首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Novel 3‐alkyl‐4,1‐benzoxazepine‐2,5‐diones were synthesized in good ee exploiting the chiral pool methodology, an economical way of asymmetric synthesis. Various anthranilic acids are coupled with different α‐haloacids to afford N‐acylated anthranilic acid intermediates which undergo cyclization to (3R)‐3‐alkyl‐4,1‐benzoxazepines‐2,5‐diones. Chirality 25:865–870, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Cyclodipeptides, formed from two amino acids by cyclodehydration, are produced naturally by many organisms, and are known to possess a large number of biological activities. In this study, we found that cyclo (l ‐Pro‐l ‐Pro) and cyclo (d ‐Pro‐d ‐Pro) (where Pro is proline) could induce defence responses and systemic resistance in Nicotiana benthamiana. Treatment with the two cyclodipeptides led to a reduction in disease severity by Phytophthora nicotianae and Tobacco mosaic virus (TMV) infections compared with controls. Both cyclopeptides triggered stomatal closure, induced reactive oxygen species production and stimulated cytosolic calcium ion and nitric oxide production in guard cells. In addition, the application of cyclodipeptides significantly up‐regulated the expression of the plant defence gene PR‐1a and the PR‐1a protein, and increased cellular salicylic acid (SA) levels. These results suggest that the SA‐dependent defence pathway is involved in cyclodipeptide‐mediated pathogen resistance in N. benthamiana. We report the systemic resistance induced by cyclodipeptides, which sheds light on the potential of cyclodipeptides for the control of plant diseases.  相似文献   

3.
A sensitive and simple spectrofluorimetric method has been developed and validated for the determination of the anti‐epileptic drug carbamazepine (CBZ) in its dosage forms. The method was based on a nucleophilic substitution reaction of CBZ with 4‐chloro‐7‐nitrobenzo‐2‐ oxa‐1,3‐diazole (NBD‐Cl) in borate buffer (pH 9) to form a highly fluorescent derivative that was measured at 530 nm after excitation at 460 nm. Factors affecting the formation of the reaction product were studied and optimized, and the reaction mechanism was postulated. The fluorescence–concentration plot is rectilinear over the range of 0.6–8 µg/mL with limit of detection of 0.06 µg/mL and limit of quantitation of 0.19 µg/mL. The method was applied to the analysis of commercial tablets and the results were in good agreement with those obtained using the reference method. Validation of the analytical procedures was evaluated according to ICH guidelines. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The heterocyclic compound diethyl 6‐anilino‐5H‐2,3‐dithia‐5,7‐diazacyclopenta(cd)indene‐1,4‐dicarboxylate (D1) was found to form highly emissive aggregates in polar solvents, and the aggregate emission can be tuned by the simple addition of water to a dimethylsulfoxide solution. A theoretical study based on Density functional theory (DFT) calculations, shows that intermolecular interactions of D1 with solvent may be potential factors in the fluorescence change. In addition, the phenyl ring in D1 plays an important role because of its response to solvent. In the non‐aggregated state, deprotonation of the N–H of D1 can proceed easily on the addition of base, and the deprotonated compound might interact with Ag+, resulting in a significant change in color and fluorescence quenching, which make it a potential chemosensor for the selective detection of trace amounts of Ag+. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
6.
7.
Microbial activities and the versatility gained through adaptation to xenobiotic compounds are the main biological forces to counteract environmental pollution. The current results present a new adaptive mechanism that is mediated through posttranslational modifications. Strains of Delftia acidovorans incapable of growing autochthonously on 2,4‐dichlorophenoxyacetate (2,4‐D) were cultivated in a chemostat on 2,4‐D in the presence of (R)‐2‐(2,4‐dichlorophenoxy)propionate. Long‐term cultivation led to enhanced 2,4‐D degradation, as demonstrated by improved values of the Michaelis–Menten constant Km for 2,4‐D and the catalytic efficiency kcat/Km of the initial degradative key enzyme (R)‐2‐(2,4‐dichlorophenoxy)propionate/α‐ketoglutarate‐dependent dioxygenases (RdpA). Analyses of the rdpA gene did not reveal any mutations, indicating a nongenetic mechanism of adaptation. 2‐DE of enzyme preparations, however, showed a series of RdpA forms varying in their pI. During adaptation increased numbers of RdpA variants were observed. Subsequent immunoassays of the RdpA variants showed a specific reaction with 2,4‐dinitrophenylhydrazine (DNPH), characteristic of carbonylation modifications. Together these results indicate that posttranslational carbonylation modified the substrate specificity of RdpA. A model was implemented explaining the segregation of clones with improved degradative activity within the chemostat. The process described is capable of quickly responding to environmental conditions by reversibly adapting the degradative potential to various phenoxyalkanoate herbicides.  相似文献   

8.
This study is aimed at elucidating the structure of a novel T‐cell adhesion inhibitor, cyclo(1,8)‐CPRGGSVC using one‐ and two‐dimensional (2D) 1H NMR and molecular dynamics (MD) simulation. The peptide is derived from the sequence of its parent peptide cIBR (cyclo(1,12)‐PenPRGGSVLVTGC), which is a fragment of intercellular adhesion molecule‐1 (ICAM‐1). Our previous results show that the cyclo(1,8)‐CPRGGSVC peptide binds to the LFA‐1 I‐domain and inhibits heterotypic T‐cell adhesion, presumably by blocking the LFA‐1/ICAM‐1 interactions. The structure of the peptide was determined using NMR and MD simulation in aqueous solution. Our results indicate that the peptide adopts type‐I β‐turn conformation at the Pro2‐Arg3‐Gly4‐Gly5 (PRGG) sequence. The β‐turn structure at the PRGG motif is well conserved in cIBR peptide and ICAM‐1 receptor, which suggests the importance of the PRGG motif for the biological activity of cyclo(1,8)‐CPRGGSVC peptide. Meanwhile, the Gly5‐Ser6‐Val7‐Cys8‐Cys1 (GSVCC) sequence forms a “turn‐like” random coil structure that does not belong to any structured motif. Therefore, cyclo(1,8)‐CPRGGSVC peptide has only one structured region at the PRGG sequence, which may play an important role in the binding of the peptide to the LFA‐1 I‐domain. The conserved β‐turn conformation of the PRGG motif in ICAM‐1, cIBR, and cyclo(1,8)‐CPRGGSVC peptides can potentially be used to design peptidomimetics. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 633–641, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

9.
A growing body of evidence supports that pyrimidine derivatives, in which the sugar residues have been replaced by acyclic side chains, might be developed as promising anticancer agents that interfere with tumor cell proliferation, survival, and metastatic formation. In this work, we prepared novel pyrimidines bearing i‐Bu (i.e., 3, 4 , and 7 – 9 ) and isobutenyl (i.e., 5 and 10 ) side chains at C(6) and examined their in vitro effects on tumor cell lines. The dihydropyrrolo[1,2‐c]pyrimidine‐1,3‐diones 6 and 11 were obtained as products of intramolecular cyclization, which occurred during the removal of Bn in 5 or MeO protecting groups in 10 . Fluorination of 3 with diethylaminosulfur trifluoride (DAST) and then dehydrohalogenation of the resulting fluorinated derivative 4 afforded 6‐isobut‐2′‐enyl pyrimidine derivative 5 with a C(2′)C(3′) bond. For the preparation of 6‐isobut‐1′‐en‐1‐yl pyrimidine 10 , a synthetic strategy involving acetylation of the 1,3‐diols was applied. Antitumor evaluation of compounds 3 – 11 showed that 2,4‐dimethoxypyrimidine containing 6‐[(1,3‐dibenzyloxy)‐2‐hydroxy]methyl side chain, 3 , exerted a strong antiproliferative effect on the studied tumor cell lines. Additionally, it was shown that the mechanism of antiproliferative effect of 3 in HeLa cells include early G2/M arrest and apoptosis, as well as a p53‐independent S‐phase arrest upon prolonged treatment.  相似文献   

10.
11.
12.
The interactions of cobalt(II)–4‐[(5‐chloro‐2‐pyridyl)azo]‐1,3‐diaminobenzene (5‐Cl‐PADAB) complex with different kinds of homopolymer oligonucleotides in basic medium were investigated based on the measurements of resonance light scattering, UV–vis, circular dichroism spectra and dark field light‐scattering imaging. Experiments showed that only thymidine homopolymer (poly T) oligonucleotides with the length in the range of poly T6 to poly T18 could interact with the Co(II)–5‐Cl‐PADAB complex in alkaline conditions and cause evident color and spectral change. Thus, the binary complex of Co(II)–5‐Cl‐PADAB could be employed as a visual probe for selectively recognizing the poly T oligonucleotides. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
We investigated the molecular mechanisms involved in the angiotensin‐converting enzyme (ACE) inhibition by (?)‐epigallocatechin‐3‐gallate (EGCg), a major tea catechin. EGCg inhibited both the ACE activity in the lysate of human colorectal cancer cells and human recombinant ACE (rh‐ACE) in a dose‐dependent manner. Co‐incubation with zinc sulfate showed no influence on the rh‐ACE inhibition by EGCg, whereas it completely counteracted the inhibitory effect of ethylenediaminetetraacetic acid, a chelating‐type ACE inhibitor. Although hydrogen peroxide was produced by the autoxidation of EGCg, hydrogen peroxide itself had little effect on the ACE activity. Conversely, the co‐incubation of EGCg with borate or ascorbic acid significantly diminished the EGCg inhibition. A redox‐cycling staining experiment revealed that rh‐ACE was covalently modified by EGCg. A Lineweaver–Burk plot analysis indicated that EGCg inhibited the ACE activity in a non‐competitive manner. These results suggested that EGCg might allosterically inhibit the ACE activity through oxidative conversion into an electrophilic quinone.  相似文献   

14.
Although the concept of pathological grief dates back at least as far as Freud’s “Mourning and Melancholia”, there has been opposition to its recognition as a distinct mental disorder. Resistance has been overcome by evidence demonstrating that distinctive symptoms of prolonged grief disorder (PGD) – an attachment disturbance featuring yearning for the deceased, loss of meaning and identity disruption – can endure, prove distressing and disabling, and require targeted treatment. In acknowledgement of this evidence, the American Psychiatric Association Assembly has recently voted to include PGD as a new mental disorder in the DSM‐5‐TR. We tested the validity of the new DSM criteria for PGD and of an adapted version of our PG‐13 scale, the PG‐13‐Revised (PG‐13‐R), designed to map onto these criteria, using data from investigations conducted at Yale University (N=270), Utrecht University (N=163) and Oxford University (N=239). Baseline assessments were performed at 12‐24 months post‐loss; follow‐up assessments took place 5.3‐12.0 months later. Results indicated that the PG‐13‐R grief symptoms represent a unidimensional construct, with high degrees of internal consistency (Cronbach's alpha = 0.83, 0.90 and 0.93, for Yale, Utrecht and Oxford, respectively). The DSM PGD diagnosis was distinct from post‐traumatic stress disorder (phi=0.12), major depressive disorder (phi=0.25) and generalized anxiety disorder (phi=0.26) at baseline. Temporal stability was remarkable for this diagnosis (r=0.86, p<0.001). Kappa agreement between a PG‐13‐R threshold symptom summary score of 30 and the DSM symptom criterion for PGD was 0.70‐0.89 across the datasets. Both the DSM PGD diagnosis and the PG‐13‐R symptom summary score at baseline were significantly associated (p<0.05) with symptoms and diagnoses of major depressive disorder, post‐traumatic stress disorder and/or generalized anxiety disorder, suicidal ideation, worse quality of life and functional impairments at baseline and at follow‐up, in the Yale, Utrecht and Oxford datasets. Overall, the DSM‐5‐TR criteria for PGD and the PG‐13‐R both proved reliable and valid measures for the classification of bereaved individuals with maladaptive grief responses.  相似文献   

15.
Aspartimide (Asi) formation is a notorious side reaction in peptide synthesis that is well characterized and described in literature. In this context, we observed significant amounts of chain termination in Fmoc‐SPPS while synthesizing the N‐terminal Xaa‐Asp‐Yaa motif. This termination was caused by the formation of piperazine‐2,5‐diones. We investigated this side reaction using a linear model peptide and independently synthesizing its piperazine‐2,5‐dione derivative. Nuclear magnetic resonance (NMR) data of the side product present in the crude linear peptide proves that exclusively the six‐membered ring is formed whereas the theoretically conceivable seven‐membered 1,4‐diazepine‐2,5‐dione is not found. We propose a mechanism where nucleophilic attack of the N‐terminal amino function takes place at the α‐carbon of the carbonyl group of the corresponding Asi intermediate. In addition, we systematically investigated the impact of (a) different adjacent amino acid residues, (b) backbone protection, and (c) side chain protection of flanking amino acids. The side reaction is directly related to the Asi intermediate. Hence, hindering or avoiding Asi formation reduces or completely suppresses this side reaction.  相似文献   

16.
Multivariate statistical process monitoring (MSPM) is becoming increasingly utilized to further enhance process monitoring in the biopharmaceutical industry. MSPM can play a critical role when there are many measurements and these measurements are highly correlated, as is typical for many biopharmaceutical operations. Specifically, for processes such as cleaning‐in‐place (CIP) and steaming‐in‐place (SIP, also known as sterilization‐in‐place), control systems typically oversee the execution of the cycles, and verification of the outcome is based on offline assays. These offline assays add to delays and corrective actions may require additional setup times. Moreover, this conventional approach does not take interactive effects of process variables into account and cycle optimization opportunities as well as salient trends in the process may be missed. Therefore, more proactive and holistic online continued verification approaches are desirable. This article demonstrates the application of real‐time MSPM to processes such as CIP and SIP with industrial examples. The proposed approach has significant potential for facilitating enhanced continuous verification, improved process understanding, abnormal situation detection, and predictive monitoring, as applied to CIP and SIP operations. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:505–515, 2014  相似文献   

17.
A novel ligand, 1‐(naphthalen‐2‐yl)‐2‐(phenylsulthio)ethanone was synthesized using a new method and its two europium (Eu) (III) complexes were synthesized. The compounds were characterized by elemental analysis, coordination titration analysis, molar conductivity, infrared, thermo gravimetric analyzer‐differential scanning calorimetry (TGA‐DSC), 1H NMR and UV spectra. The composition was suggested as EuL5 · (ClO4)3 · 2H2O and EuL4 · phen(ClO4)3 · 2H2O (L = C10H7COCH2SOC6H5). The fluorescence spectra showed that the Eu(III) displayed strong characteristic metal‐centered fluorescence in the solid state. The ternary rare earth complex showed stronger fluorescence intensity than the binary rare earth complex in such material. The strongest characteristic fluorescence emission intensity of the ternary system was 1.49 times as strong as that of the binary system. The phosphorescence spectra were also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
19.
An efficient synthetic strategy to 3‐methylidene‐2,3‐dihydroquinolin‐4(1H)‐ones variously substituted in position 2 has been developed. The title compounds were synthesized in the reaction sequence involving reaction of diethyl methylphosphonate with methyl 2‐(tosylamino)benzoate, condensation of thus formed diethyl 2‐oxo‐2‐(2‐N‐tosylphenyl)ethylphosphonate with various aldehydes followed by successful application of the obtained 3‐(diethoxyphosphoryl)‐1,2‐dihydroquinolin‐4‐ols as Horner–Wadsworth–Emmons reagents for the olefination of formaldehyde. Also, enantioselective approach to the target compounds has been evaluated using 3‐dimenthoxyphosphoryl group as a chiral auxiliary. Single X‐ray crystal analysis of (2S)‐3‐(dimenthoxyphosphoryl)‐2‐phenyl‐1‐tosyldihydroquinolin‐4‐ol revealed the presence of strong resonance‐assisted hydrogen bond (RAHB). The obtained 3‐methylidene‐2,3‐dihydroquinolin‐4(1H)‐ones were then tested for their cytotoxic activity against two leukemia cell lines NALM‐6 and HL‐60 and a breast cancer MCF‐7 cell line. All compounds showed very high cytotoxic activity with the IC50 values mostly below 1 μm in all three cancer cell lines. The selected analogs were also tested on human umbilical vein endothelial cells (HUVEC) and on human mammary gland/breast cells (MCF‐10A) to evaluate their influence on normal cells. Since one of the most serious problems in cancer chemotherapy is the development of drug resistance, the mRNA levels and activity of ABCB1 transporter considered to be the most important factor engaged in drug resistance, were evaluated in MCF‐7 cells treated with two selected analogs. Both compounds were strong ABCB1 transporter inhibitors that could prevent efflux of anticancer drugs from cancer cells.  相似文献   

20.
To biosynthesize the (3R,5S)‐CDHH in an industrial scale, a newly synthesized stereoselective short chain carbonyl reductase (SCR) was successfully cloned and expressed in Escherichia coli. The fermentation of recombinant E. coli harboring SCR was carried out in 500 L and 5000 L fermenters, with biomass and specific activity of 9.7 g DCW/L, 15749.95 U/g DCW, and 10.97 g DCW/L, 19210.12 U/g DCW, respectively. The recombinant SCR was successfully applied for efficient production of (3R,5S)‐CDHH. The scale‐up synthesis of (3R,5S)‐CDHH was performed in 5000 L bioreactor with 400 g/L of (S)‐CHOH at 30°C, resulting in a space‐time yield of 13.7 mM/h/g DCW, which was the highest ever reported. After isolation and purification, the yield and d.e. of (3R,5S)‐CDHH reached 97.5% and 99.5%, respectively. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:612–620, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号