首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Bioenergy with Carbon Capture and Storage (BECCS) features heavily in the energy scenarios designed to meet the Paris Agreement targets, but the models used to generate these scenarios do not address environmental and social implications of BECCS at the regional scale. We integrate ecosystem service values into a land‐use optimization tool to determine the favourability of six potential UK locations for a 500 MW BECCS power plant operating on local biomass resources. Annually, each BECCS plant requires 2.33 Mt of biomass and generates 2.99 Mt CO2 of negative emissions and 3.72 TWh of electricity. We make three important discoveries: (a) the impacts of BECCS on ecosystem services are spatially discrete, with the most favourable locations for UK BECCS identified at Drax and Easington, where net annual welfare values (from the basket of ecosystems services quantified) of £39 and £25 million were generated, respectively, with notably lower annual welfare values at Barrow (?£6 million) and Thames (£2 million); (b) larger BECCS deployment beyond 500 MW reduces net social welfare values, with a 1 GW BECCS plant at Drax generating a net annual welfare value of £19 million (a 50% decline compared with the 500 MW deployment), and a welfare loss at all other sites; (c) BECCS can be deployed to generate net welfare gains, but trade‐offs and co‐benefits between ecosystem services are highly site and context specific, and these landscape‐scale, site‐specific impacts should be central to future BECCS policy developments. For the United Kingdom, meeting the Paris Agreement targets through reliance on BECCS requires over 1 GW at each of the six locations considered here and is likely, therefore, to result in a significant welfare loss. This implies that an increased number of smaller BECCS deployments will be needed to ensure a win–win for energy, negative emissions and ecosystem services.  相似文献   

2.
Bioenergy with carbon capture and storage (BECCS) has been proposed as a potential climate mitigation strategy raising concerns over trade‐offs with existing ecosystem services. We evaluate the feasibility of BECCS in the Upper Missouri River Basin (UMRB), a landscape with diverse land use, ownership, and bioenergy potential. We develop land‐use change scenarios and a switchgrass (Panicum virgatum L.) crop functional type to use in a land‐surface model to simulate second‐generation bioenergy production. By the end of this century, average annual switchgrass production over the UMRB ranges from 60 to 210 Tg dry mass/year and is dependent on the Representative Concentration Pathway for greenhouse gas emissions and on land‐use change assumptions. Under our simple phase‐in assumptions this results in a cumulative total production of 2,000–6,000 Tg C over the study period with the upper estimates only possible in the absence of climate change. Switchgrass yields decreased as average CO2 concentrations and temperatures increased, suggesting the effect of elevated atmospheric CO2 was small because of its C4 photosynthetic pathway. By the end of the 21st century, the potential energy stored annually in harvested switchgrass averaged between 1 and 4 EJ/year assuming perfect conversion efficiency, or an annual electrical generation capacity of 7,000–28,000 MW assuming current bioenergy efficiency rates. Trade‐offs between bioenergy and ecosystem services were identified, including cumulative direct losses of 1,000–2,600 Tg C stored in natural ecosystems from land‐use change by 2090. Total cumulative losses of ecosystem carbon stocks were higher than the potential ~300 Tg C in fossil fuel emissions from the single largest power plant in the region over the same time period, and equivalent to potential carbon removal from the atmosphere from using biofuels grown in the same region. Numerous trade‐offs from BECCS expansion in the UMRB must be balanced against the potential benefits of a carbon‐negative energy system.  相似文献   

3.
Land‐based solutions are indispensable features of most climate mitigation scenarios. Here we conduct a novel cross‐sectoral assessment of regional carbon mitigation potential by running an ecosystem model with an explicit representation of forest structure and climate impacts for Bavaria, Germany, as a case study. We drive the model with four high‐resolution climate projections (EURO‐CORDEX) for the representative concentration pathway RCP4.5 and present‐day land‐cover from three satellite‐derived datasets (CORINE, ESA‐CCI, MODIS) and identify total mitigation potential by not only accounting for carbon storage but also material and energy substitution effects. The model represents the current state in Bavaria adequately, with a simulated forest biomass 12.9 ± 0.4% lower than data from national forest inventories. Future land‐use changes according to two ambitious land‐use harmonization scenarios (SSP1xRCP2.6, SSP4xRCP3.4) achieve a mitigation of 206 and 247 Mt C (2015–2100 period) via reforestation and the cultivation and burning of dedicated bioenergy crops, partly combined with carbon capture and storage. Sensitivity simulations suggest that converting croplands or pastures to bioenergy plantations could deliver a carbon mitigation of 40.9 and 37.7 kg C/m2, respectively, by the year 2100 if used to replace carbon‐intensive energy systems and combined with CCS. However, under less optimistic assumptions (including no CCS), only 15.3 and 12.2 kg C/m2 are mitigated and reforestation might be the better option (20.0 and 16.8 kg C/m2). Mitigation potential in existing forests is limited (converting coniferous into mixed forests, nitrogen fertilization) or even negative (suspending wood harvest) due to decreased carbon storage in product pools and associated substitution effects. Our simulations provide guidelines to policy makers, farmers, foresters, and private forest owners for sustainable and climate‐benefitting ecosystem management in temperate regions. They also emphasize the importance of the CCS technology which is regarded critically by many people, making its implementation in the short or medium term currently doubtable.  相似文献   

4.
The implementation of measures to increase productivity and resource efficiency in food and bioenergy chains as well as to more sustainably manage land use can significantly increase the biofuel production potential while limiting the risk of causing indirect land use change (ILUC). However, the application of these measures may influence the greenhouse gas (GHG) balance and other environmental impacts of agricultural and biofuel production. This study applies a novel, integrated approach to assess the environmental impacts of agricultural and biofuel production for three ILUC mitigation scenarios, representing a low, medium and high miscanthus‐based ethanol production potential, and for three agricultural intensification pathways in terms of sustainability in Lublin province in 2020. Generally, the ILUC mitigation scenarios attain lower net annual emissions compared to a baseline scenario that excludes ILUC mitigation and bioethanol production. However, the reduction potential significantly depends on the intensification pathway considered. For example, in the moderate ILUC mitigation scenario, the net annual GHG emissions in the case study are 2.3 MtCO2‐eq yr?1 (1.8 tCO2‐eq ha?1 yr?1) for conventional intensification and ?0.8 MtCO2‐eq yr?1 (?0.6 tCO2‐eq ha?1 yr?1) for sustainable intensification, compared to 3.0 MtCO2‐eq yr?1 (2.3 tCO2‐eq ha?1 yr?1) in the baseline scenario. In addition, the intensification pathway is found to be more influential for the GHG balance than the ILUC mitigation scenario, indicating the importance of how agricultural intensification is implemented in practice. Furthermore, when the net emissions are included in the assessment of GHG emissions from bioenergy, the ILUC mitigation scenarios often abate GHG emissions compared to gasoline. But sustainable intensification is required to attain GHG abatement potentials of 90% or higher. A qualitative assessment of the impacts on biodiversity, water quantity and quality, soil quality and air quality also emphasizes the importance of sustainable intensification.  相似文献   

5.
Biomass has been widely recognized as an important energy source with high potential to reduce greenhouse gas emissions while minimizing environmental pollution. In this study, we employ the Global Change Assessment Model to estimate the potential of agricultural and forestry residue biomass for energy production in China. Potential availability of residue biomass as an energy source was analyzed for the 21st century under different climate policy scenarios. Currently, the amount of total annual residue biomass, averaged over 2003–2007, is around 15 519 PJ in China, consisting of 10 818 PJ from agriculture residues (70%) and 4701 PJ forestry residues (30%). We estimate that 12 693 PJ of the total biomass is available for energy production, with 66% derived from agricultural residue and 34% from forestry residue. Most of the available residue is from south central China (3347 PJ), east China (2862 PJ) and south‐west China (2229 PJ), which combined exceeds 66% of the total national biomass. Under the reference scenario without carbon tax, the potential availability of residue biomass for energy production is projected to be 3380 PJ by 2050 and 4108 PJ by 2095, respectively. When carbon tax is imposed, biomass availability increases substantially. For the CCS 450 ppm scenario, availability of biomass increases to 9002 PJ (2050) and 11 524 PJ (2095), respectively. For the 450 ppm scenario without CCS, 9183 (2050) and 11 150 PJ (2095) residue biomass, respectively, is projected to be available. Moreover, the implementation of CCS will have a little impact on the supply of residue biomass after 2035. Our results suggest that residue biomass has the potential to be an important component in China's sustainable energy production portfolio. As a low carbon emission energy source, climate change policies that involve carbon tariff and CCS technology promote the use of residue biomass for energy production in a low carbon‐constrained world.  相似文献   

6.
California has large and diverse biomass resources and provides a pertinent example of how biomass use is changing and needs to change, in the face of climate mitigation policies. As in other areas of the world, California needs to optimize its use of biomass and waste to meet environmental and socioeconomic objectives. We used a systematic review to assess biomass use pathways in California and the associated impacts on climate and air quality. Biomass uses included the production of renewable fuels, electricity, biochar, compost, and other marketable products. For those biomass use pathways recently developed, information is available on the effects—usually beneficial—on greenhouse gas (GHG) emissions, and there is some, but less, published information on the effects on criteria pollutants. Our review identifies 34 biomass use pathways with beneficial impacts on either GHG or pollutant emissions, or both—the “good.” These included combustion of forest biomass for power and conversion of livestock-associated biomass to biogas by anaerobic digestion. The review identified 13 biomass use pathways with adverse impacts on GHG emissions, criteria pollutant emissions, or both—the “bad.” Wildfires are an example of one out of eight pathways which were found to be bad for both climate and air quality, while only two biomass use pathways reduced GHG emissions relative to an identified counterfactual but had adverse air quality impacts. Issues of high interest for the “future” included land management to reduce fire risk, future policies for the dairy industries, and full life-cycle analysis of biomass production and use.  相似文献   

7.
In this article, we modify bioenergy model MiscanFor investigating global and UK potentials for Miscanthus × giganteus as a bioenergy resource for carbon capture in the 21st century under the RCP 2.6 climate scenario using SSP2 land use projections. UK bioenergy land projections begin in the 2040s, 60 year average is 0.47 Mega ha rising to 1.9 Mega ha (2090s). Our projections estimate UK energy generation of 0.09 EJ/year (60 year average) and 0.37 EJ/year (2090s), under stable miscanthus yields of 12 t ha?1 year?1. We estimate aggregated UK soil carbon (C) increases of 0.09 Mt C/year (60 year average) and 0.14 Mt C/year (2090s) with C capture plus sequestration rate of 2.8 Mt C/year (60 year average) and 10.49 Mt C/year (2090s). Global bioenergy land use begins in 2010, 90 year average is 0.13 Gha rising to 0.19 Gha by the 2090s, miscanthus projections give a 90 year average energy generation of 16 EJ/year, rising to 26.7 EJ/year by the 2090s. The largest national capabilities for yield, energy and C increase are projected to be Brazil and China. Ninety year average global miscanthus yield of 1 Gt/year will be 1.7 Gt/year by the 2090s. Global soil C sequestration increases less with time, from a century average of 73.6 Mt C/year to 42.9 Mt C/year by the 2090s with C capture plus sequestration rate of 0.54 Gt C/year (60 year average) and 0.81 Gt C/year (2090s). M. giganteus could provide just over 5% of the bioenergy requirement by the 2090s to satisfy the RCP 2.6 SSP2 climate scenario. The choice of global land use data introduces a potential source of error. In reality, multiple bioenergy sources will be used, best suited to local conditions, but results highlight global requirements for development in bioenergy crops, infrastructure and support.  相似文献   

8.
This study presents a cradle‐to‐gate assessment of the energy balances and greenhouse gas (GHG) emissions of Indonesian palm oil biodiesel production, including the stages of land‐use change (LUC), agricultural phase, transportation, milling, biodiesel processing, and comparing the results from different farming systems, including company plantations and smallholder plantations (either out growers or independent growers) in different locations in Kalimantan and Sumatra of Indonesia. The findings demonstrate that there are considerable differences between the farming systems and the locations in net energy yields (43.6–49.2 GJ t?1 biodiesel yr?1) as well as GHG emissions (1969.6–5626.4 kg CO2eq t?1 biodiesel yr?1). The output to input ratios are positive in all cases. The largest GHG emissions result from LUC effects, followed by the transesterification, fertilizer production, agricultural production processes, milling, and transportation. Ecosystem carbon payback times range from 11 to 42 years.  相似文献   

9.
Land‐use practices aiming at increasing agro‐ecosystem sustainability, e.g. no‐till systems and use of temporary grasslands, have been developed in cropping areas, but their environmental benefits could be counterbalanced by increased N2O emissions produced, in particular during denitrification. Modelling denitrification in this context is thus of major importance. However, to what extent can changes in denitrification be predicted by representing the denitrifying community as a black box, i.e. without an adequate representation of the biological characteristics (abundance and composition) of this community, remains unclear. We analysed the effect of changes in land uses on denitrifiers for two different agricultural systems: (i) crop/grassland conversion and (ii) cessation/application of tillage. We surveyed potential denitrification (PD), the abundance and genetic structure of denitrifiers (nitrite reducers), and soil environmental conditions. N2O emissions were also measured during periods of several days on control plots. Time‐integrated N2O emissions and PD were well correlated among all control plots. Changes in PD were partly due to changes in denitrifier abundance but were not related to changes in the structure of the denitrifier community. Using multiple regression analysis, we showed that changes in PD were more related to changes in soil environmental conditions than in denitrifier abundance. Soil organic carbon explained 81% of the variance observed for PD at the crop/temporary grassland site, whereas soil organic carbon, water‐filled pore space and nitrate explained 92% of PD variance at the till/no‐till site, without any residual effect of denitrifier abundance. Soil environmental conditions influenced PD by modifying the specific activity of denitrifiers, and to a lesser extent by promoting a build‐up of denitrifiers. Our results show that an accurate simulation of carbon, oxygen and nitrate availability to denitrifiers is more important than an accurate simulation of denitrifier abundance and community structure to adequately understand and predict changes in PD in response to land‐use changes.  相似文献   

10.
In this paper, we focus on the impact on soil organic carbon (SOC) of two dedicated energy crops: perennial grass Miscanthus x Giganteus (Miscanthus) and short rotation coppice (SRC)‐willow. The amount of SOC sequestered in the soil is a function of site‐specific factors including soil texture, management practices, initial SOC levels and climate; for these reasons, both losses and gains in SOC were observed in previous Miscanthus and SRC‐willow studies. The ECOSSE model was developed to simulate soil C dynamics and greenhouse gas emissions in mineral and organic soils. The performance of ECOSSE has already been tested at site level to simulate the impacts of land‐use change to short rotation forestry (SRF) on SOC. However, it has not been extensively evaluated under other bioenergy plantations, such as Miscanthus and SRC‐willow. Twenty‐nine locations in the United Kingdom, comprising 19 paired transitions to SRC‐willow and 20 paired transitions to Miscanthus, were selected to evaluate the performance of ECOSSE in predicting SOC and SOC change from conventional systems (arable and grassland) to these selected bioenergy crops. The results of the present work revealed a strong correlation between modelled and measured SOC and SOC change after transition to Miscanthus and SRC‐willow plantations, at two soil depths (0–30 and 0–100 cm), as well as the absence of significant bias in the model. Moreover, model error was within (i.e. not significantly larger than) the measurement error. The high degrees of association and coincidence with measured SOC under Miscanthus and SRC‐willow plantations in the United Kingdom, provide confidence in using this process‐based model for quantitatively predicting the impacts of future land use on SOC, at site level as well as at national level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号