首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008–2014 at a 5.4‐ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars – under low or high species diversity, with or without nitrogen inputs – and quantified establishment, biomass yield, and biomass composition. In one experiment (‘agronomic trial’), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment (‘diversity gradient’), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one‐third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year‐to‐year variation in yields was lowest in the three‐cultivar switchgrass mixtures and Cave‐In‐Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes can be included in biomass cropping systems without compromising yields and that genotypic mixtures could help provide high, stable yields of high‐quality biomass feedstocks.  相似文献   

2.
Prairie cordgrass (Spartina pectinata Link.) is indigenous throughout most of the continental United States and Canada to 60°N latitude and is well suited to marginal land too wet for maize (Zea mays L.) and switchgrass (Panicum virgatum L.). Evaluations of prairie cordgrass in Europe and North America indicated it has high potential for biomass production, relative to switchgrass, in short‐season areas. Our objective was to describe morphology and biomass production and partitioning in mature stands of ‘Red River’ prairie cordgrass and determine biomass production of natural populations on marginal land. This study was conducted from 2000 to 2008 in eastern South Dakota. Mean biomass production of mature stands of Red River was 12.7 Mg ha?1. Leaves composed >88% of the biomass, and 60% of the tillers had no internodes. Belowground biomass to a depth of approximately 25 cm, not including roots, was 21 Mg ha?1. Tiller density ranged from 683 tillers m?2 for a 10‐year‐old stand to 1140 tillers m?2 for a 4‐year‐old stand. The proaxis was composed of about eight phytomers, with rhizomes originating at proximal nodes and erect tillers at distal nodes. Vegetative propagation was achieved by both phalanx and guerilla growth. Differences among natural populations for biomass were expressed on gravelly marginal land. However, production, averaged across populations, was low (1.37 Mg ha?1) and comparable to ‘Cave‐In‐Rock’ switchgrass (1.67 Mg ha?1) over a 4‐year period. The large carbon storage capacity of prairie cordgrass in proaxes and rhizomes makes it useful for carbon sequestration purposes. Prairie cordgrass should be compared with switchgrass and other C4 perennial grasses along environmental gradients to determine optimum landscape positions for each and to maximize bioenergy production and minimize inputs.  相似文献   

3.
Within-field spatial variability reduces growers’ return on investment and overall productivity while potentially increasing negative environmental impacts through increased soil erosion, nutrient runoff, and leaching. The hypothesis that integrating energy crops into non-profitable segments of agricultural fields could potentially increase grain yield and biomass feedstock production was tested in this study using a statewide analysis of predominantly corn- and soy-producing counties in Iowa. Basic and rigorous controls on permissible soil and soil-carbon losses were imposed on harvest of crop residues to enhance year-to-year sustainability of crop and residue production. Additional criteria limiting harvesting costs and focus on large-area subfields for biomass production were imposed to reduce the impacts of energy crop integration on grain production. Model simulations were conducted using 4 years (2013–2016) of soil, weather, crop yield, and management practice data on all counties in Iowa. Miscanthus (Miscanthus x giganteus), switchgrass (Panicum virgatum), and crop-residue-based bioenergy feedstock systems were evaluated as biomass. Average energy crop and plant residue harvesting efficiencies were estimated at 50 and 60%, respectively. Because of higher potential yields, average logistics costs for miscanthus-based biomass production were 15 and 23% lower than switchgrass-based and crop residue-based biomass productions, respectively, under basic sustainability controls, and 17 and 26% lower under rigorous sustainability controls. Subfield shape, size, area, and harvest equipment size were the dominant factors influencing harvesting cost and efficiency suggesting that in areas where subfields are predominantly profitable or harvesting efficiencies low, other options such as prairie strips, buffer zones around fields, and riparian areas should be investigated for more profitable biomass production and sustainable farming systems.  相似文献   

4.
The agronomic performances of giant miscanthus (Miscanthus x giganteus) and switchgrass (Panicum virgatum L.) grown as bioenergy grasses are still unclear in North Carolina, due to a relatively short period of introduction. The objectives of the study were to compare the biomass yield and annual N removal of perennial bioenergy grasses and the commonly grown coastal bermudagrass [Cynodon dactylon (L.) Pers.], and to determine the optimum N rates and harvest practices for switchgrass and miscanthus. A 4-year field trial of the grasses under five annual harvest frequencies (May/Oct, June/Oct, July/Oct, Aug/Oct, and October only) and five annual N rates (0, 67,134, 202, and 268 kg N ha?1) was established at a research farm in Eastern North Carolina in 2011. Across harvest treatments and N rates, greatest biomass was achieved in the second growth year for both miscanthus (19.0 Mg ha?1) and switchgrass (15.9 Mg ha?1). Grasses demonstrated no N response until the second or the third year after crop establishment. Miscanthus reached a yield plateau with a N rate of 134 kg ha?1 since achieving plant maturity in 2013, whereas switchgrass demonstrated an increasing fertilizer N response from 134 kg N ha?1 in the third growth year (2014) to 268 kg N ha?1 in the fourth growth year (2015). The two-cut harvest system is not recommended for bioenergy biomass production in this region because it does not improve biomass yield and increased N removal leads to additional costs.  相似文献   

5.
Switchgrass (Panicum virgatum L.), big bluestem (Andropogon gerardii Vitman), and indiangrass (Sorghastrum nutans (L.) Nash) are native warm-season grasses commonly used for pasture, hay, and conservation. More recently switchgrass has also been identified as a potential biomass energy crop, but management of mixtures of these species for biomass is not well documented. Therefore, the objectives of our study were to: (1) determine the effects of harvest timing and N rate on yield and biomass characteristics of established warm-season grass stands containing a mixture of switchgrass, big bluestem, and indiangrass, and (2) evaluate the impact of harvest management on species composition. Five N rates (0, 56, 112, and 224 kg ha(-1) applied annually in spring and 224 kg ha(-1) evenly split between spring and fall) and two harvest timings (anthesis and killing frost) were applied to plots at two South Dakota USA locations from 2001 to 2003. Harvesting once a year shortly after a killing frost produced the greatest yields with high concentrations of neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) along with lower concentrations of total nitrogen (TN) and ash. This harvest timing also allowed for the greatest percentage of desirable species while maintaining low grass weed percentages. While N rates of 56 and 112 kg ha(-1) tended to increase total biomass without promoting severe invasion of grass and broadleaf weed species, N application did not always result in significant increases in biomass production. Based on these results, mixtures of switchgrass and big bluestem were well suited for sustainable biomass energy production. Furthermore, N requirements of these mixtures were relatively low thus reducing production input costs.  相似文献   

6.
Although upgrading bio-oil from fast pyrolysis of biomass is an attractive pathway for biofuel production, nitrogen (N) and mineral matter carried over from the feedstock to the bio-oil represents a serious contaminant in the process. Reducing the N and ash content of biomass feedstocks would improve process reliability and reduce production costs of pyrolytic biofuels. This study investigated: (1) How does switchgrass harvest date influence the yield, N concentration ([N]), and ash concentration of biomass and fast pyrolysis products? and (2) Is there a predictive relationship between [N] of switchgrass biomass and [N] of fast pyrolysis products? Switchgrass from five harvest dates and varying [N] from central Iowa were pyrolyzed using a free-fall reactor. Harvestable biomass peaked in August (8.6 Mg ha?1), dropping significantly by November (6.7 Mg ha?1, P?=?0.0027). Production of bio-oil per unit area mirrored that of harvested biomass at each harvest date; however, bio-oil yield per unit dry biomass increased from 46.6 % to 56.7 % during the season (P?=?0.0018). Allowing switchgrass to senesce lowered biomass [N] dramatically, by as much as 68 % from June to November (P?<?0.0001). Concurrently, bio-oil [N] declined from 0.51 % in June to 0.17 % by November (P?<?0.0001). Significant reductions in ash concentration were also observed in biomass and char. Finally, we show for the first time that the [N] of switchgrass biomass is a strong predictor of the [N] of bio-oil, char, and non-condensable gas with R 2 values of 0.89, 0.94, and 0.88, respectively.  相似文献   

7.
The Southern High Plains (SHP) region of Texas in the United States, where cotton is grown in a vast acreage, has the potential to grow cellulosic bioenergy crops such as perennial grasses and biomass sorghum (Sorghum bicolor). Evaluation of hydrological responses and biofuel production potential of hypothetical land use change from cotton (Gossypium hirsutum L.) to cellulosic bioenergy crops enables better understanding of the associated key agroecosystem processes and provides for the feasibility assessment of the targeted land use change in the SHP. The Soil and Water Assessment Tool (SWAT) was used to assess the impacts of replacing cotton with perennial Alamo switchgrass (Panicum virgatum L.), Miscanthus × giganteus (Miscanthus sinensis Anderss. [Poaceae]), big bluestem (Andropogon gerardii) and annual biomass sorghum on water balances, water use efficiency and biofuel production potential in the Double Mountain Fork Brazos watershed. Under perennial grass scenarios, the average (1994–2009) annual surface runoff from the entire watershed decreased by 6–8% relative to the baseline cotton scenario. In contrast, surface runoff increased by about 5% under the biomass sorghum scenario. Perennial grass land use change scenarios suggested an increase in average annual percolation within a range of 3–22% and maintenance of a higher soil water content during August to April compared to the baseline cotton scenario. About 19.1, 11.1, 3.2 and 8.8 Mg ha?1 of biomass could potentially be produced if cotton area in the watershed would hypothetically be replaced by Miscanthus, switchgrass, big bluestem and biomass sorghum, respectively. Finally, Miscanthus and switchgrass were found to be ideal bioenergy crops for the dryland and irrigated systems, respectively, in the study watershed due to their higher water use efficiency, better water conservation effects, greater biomass and biofuel production potential, and minimum crop management requirements.  相似文献   

8.
Perennial grasses are promising feedstocks for bioenergy production in the Midwestern USA. Few experiments have addressed how drought influences their carbon fluxes and storage. This study provides a direct comparison of ecosystem‐scale measurements of carbon fluxes associated with miscanthus (Miscanthus × giganteus), switchgrass (Panicum virgatum), restored native prairie and maize (Zea mays)/soybean (Glycine max) ecosystems. The main objective of this study was to assess the influence of a naturally occurring drought during 2012 on key components of the carbon cycle and plant development relative to non‐extreme years. The perennials reached full maturity 3–5 years after establishment. Miscanthus had the highest gross primary production (GPP) and lowest net ecosystem exchange (NEE) in 2012 followed by similar values for switchgrass and prairie, and the row crops had the lowest GPP and highest NEE. A post‐drought effect was observed for miscanthus. Over the duration of the experiment, perennial ecosystems were carbon sinks, as indicated by negative net ecosystem carbon balance (NECB), while maize/soybean was a net carbon source. Our observations suggest that perennial ecosystems, and in particular miscanthus, can provide a high yield and a large potential for CO2 fixation even during drought, although drought may negatively influence carbon uptake in the following year, questioning the long‐term consequence of its maintained productivity.  相似文献   

9.
Extrusion pretreatment of biomass can be one of the viable continuous pretreatment methods. The torque requirement of feedstock during extrusion was an important factor, and it was not reported in the literature. Screw compression ratio, screw speed, barrel temperature, and feedstock moisture content are the contributing factors to the torque. The current study was undertaken to investigate the effect of screw compression ratio, screw speed, temperature on torque requirement for different moisture content of switchgrass, prairie cord grass, corn stover, and big bluestem and to compare the torque requirement among the selected feedstocks. Biomass was extruded in a lab scale single-screw extruder with different screw compression ratios (2:1 and 3:1), screw speeds (50, 100, and 150?rpm), and barrel temperatures (50°C, 100°C, and 150°C) over a range of moisture contents (15%, 25%, 35%, and 45% wb). Statistical analyses revealed that all the independent variables considered in this study had a significant effect on torque requirement for the selected feedstocks. Among the independent variables considered moisture content, screw speed, and temperature had a negative effect on torque requirement for all the feedstocks. Switchgrass required the highest torque followed by corn stover, big bluestem, and prairie cord grass.  相似文献   

10.
Information on the growth and development of warm‐season grasses in response to management is required to use them successfully as a biomass crop. Our objectives were to determine optimum harvest periods and effect of N fertilization rates on the biomass production of four warm‐season grasses, and to investigate if traits of canopy structure can explain observed yields with varying harvest dates and N rates. A field study was conducted at Sorenson Research Farm near Ames, IA, during 2006 and 2007. The experimental design was split‐split plot arranged in a randomized complete block with four replications. Big bluestem (Andropogon gerardii Vitman), eastern gamagrass (Tripsacum dactyloides L.), indiangrass (Sorghastrum nutrans L. Nash), and switchgrass (Panicum virgatum L.) were main plots. Three N application rates (0, 65, and 140 kg ha?1) were subplots, and 10 harvest dates were sub‐sub plots. Biomass of warm‐season grasses increased with advanced maturity, but differently among species. The maximum yield of eastern gamagrass occurred at the highest MSC (1.6 and 2.2) when the largest seed ripening tillers were present. Big bluestem, switchgrass, and indiangrass obtained the maximum yields at MSC 3.5, 3.9, and 2.9, respectively when the largest reproductive tillers were present. In terms of a biomass supply strategy, eastern gamagrass may be used during early summer, while big bluestem and switchgrass may be best used between mid‐ and late‐ summer, and indiangrass in early fall. Nitrogen fertilization increased yield by increasing tiller development. Optimum biomass yields were obtained later in the season when they were fertilized with 140 kg ha?1.  相似文献   

11.
High‐diversity mixtures of native tallgrass prairie vegetation should be effective biomass feedstocks because of their high productivity and low input requirements. These diverse mixtures should also enhance several of the ecosystem services provided by the traditional monoculture feedstocks used for bioenergy. In this study, we compared biomass production, year‐to‐year variation in biomass production, and resistance to weed invasion in four prairie biomass feedstocks with different diversity: one species – a switchgrass monoculture; five species – a mix of C4 grasses; 16 species – a mix of grasses, forbs, and legumes; and 32 species – a mix of grasses, forbs, legumes, and sedges. Each diversity treatment was replicated four times on three soil types for a total of 48 research plots (0.33–0.56 ha each). We measured biomass production by harvesting all plant material to ground level in ten randomly selected quadrats per plot. Weed biomass was measured as a subset of total biomass. We replicated this design over a five‐year period (2010–2014). Across soil types, the one‐, 16‐, and 32‐species treatments produced the same amount of biomass, but the one‐species treatment produced significantly more biomass than the five‐species treatment. The rank order of our four diversity treatments differed between soil types suggesting that soil type influences treatment productivity. Year‐to‐year variation in biomass production did not differ between diversity treatments. Weed biomass was higher in the one‐species treatment than the five‐, 16‐, and 32‐species treatments. The high productivity and low susceptibility to weed invasion of our 16‐ and 32‐species treatments supports the hypothesis that high‐diversity prairie mixtures would be effective biomass feedstocks in the Midwestern United States. The influence of soil type on relative feedstock performance suggests that seed mixes used for biomass should be specifically tailored to site characteristics for maximum productivity and stand success.  相似文献   

12.
Prairie cordgrass (Spartina pectinata, Link.) has been evaluated for its biomass potential because of its high yield, relatively low nutrient demand, and diverse geographical adaptation. Our objectives were to determine (1) biomass production potential of prairie cordgrass in South Dakota and Kansas under varying nitrogen levels, (2) the effect of N on prairie cordgrass yield components (tillers m?2 and tiller mass), and (3) the effect of N on yield and N concentration of belowground biomass. Older stands of Red River prairie cordgrass (RR-PCG) in South Dakota and Atkins prairie cordgrass (AT-PCG) in Kansas were fertilized with 0, 56, 112 and 168 kg N ha?1 from 2008 to 2011 in South Dakota and in 2009 and 2010 in Kansas. Experimental design at all locations was a 4?×?4 Latin square. Prairie cordgrass was harvested around a killing frost in October and early November. Biomass production ranged from 5.50 to 13.69 Mg ha?1 in South Dakota and 5.33 to 12.51 Mg ha?1 in Kansas. Prairie cordgrass yield did not increase significantly with N application at any location or year. Across years, tiller density ranged from 536 to 934 tillers m?2 for RR-PCG in South Dakota and from 234 to 315 tillers m?2 for AT-PCG in Kansas. Neither tiller density or tiller mass was affected by N rate at any location in any year. Belowground biomass production to a depth of 25 cm was equal to or greater than aboveground biomass. However, it was not affected by N rate in all locations by any year. Understanding prairie cordgrass nitrogen-use dynamics to improve biomass and nutrient management will be essential for future investigations. Findings of this study are important to support the notion that prairie cordgrass biomass production in two different environments can be achieved with minimal N inputs.  相似文献   

13.
This study evaluates the effect of agronomic uncertainty on bioenergy crop production as well as endogenous commodity and biomass prices on the feedstock composition of cellulosic biofuels under a binding mandate in the United States. The county‐level simulation model focuses on both field crops (corn, soybean, and wheat) and biomass feedstocks (corn stover, wheat straw, switchgrass, and Miscanthus). In addition, pasture serves as a potential area for bioenergy crop production. The economic model is calibrated to 2022 in terms of yield, crop demand, and baseline prices and allocates land optimally among the alternative crops given the binding cellulosic biofuel mandate. The simulation scenarios differ in terms of bioenergy crop type (switchgrass and Miscanthus) and yield, biomass production inputs, and pasture availability. The cellulosic biofuel mandates range from 15 to 60 billion L. The results indicate that the 15 and 30 billion L mandates in the high production input scenarios for switchgrass and Miscanthus are covered entirely by agricultural residues. With the exception of the low production input for Miscanthus scenario, the share of agricultural residues is always over 50% for all other scenarios including the 60 billion L mandate. The largest proportion of agricultural land dedicated to either switchgrass or Miscanthus is found in the southern Plains and the southeast. Almost no bioenergy crops are grown in the Midwest across all scenarios. Changes in the prices for the three commodities are negligible for cellulosic ethanol mandates because most of the mandate is met with agricultural residues. The lessons learned are that (1) the share of agricultural residue in the feedstock mix is higher than previously estimated and (2) for a given mandate, the feedstock composition is relatively stable with the exception of one scenario.  相似文献   

14.
Perennial bioenergy crops accumulate carbon (C) in soils through minimally disturbing management practices and large root inputs, but the mechanisms of microbial control over C dynamics under bioenergy crops have not been clarified. Root‐derived C inputs affect both soil microbial contribution to and degradation of soil organic matter resulting in differing soil organic carbon (SOC) concentrations, storage, and stabilities under different vegetation regimes. Here, we measured biomarker amino sugars and neutral sugars and used diffuse reflectance mid‐infrared Fourier transform spectroscopy (DRIFTS) to explore microbial C contributions, degradation ability, and SOC stability, respectively, under four potential bioenergy crops, Mgiganteus (Miscanthus × giganteus), switchgrass (Panicum virgatum L.), a mixed prairie, and a maize (Zea mays L.)–maize–soybean (Glycine max(L.) Merr.) (MMS) rotation over six growing seasons. Our results showed that SOC concentration (g/kg) increased by 10.6% in mixed prairie over the duration of this experiment and SOC storage (Mg/ha) increased by 17.0% and 15.6% in switchgrass and mixed prairie, respectively. Conversion of row crops to perennial grasses maintained SOC stability and increased bacterial residue contribution to SOC in Mgiganteus and switchgrass by 20.0% and 15.0%, respectively, after 6 years. Degradation of microbe‐derived labile SOC was increased in Mgiganteus, and degradation of both labile and stable SOC increased in MMS rotation. These results demonstrate that microbial communities under perennial grasses maintained SOC quality, while SOC quantity increased under switchgrass and mixed prairie. Annual MMS rotation displayed decreases in aspects of SOC quality without changes in SOC quantity. These findings have implications for understanding microbial control over soil C quantity and quality under land‐use shift from annual to perennial bioenergy cropping systems.  相似文献   

15.
The recent increase in corn ethanol production has drawn attention to the environmental sustainability of biofuel production. Environmental assessments of second‐generation biofuel crops (SGBC) have focused primarily on greenhouse gas emissions and water quality. However, expanding the production of cellulosic biomass resources, especially those that require dedicated agricultural land, is also likely to have impacts on biodiversity. We developed an optimization framework for projecting the spatial pattern of SGBC expansion in the United States and intersected these predictions with occurrence data for at‐risk species. In particular, we focused on two candidate perennial grass feedstocks, Panicum virgatum (switchgrass), and Miscanthus × giganteus (Miscanthus). Tradeoffs between biodiversity and economic profitability are assessed using county level data sets of SGBC yield, agricultural land availability, land rents, and at‐risk species occurrences. Results show that future SGBC expansion is likely to occur outside of the Corn Belt, where conventional biofuel feedstocks are currently grown. The set of at‐risk species that could potentially be impacted is therefore likely to be different from the at‐risk species prevalent in the agroecological landscapes of the Upper Midwest that are dominated by corn and soy production. The total number and type of potentially impacted taxa is influenced by several factors, including the total demand for cellulosic biomass, the type of agricultural land used for production, and the method for defining at‐risk species. SGBC production is also concentrated in fewer counties when a national species conservation constraint is combined with a biofuel production mandate. This analysis provides a foundation for future research on species conservation in bioenergy production landscapes and highlights the importance of incorporating biodiversity into broader environmental assessments of biofuel sustainability.  相似文献   

16.
High yielding, native warm-season grasses could be used as renewable bioenergy feedstocks. The objectives of this study were to determine the effect of warm season grass monocultures and mixtures on yield and chemical characteristics of harvested biomass and to evaluate the effect of initial seeding mixture on botanical composition over time. Switchgrass (Panicum virgatum L.), indiangrass [Sorghastrum nutans (L.) Nash], and big bluestem (Andropogon gerardii Vitman) were planted as monocultures and in all possible two- and three-way mixtures at three USA locations (Brookings and Pierre, SD and Morris, MN) during May 2002. Biomass at each location was harvested after a killing frost once annually from 2003 to 2005. Total biomass yield significantly increased with year at all locations. Switchgrass monocultures or mixtures containing switchgrass generally out-yielded big bluestem or indiangrass in monocultures or the binary mixture. Cellulose and hemicellulose concentrations were higher in 2004 and 2005 compared with 2003. Switchgrass or mixtures containing switchgrass tended to have less cellulose than either big bluestem or indiangrass. Results were more variable for total N, lignin, and ash. Switchgrass was the dominant component of all mixtures in which it was present while big bluestem was dominant when mixed with indiangrass. Indiangrass was maintained only in monocultures and declined over years when grown in mixtures at all locations. Our results indicated if biomass yield in the northern Great Plains is a primary objective, switchgrass should be a component of binary or tertiary mixtures that also contain big bluestem and/or indiangrass.  相似文献   

17.
Switchgrass (Panicum virgatum L.) and giant miscanthus (Miscanthus x giganteus Greef & Deuter ex Hodkinson & Renvoize) are productive on marginal lands in the eastern USA, but their productivity and composition have not been compared on mine lands. Our objectives were to compare biomass production, composition, and theoretical ethanol yield (TEY) and production (TEP) of these grasses on a reclaimed mined site. Following 25 years of herbaceous cover, vegetation was killed and plots of switchgrass cultivars Kanlow and BoMaster and miscanthus lines Illinois and MBX-002 were planted in five replications. Annual switchgrass and miscanthus yields averaged 5.8 and 8.9 Mg dry matter ha?1, respectively, during 2011 to 2015. Cell wall carbohydrate composition was analyzed via near-infrared reflectance spectroscopy with models based on switchgrass or mixed herbaceous samples including switchgrass and miscanthus. Concentrations were higher for glucan and lower for xylan in miscanthus than in switchgrass but TEY did not differ (453 and 450 L Mg?1, respectively). In response to biomass production, total ethanol production was greater for miscanthus than for switchgrass (5594 vs 3699 L ha?1), did not differ between Kanlow and BoMaster switchgrass (3880 and 3517 L ha?1, respectively), and was higher for MBX-002 than for Illinois miscanthus (6496 vs 4692 L ha?1). Relative to the mixed feedstocks model, the switchgrass model slightly underpredicted glucan and slightly overpredicted xylan concentrations. Estimated TEY was slightly lower from the switchgrass model but both models distinguished genotype, year, and interaction effects similarly. Biomass productivity and TEP were similar to those from agricultural sites with marginal soils.  相似文献   

18.
The extensive land use conversion expected to occur to meet demands for bioenergy feedstock production will likely have widespread impacts on agroecosystem biodiversity and ecosystem services, including carbon sequestration. Although arthropod detritivores are known to contribute to litter decomposition and thus energy flow and nutrient cycling in many plant communities, their importance in bioenergy feedstock communities has not yet been assessed. We undertook an experimental study quantifying rates of litter mass loss and nutrient cycling in the presence and absence of these organisms in three bioenergy feedstock crops—miscanthus (Miscanthus x giganteus), switchgrass (Panicum virgatum), and a planted prairie community. Overall arthropod abundance and litter decomposition rates were similar in all three communities. Despite effective reduction of arthropods in experimental plots via insecticide application, litter decomposition rates, inorganic nitrogen leaching, and carbon–nitrogen ratios did not differ significantly between control (with arthropods) and treatment (without arthropods) plots in any of the three community types. Our findings suggest that changes in arthropod faunal composition associated with widespread adoption of bioenergy feedstock crops may not be associated with profoundly altered arthropod‐mediated litter decomposition and nutrient release.  相似文献   

19.
Due to the rapid rate of worldwide consumption of nonrenewable fossil fuels, production of biofuels from cellulosic sources is receiving increased research emphasis. Here, we review the feasibility to produce lignocellulosic biomass on marginal lands that are not well-suited for conventional crop production. Large areas of these marginal lands are located in the central prairies of North America once dominated by tallgrass species. In this article, we review the existing literature, current work, and potential of two native species of the tallgrass prairie, prairie cordgrass (Spartina pectinata), and little bluestem (Schizachyrium scoparium) as candidates for commercial production of biofuel. Based on the existing literature, we discuss the need to accelerate research in the areas of agronomy, breeding, genetics, and potential pathogens. Cropping systems based on maintaining biodiversity across landscapes are essential for a sustainable production and to mitigate impact of pathogens and pests.  相似文献   

20.
Simulation models for perennial energy crops such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus) can be useful tools to design management strategies for biomass productivity improvement in US environments. The Agricultural Production Systems Simulator (APSIM) is a biophysical model with the potential to simulate the growth of perennial crops. APSIM crop modules do not exist for switchgrass and Miscanthus, however, re‐parameterization of existing APSIM modules could be used to simulate the growth of these perennials. Our aim was to evaluate the ability of APSIM to predict the dry matter (DM) yield of switchgrass and Miscanthus at several US locations. The Lucerne (for switchgrass) and Sugarcane (for Miscanthus) APSIM modules were calibrated using data from four locations in Indiana. A sensitivity analysis informed the relative impact of changes in plant and soil parameters of APSIM Lucerne and APSIM Sugarcane modules. An independent dataset of switchgrass and Miscanthus DM yields from several US environments was used to validate these re‐parameterized APSIM modules. The re‐parameterized modules simulated DM yields of switchgrass [0.95 for CCC (concordance correlation coefficient) and 0 for SB (bias of the simulation from the measurement)] and Miscanthus (0.65 and 0% for CCC and SB, respectively) accurately at most locations with the exception of switchgrass at southern US sites (0.01 for CCC and 2% for SB). Therefore, the APSIM model is a promising tool for simulating DM yields for switchgrass and Miscanthus while accounting for environmental variability. Given our study was strictly based on APSIM calibrations at Indiana locations, additional research using more extensive calibration data may enhance APSIM robustness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号