity, sea bathing, and wind, which contributes to disseminate the conidia. Despite Aspergillus niger has been reported as the main causative agent, A. flavus is predominant in Cadiz. Although infection is usually detected in warm months, we observed a homogeneous occurrence of otomycosis in almost all the seasons.  相似文献   

20.
This is the first report of isolation of fungi present in fatty and defatted castor bean meal as well as the first of crop’s selection to test the cellulolytic potential, in order to verify the diversity and potential of cellulolytic fungi in castor bean waste (Ricinus communis L.). For the screening on solid medium, it was used carboxymethylcellulose (CMC) as the sole carbon source. The microcrystalline cellulose (Avicel) was used as a substrate for submerged fermentation for production of cellobiohydrolase (FPase) and the CMC to produce endoglucanases (CMCase) and β-glycosidases (BG). 189 cultures of fungi were isolated, including 40 species of filamentous fungi and three yeasts. The Aspergillus was the most frequent found genus. Regarding the distribution of isolated species from defatted castor bean meal, the A. niger was the most frequent one; and within the fatty castor bean meal, the Emericela variecolor prevailed among other species. Among the 67 fungal cultures tested in the initial screening on solid media to assess the cellulolytic potential, 54 disclosed Cellulolytic Index (CI) ranging from 1.04 to 6.00 mm. The isolates were selected for enzyme production in liquid medium with values above 2.0 CI. They were obtained with A. japonicus URM5620 FPase activity (4.99 U/ml) and BG (0.05 U/ml), and Rhodotorula glutinis URM5724 activity of CMCase 3.58 U/ml. These cases occurred after 168 h of submersion for both species of fungi. In our study, we could conclude that the castor bean is a promising source of fungi capable of producing cellulolytic enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号