首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
There are conflicting opinions about the need to fertilize Miscanthus and, also, the question has been raised whether Miscanthus should be irrigated, especially if water resources are limited. Crop growth modeling can help answer such questions. In this article the FAO AquaCrop water‐driven model was selected to simulate Miscanthus biomass under different nutrient and water supply conditions. The article reports the outcomes of 6‐year experiments with Miscanthus on two locations in Serbia: Zemun, where three fertilizer treatments were applied (Nl – 100 kg ha?1, Nopt 50 kg ha?1 and Nf nonfertilized), and Ralja, where only Nl 100 kg ha?1 was applied. Model calibration focused on the measured data (root depth, crop phenology, and the above‐ground biomass by year of growth. Calibration results showed a very good match between measured and simulated values. The largest and only significant difference was noted in 2008, when the crop was establishing and exhibited uneven radication. The simulation results for the next 5 years showed a variance from ?4 to 5.7%, believed to be a very good match. A high coefficient of determination (R2 = 0.995) and high Willmott index of agreement (0.998) were also indicative of a good match between simulated and recorded biomass yields. The measured and simulated results for validated datasets at both locations were good. The average RMSE was 2.89 Mg ha?1; when compared to the deviations noted at the test site itself, it was apparent that they were smaller in all the years of research except the first year. The index of agreement was 0.97 and the coefficient of determination R2 0.947. The AquaCrop model can be used with a high degree of reliability in strategic planning of Miscanthus cultivation in new areas, under different nutrient and water supply and local weather and soil conditions.  相似文献   

2.
Miscanthus , a perennial rhizomatous C4 grass, is a potential biomass crop in Europe, mainly because of its high yield potential and low demand for inputs. However, until recently only a single clone, M. × giganteus , was available for the extensive field trials performed across Europe and this showed poor overwintering in the first year after planting at some locations in Northern Europe. Therefore, field trials with five Miscanthus genotypes, including two acquisitions of Miscanthus × giganteus , one of M. sacchariflorus and two hybrids of M. sinensis were planted in early summer 1997 at four sites, in Sweden, Denmark, England and Germany. The field trials showed that better overwintering of newly established plants at a site was not apparently connected with size or early senescence. An artificial freezing test with rhizomes removed from the field in January 1998 showed that the lethal temperature at which 50% were killed (LT50) for M. × giganteus and M. sacchariflorus genotypes was −3.4 °C. However, LT50 in one of the M. sinensis hybrid genotypes tested was −6.5 °C and this genotype had the highest survival rates in the field in Sweden and Denmark. Although the carbohydrate content of rhizomes, osmotic potential of cell sap and mineral composition were not found to explain differences in frost tolerance adequately, moisture contents correlated with frost hardiness (LT50) in most cases. The results obtained form a basis for identifying suitable Miscanthus genotypes for biomass production in the differing climatic regions of Europe.  相似文献   

3.
To breed improved biomass cultivars of Miscanthus ×giganteus, it will be necessary to select the highest‐yielding and best‐adapted genotypes of its parental species, Miscanthus sinensis and Miscanthus sacchariflorus. We phenotyped a diverse clonally propagated panel of 569 M. sinensis and nine natural diploid M. ×giganteus at one subtropical (Zhuji, China) and five temperate locations (Sapporo, Japan; Leamington, Ontario, Canada; Fort Collins, CO; Urbana, IL; and Chuncheon, Korea) for dry biomass yield and 14 yield‐component traits, in trials grown for 3 years. Notably, dry biomass yield of four Miscanthus accessions exceeded 80 Mg/ha in Zhuji, China, approaching the highest observed for any land plant. Additionally, six M. sinensis in Sapporo, Japan and one in Leamington, Canada also yielded more than the triploid M. ×giganteus ‘1993‐1780’ control, with values exceeding 20 Mg/ha. Diploid M. ×giganteus was the best‐yielding group at the northern sites. Genotype‐by‐environment interactions were modest among the five northern trial sites but large between Zhuji, and the northern sites. M. sinensis accessions typically yielded best at trial sites with latitudes similar to collection sites, although broad adaptation was observed for accessions from southern Japan. Genotypic heritabilities for third year yields ranged from 0.71 to 0.88 within locations. Compressed circumference was the best predictor of yield. These results establish a baseline of data for initiating selection to improve biomass yield of M. sinensis and M. ×giganteus in a diverse set of relevant geographies.  相似文献   

4.
Miscanthus ×giganteus (M×g) is an important bioenergy feedstock crop. However, biomass production of Miscanthus has been largely limited to one sterile triploid cultivar, M×g ‘1993‐1780’, which we demonstrate can have insufficient overwintering ability in temperate regions with cold winters. Key objectives for Miscanthus breeding include greater biomass yield and better adaptation to different production environments than M×g ‘1993‐1780’. In this study, we evaluated 13 M×g genotypes, including ‘1993‐1780’, in replicated field trials conducted for three years at Urbana, IL; Dixon Springs, IL; and Jonesboro, AR. Entries were phenotyped for first‐winter overwintering ability and plant hardiness (ratio of new tillers to old), yield in years 2 and 3, and first heading date, plant height, and culm number in years 1 and 2. We observed substantial variation for overwintering ability and biomass yield among the M×g genotypes tested and identified ones with better overwintering ability and/or higher biomass yield than ‘1993‐1780’. Most entries at Urbana were damaged during the first winter, whereas few or no entries were damaged at Dixon Springs or Jonesboro. However, M×g ‘Nagara’ was entirely undamaged during the first winter and produced high biomass yields at Urbana (19.7 Mg/ha in year 2 and 20.9 Mg/ha in year 3), whereas M×g ‘1993‐1780’ exhibited an overwintering loss of 29%, had severely damaged survivors (hardiness score of 25%), and reduced biomass yield (8.1 Mg/ha in year 2 and 16.2 Mg/ha in year 3), indicating that M×g ‘Nagara’ could be a better choice in hardiness zone 5 (average annual minimum air temperature of ?23.3 to ?28.9°C) or lower. In Dixon Springs, where M×g ‘1993‐1780’ was undamaged by the first winter, it yielded highest among all the entries (21.6 Mg/ha in year 3), though not significantly higher than M×g ‘Nagara’ (18.2 Mg/ha in year 3).  相似文献   

5.
Simulation models for perennial energy crops such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus) can be useful tools to design management strategies for biomass productivity improvement in US environments. The Agricultural Production Systems Simulator (APSIM) is a biophysical model with the potential to simulate the growth of perennial crops. APSIM crop modules do not exist for switchgrass and Miscanthus, however, re‐parameterization of existing APSIM modules could be used to simulate the growth of these perennials. Our aim was to evaluate the ability of APSIM to predict the dry matter (DM) yield of switchgrass and Miscanthus at several US locations. The Lucerne (for switchgrass) and Sugarcane (for Miscanthus) APSIM modules were calibrated using data from four locations in Indiana. A sensitivity analysis informed the relative impact of changes in plant and soil parameters of APSIM Lucerne and APSIM Sugarcane modules. An independent dataset of switchgrass and Miscanthus DM yields from several US environments was used to validate these re‐parameterized APSIM modules. The re‐parameterized modules simulated DM yields of switchgrass [0.95 for CCC (concordance correlation coefficient) and 0 for SB (bias of the simulation from the measurement)] and Miscanthus (0.65 and 0% for CCC and SB, respectively) accurately at most locations with the exception of switchgrass at southern US sites (0.01 for CCC and 2% for SB). Therefore, the APSIM model is a promising tool for simulating DM yields for switchgrass and Miscanthus while accounting for environmental variability. Given our study was strictly based on APSIM calibrations at Indiana locations, additional research using more extensive calibration data may enhance APSIM robustness.  相似文献   

6.
A growing body of evidence indicates that second‐generation energy crops can play an important role in the development of renewable energy and the mitigation of climate change. However, dedicated energy crops have yet to be domesticated in order to fully realize their productive potential under unfavorable soil and climatic conditions. To explore the possibility of domesticating Miscanthus crops in northern China where marginal and degraded land is abundant, we conducted common garden experiments at multiple locations to evaluate variation and adaptation of three Miscanthus species that are likely to serve as the wild progenitors of the energy crops. A total of 93 populations of Miscanthus sinensis, Miscanthus sacchariflorus, and Miscanthus lutarioriparius were collected across their natural distributional ranges in China and grown in three locations that represent temperate grassland with cold winter, the semiarid Loess Plateau, and relatively warm and wet central China. Evaluated with growth traits such as plant height, tiller number, tiller diameter, and flowering time, the Miscanthus species showed high levels of genetic variation within and between species. There were significant site × population interactions for almost all traits of M. sacchariflorus and M. sinensis, but not M. lutarioriparius. The northern populations of M. sacchariflorus had the highest establishment rates at the most northern site owing to their strong cold tolerance. An endemic species in central China, M. lutarioriparius, produced not only the highest biomass of the three species but also higher biomass at the Loess Plateau than the southern site near its native habitats. These results demonstrated that the wild species harbored a high level of genetic variation underlying traits important for crop establishment and production at sites that are colder and drier than their native habitats. The natural variation and adaptive plasticity found in the Miscanthus species indicated that they could provide valuable resources for the development of second‐generation energy crops.  相似文献   

7.
Miscanthus × giganteus (Mxg) is an important bioenergy feedstock crop, however, genetic diversity among legacy cultivars may be severely constrained. Only one introduction from Japan to Denmark of this sterile, triploid, vegetatively propagated crop was recorded in the 1930s. We sought to determine if the Mxg cultivars in North America were all synonyms, and if they were derived from the European introduction. We used 64 nuclear and five chloroplast simple sequence repeat (SSR) markers to estimate genetic similarity for 27 Mxg accessions from North America, and compared them with six accessions from Europe, including the species’ type‐specimen. A subset of accessions was also evaluated by restriction‐site associated DNA sequencing (RAD‐seq). In addition, we assessed the potential of new crosses to increase Mxg genetic diversity by comparing eight new triploid Mxg progeny grown from seed, along with samples of the parental species M. sacchariflorus and M. sinensis. Estimates of genotyping error rates were essential for distinguishing between experimental error and true genotypic differences among accessions. Given differences in estimated error rates and costs per marker for SSRs and RAD‐seq, the former is currently more cost‐effective for determining if two accessions are genetically identical. We concluded that all of the Mxg legacy cultivars were derived via vegetative propagation from a single genet. In contrast with the Mxg legacy cultivars, genetic similarity to the type‐specimen of eight new triploid Mxg progeny ranged from 0.46 to 0.56. Though genetic diversity among the Mxg legacy cultivars is critically low, new crosses can provide much‐needed variation to growers.  相似文献   

8.
The goal of this study was to investigate whether chilling tolerance of C4 photosynthesis in Miscanthus can be transferred to sugarcane by hybridization. Net leaf CO2 uptake (Asat) and the maximum operating efficiency of photosystem II (ФPSII) were measured in warm conditions (25 °C/20 °C), and then during and following a chilling treatment of 10 °C/5 °C for 11 day in controlled environment chambers. Two of three hybrids (miscanes), ‘US 84‐1058’ and ‘US 87‐1019’, did not differ significantly from the chilling tolerant M. ×giganteus ‘Illinois’ (Mxg), for Asat, and ΦPSII measured during chilling. For Mxg grown at 10 °C/5 °C for 11 days, Asat was 4.4 μmol m?2 s?1, while for miscane ‘US 84‐1058’ and ‘US 87‐1019’, Asat was 5.7 and 3.5 μmol m?2 s?1, respectively. Miscanes ‘US 84‐1058’ and ‘US 87‐1019’ and Mxg had significantly higher rates of Asat during chilling than three tested sugarcanes. A third miscane showed lower rates than Mxg during chilling, but recovered to higher rates than sugarcane upon return to warm conditions. Chilling tolerance of ‘US 84‐1058’ was further confirmed under autumn field conditions in southern Illinois. The selected chilling tolerant miscanes have particular value for biomass feedstock and biofuel production and at the same time they can be a starting point for extending sugarcane's range to colder climates.  相似文献   

9.
Growing second‐generation energy crops on marginal land is conceptualized as one of the primary means of future bioenergy development. However, the extent to which marginal land can support energy crop production remains unclear. The Loess Plateau of China, one of the most seriously eroded regions of the world, is particularly rich in marginal land. On the basis of the previous field experiment of planting Miscanthus species in Qingyang of the Gansu Province, herein, we estimated the yield potential of Miscanthus lutarioriparius, the species with the highest biomass, across the Loess Plateau. On the basis of the radiation model previously developed from Miscanthus field trials, annual precipitation was introduced as an additional variable for yield estimate in the semiarid and semihumid regions of the Loess Plateau. Of 62 million hectares (Mha) of the Loess Plateau, our model estimated that 48.7 Mha can potentially support Miscanthus growth, with the average yield of 17.8 t ha?1 yr?1. After excluding high‐quality cropland and pasture and land suitable for afforestation, a total of 33.3 Mha of presumably marginal land were left available for producing the energy crop at the average yield of 16.8 t ha?1 yr?1 and the total annual yield of 0.56 billion tons. The analysis of environmental factors indicated that erosion, aridity, and field steepness were the primary contributors to the poor quality of the marginal land. The change of land uses from traditional agriculture to energy crop production may prevent further erosion and land degradation and consequently establish a sustainable economy for the region.  相似文献   

10.
The development of second‐generation energy crops on marginal land relies on the identification of plants with suitable physiological properties. In this study, we measured and compared leaf photosynthesis and water use efficiency of 22 populations from three Miscanthus species, M. lutarioriparius, M. sacchariflorus, and M. sinensis, planted in two experimental fields located in Qingyang of the Gansu Province (QG) and Jiangxia of the Hubei Province (JH) in China. QG is located in the Loess Plateau, one of the world's most seriously eroded regions particularly abundant in semiarid marginal land. At both locations, M. lutarioriparius produced the highest biomass and had the highest photosynthetic rates (A), with the growing‐season average of A reaching nearly 20 μmol m?2 s?1. Native to JH, M. lutarioriparius maintained a relatively high photosynthetic rate into the late growing stage in QG, for example, 15 μmol m?2 s?1 at temperature as low as 11.6 °C in October. All three species had higher water use efficiency (WUE) in semiarid QG than in warmer and wetter JH. In the late growing stage of M. lutarioriparius, instantaneous WUE (A/E) of the species nearly tripled in QG comparing to JH. Being able to maintain remarkably high photosynthetic rates when transplanted to a colder and drier location, these M. lutarioriparius populations serve as suitable wild progenitors for energy crop domestication in the Loess Plateau and other areas with the similar climates.  相似文献   

11.
The perennial energy crop Miscanthus × giganteus is recognized for its extraordinary nitrogen‐use efficiency. While the remobilization of nitrogen (N) to the rhizome after the growth phase contributes to this efficiency, the plant‐associated microbiome might also contribute, as N‐fixing bacterial species had been isolated from this grass. Here, we studied established Miscanthus × giganteus plots in southern Germany that either received 80 kg N ha?1 a?1 or that were not N‐fertilized for 14 years. The bacterial communities of the bulk soil, rhizosphere, roots and rhizomes were analysed. Major differences were encountered between plant‐associated fractions. Nitrogen had little effect on soil communities. The roots and rhizomes showed less microbial diversity than soil fractions. In these compartments, Actinobacteria and N‐fixing symbiosis‐associated Proteobacteria depended on N. Intriguingly, N2‐fixing‐related bacterial families were enriched in the rhizomes in long‐term zero N plots, while denitrifier‐related families were depleted. These findings point to the rhizome as a potentially interesting plant organ for N fixation and demonstrate long‐term differences in the organ‐specific bacterial communities associated with different N supply, which are mainly shaped by the plant.  相似文献   

12.
Freezing injury is a major factor limiting the geographical distribution of plant species and the growth and yield of crop plants. Plants from temperate climates are able to increase their freezing tolerance during exposure to low but non‐freezing temperatures in a process termed cold acclimation. Damage to cellular membranes is the major cause of freezing injury in plants, and membrane lipid composition is strongly modified during cold acclimation. Forward and reverse genetic approaches have been used to probe the role of specific lipid‐modifying enzymes in the freezing tolerance of plants. In the present paper we describe an alternative ecological genomics approach that relies on the natural genetic variation within a species. Arabidopsis thaliana has a wide geographical range throughout the Northern Hemisphere with significant natural variation in freezing tolerance that was used for a comparative analysis of the lipidomes of 15 Arabidopsis accessions using ultra‐performance liquid chromatography coupled to Fourier‐transform mass spectrometry, allowing the detection of 180 lipid species. After 14 days of cold acclimation at 4°C the plants from most accessions had accumulated massive amounts of storage lipids, with most of the changes in long‐chain unsaturated triacylglycerides, while the total amount of membrane lipids was only slightly changed. Nevertheless, major changes in the relative amounts of different membrane lipids were also evident. The relative abundance of several lipid species was highly correlated with the freezing tolerance of the accessions, allowing the identification of possible marker lipids for plant freezing tolerance.  相似文献   

13.
Species and hybrids of Miscanthus are a promising energy crop, but their outcrossing mating systems and perennial life cycles are serious challenges for breeding programs. One approach to accelerating the domestication of Miscanthus is to harness the tremendous genetic variation that is present within this genus using phenotypic data from extensive field trials, high‐density genotyping and sequencing technologies, and rapidly developing statistical methods of relating phenotype to genotype. The success of this approach, however, hinges on detailed knowledge about the population genetic structure of the germplasm used in the breeding program. We therefore used data for 120 single‐nucleotide polymorphism and 52 simple sequence repeat markers to depict patterns of putatively neutral population structure among 244 Miscanthus genotypes grown in a field trial near Aberystwyth (UK) and delineate a population of 145 M . sinensis genotypes that will be used for association mapping and genomic selection. Comparative multivariate analyses of molecular marker and phenotypic data for 17 traits related to phenology, morphology/biomass, and cell wall composition revealed significant geographic patterns in this population. A longitudinal cline accounted for a substantial proportion of molecular marker variation (R2 = 0.60, = 3.4 × 10?15). In contrast, genetic variation for phenotypic traits tended to follow latitudinal and altitudinal gradients, with several traits appearing to have been affected by divergent selection (i.e., QST >> FST). These contrasting geographic trends are unusual relative to other plants and provide opportunities for powerful studies of phenotype–genotype associations and the evolutionary history of M. sinensis.  相似文献   

14.
Festuca arundinacea is a drought tolerant species. Lolium multiflorum has better forage quality but lower tolerance to abiotic stresses. Their hybrids offer an opportunity to perform research on the molecular basis of tolerance to drought. The aim of this work was to recognise the mechanisms of response to short‐term drought (11 days) in a glasshouse in two L. multiflorum/F. arundinacea introgression forms with distinct levels of tolerance to long‐term drought (14 weeks) in the field. Measurements of physiological parameters, analyses of protein accumulation profiles using two‐dimensional gel electrophoresis, and mass spectrometry identification of proteins, which were accumulated differentially between the selected genotypes during short‐term drought, were performed. Genotype 7/6, with lower yield potential during 14 weeks of drought, and lower ability to re‐grow after watering, had a higher capacity for photosynthesis during 11 days of drought. Genotype 4/10, more tolerant to long‐term drought, was able to repair damaged cell membranes after watering and was also characterised by lower transpiration during short‐term drought. A total of 455 proteins were analysed, and the 17 that were differentially accumulated between the two genotypes were identified. The results of physiological and proteomic research led to a hypothesis that the higher photosynthetic capacity of genotype 7/6 could be due to a more efficient Calvin cycle, supported by higher accumulation of crucial proteins involving chloroplast aldolase.  相似文献   

15.
The rice stem borer, Chilo suppressalis, is one of the most damaging insect pests to rice production worldwide. Although C. suppressalis has been the focus of numerous studies examining cold tolerance and diapause, plant–insect interactions, pesticide targets and resistance, and the development of RNAi‐mediated pest management, the absence of a high‐quality genome has limited deeper insights. To address this limitation, we generated a draft C. suppressalis genome constructed from both Illumina and PacBio sequences. The assembled genome size was 824.35 Mb with a contig N50 of 307 kb and a scaffold N50 of 1.75 Mb. Hi‐C scaffolding assigned 99.2% of the bases to one of 29 chromosomes. Based on universal single‐copy orthologues (BUSCO), the draft genome assembly was estimated to be 97% complete and is predicted to encompass 15,653 protein‐coding genes. Cold tolerance is an extreme survival strategy found in animals. However, little is known regarding the genetic basis of the winter ecology of C. suppressalis. Here, we focused our orthologous analysis on those gene families associated with animal cold tolerance. Our finding provided the first genomic evidence revealing specific cold‐tolerant strategies in C. suppressalis, including those involved in glucose‐originated glycerol biosynthesis, triacylglycerol‐originated glycerol biosynthesis, fatty acid synthesis and trehalose transport‐intermediate cold tolerance. The high‐quality C. suppressalis genome provides a valuable resource for research into a broad range of areas in molecular ecology, and subsequently benefits developing modern pest control strategies.  相似文献   

16.
The freezing tolerance of Arabidopsis thaliana is enhanced by cold acclimation, resulting in changes in the compositions and function of the plasma membrane. Here, we show that a dynamin‐related protein 1E (DRP1E), which is thought to function in the vesicle trafficking pathway in cells, is related to an increase in freezing tolerance during cold acclimation. DRP1E accumulated in sphingolipid and sterol‐enriched plasma membrane domains after cold acclimation. Analysis of drp1e mutants clearly showed that DRP1E is required for full development of freezing tolerance after cold acclimation. DRP1E fused with green fluorescent protein was visible as small foci that overlapped with fluorescent dye‐labelled plasma membrane, providing evidence that DRP1E localizes non‐uniformly in specific areas of the plasma membrane. These results suggest that DRP1E accumulates in sphingolipid and sterol‐enriched plasma membrane domains and plays a role in freezing tolerance development during cold acclimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号