首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biochar application to croplands has been proposed as a potential strategy to decrease losses of soil‐reactive nitrogen (N) to the air and water. However, the extent and spatial variability of biochar function at the global level are still unclear. Using Random Forest regression modelling of machine learning based on data compiled from the literature, we mapped the impacts of different biochar types (derived from wood, straw, or manure), and their interactions with biochar application rates, soil properties, and environmental factors, on soil N losses (NH3 volatilization, N2O emissions, and N leaching) and crop productivity. The results show that a suitable distribution of biochar across global croplands (i.e., one application of <40 t ha?1 wood biochar for poorly buffered soils, such as those characterized by soil pH<5, organic carbon<1%, or clay>30%; and one application of <80 t ha?1 wood biochar, <40 t ha?1 straw biochar, or <10 t ha?1 manure biochar for other soils) could achieve an increase in global crop yields by 222–766 Tg yr?1 (4%–16% increase), a mitigation of cropland N2O emissions by 0.19–0.88 Tg N yr?1 (6%–30% decrease), a decline of cropland N leaching by 3.9–9.2 Tg N yr?1 (12%–29% decrease), but also a fluctuation of cropland NH3 volatilization by ?1.9–4.7 Tg N yr?1 (?12%–31% change). The decreased sum of the three major reactive N losses amount to 1.7–9.4 Tg N yr?1, which corresponds to 3%–14% of the global cropland total N loss. Biochar generally has a larger potential for decreasing soil N losses but with less benefits to crop production in temperate regions than in tropical regions.  相似文献   

2.
Banana plantlets (Musa acuminata cv Grande Naine) cultivated in hydroponics take up silicon proportionally to the concentration of Si in the nutrient solution (0–1.66 mM Si). Here we study the Si status of banana plantlets grown under controlled greenhouse conditions on five soils developed from andesitic volcanic ash, but differing in weathering stage. The mineralogical composition of soils was inferred from X-ray diffraction, elemental analysis and selective chemical/mineralogical extractions. With increasing weathering, the content of weatherable primary minerals decreased. Conversely, clay content increased and stable secondary minerals were increasingly dominant: gibbsite, Fe oxides, allophane, halloysite and kaolinite. The contents of biogenic Si in plant and soil were governed by the reserve of weatherable primary minerals. The largest concentrations of biogenic Si in plant (6.9–7 g kg−1) and soil (50–58 g kg−1) occurred in the least weathered soils, where total Si content was above 225 g kg−1. The lowest contents of biogenic Si in plant (2.8–4.3 g kg−1) and soil (8–31 g kg−1) occurred in the most weathered desilicated soils enriched with secondary oxides and clay minerals. Our data imply that soil weathering stage directly impacted the soil-to-plant transfer of silicon, and thereby the stock of biogenic Si in a soil–plant system involving a Si-accumulating plant. They further imply that soil type can influence the silicon soil–plant cycle and its hydrological output.  相似文献   

3.
Arenosols (sandy soils) in the Cerrado region of Mato Grosso, Brazil, are increasingly used for maize production, the second most important crop in the region after soybean. Yet, these soils are typically nutrient poor with low soil water retention, requiring high fertilizer inputs that are often lost in surface runoff or leached. The addition of biochar, a more recalcitrant organic amendment, may therefore be beneficial in Cerrado Arenosols, contributing to sustainable crop production in the region. To examine biochar contribution to soil nutrient levels and maize growth in a Cerrado Arenosol, we conducted a greenhouse experiment using biochars made from local agricultural waste feedstocks. These were cotton husks, swine manure, eucalyptus sawmill residue, and sugarcane filtercake, pyrolyzed at 400 °C, and applied to soil at five rates: 0%, 1%, 2%, 3%, and 4% by weight. Maize plants were grown under unstressed conditions (e.g., no nutrient or water limitations) to highlight any possible negative effects of the biochars. After 42 days, soils were analyzed for nutrient levels, and plant physical and physiological measurements were taken. Filtercake biochar had the highest plant biomass and physiological properties (e.g., photosynthesis, respiration, nitrogen use efficiency), while cotton biochar had the lowest. Importantly, maize biomass decreased with increasing application rates of cotton and swine manure biochars, while biomass did not vary in response to biochar application rate for filtercake and eucalyptus biochars. In this study, we found that while each biochar exhibited potential for improving chemical and physical properties of Cerrado Arenosols, filtercake biochar stood out as most promising. Biochar application rate was identified a key factor in ensuring crop productivity. Transforming these agricultural residues readily available in the region into more stable biochar can thus contribute to sustainable crop management and soil conservation, providing an alternative form of waste disposal for these residual materials.  相似文献   

4.
Biochar amendments to soils had aroused much interest for having potential for greenhouse gas mitigation, soil improvement and increased crop productivity. However, little attention had been focused on the influence of biochar amendments on herbivorous insect pests. This study investigated whether a biochar amendment affected developmental and reproductive performances of the rice brown planthopper (Nilaparvata lugens) feeding on rice plants. The biochar from the pyrolysis of wheat straw was used for treatments of soils (from a fallow rice field), and the treated soils were applied to grow rice seedlings in small vials, in which Nlugens life history was observed. The nymphal development time was delayed and nymph‐to‐adult survival decreased with a high level of 200 g/kg biochar application. Herbivore lifetime fecundity decreased with increasing amounts of biochar, from 256 eggs under the control down to 69 eggs under the high level (200 g/kg) of biochar application. Egg‐hatching rate significantly decreased at the highest biochar level (200 g/kg), compared to the other lower biochar levels. Our results suggest that biochar amendment to rice fields may have negative impacts on the rice brown planthoppers when applied at level of 200 g/kg of soil.  相似文献   

5.
Incorporating crop residues and biochar has received increasing attention as tools to mitigate atmospheric carbon dioxide (CO2) emissions and promote soil carbon (C) sequestration. However, direct comparisons between biochar, torrefied biomass, and straw on both labile and recalcitrant soil organic matter (SOM) remain poorly understood. In this study, we explored the impact of biochars produced at different temperatures and torrefied biomass on the simple C substrates (glucose, amino acids), plant residues (Lolium perenne L.), and native SOM breakdown in soil using a 14C labeling approach. Torrefied biomass and biochars produced from wheat straw at four contrasting pyrolysis temperatures (250, 350, 450, and 550 °C) were incorporated into a sandy loam soil and their impact on C turnover compared to an unamended soil or one amended with unprocessed straw. Biochar, torrefied biomass, and straw application induced a shift in the soil microbial community size, activity, and structure with the greatest effects in the straw‐amended soil. In addition, they also resulted in changes in microbial carbon use efficiency (CUE) leading to more substrate C being partitioned into catabolic processes. While overall the biochar, torrefied biomass, and straw addition increased soil respiration, it reduced the turnover rate of the simple C substrates, plant residues, and native SOM and had no appreciable effect on the turnover rate of the microbial biomass. The negative SOM priming was positively correlated with biochar production temperature. We therefore ascribe the increase in soil CO2 efflux to biochar‐derived C rather than that originating from SOM. In conclusion, the SOM priming magnitude is strongly influenced by both the soil organic C quality and the biochar properties. In comparison with straw, biochar has the greatest potential to promote soil C storage. However, straw and torrefied biomass may have other cobenefits which may make them more suitable as a CO2 abatement strategy.  相似文献   

6.
The stability and decomposition of biochar are fundamental to understand its persistence in soil, its contribution to carbon (C) sequestration, and thus its role in the global C cycle. Our current knowledge about the degradability of biochar, however, is limited. Using 128 observations of biochar‐derived CO2 from 24 studies with stable (13C) and radioactive (14C) carbon isotopes, we meta‐analyzed the biochar decomposition in soil and estimated its mean residence time (MRT). The decomposed amount of biochar increased logarithmically with experimental duration, and the decomposition rate decreased with time. The biochar decomposition rate varied significantly with experimental duration, feedstock, pyrolysis temperature, and soil clay content. The MRTs of labile and recalcitrant biochar C pools were estimated to be about 108 days and 556 years with pool sizes of 3% and 97%, respectively. These results show that only a small part of biochar is bioavailable and that the remaining 97% contribute directly to long‐term C sequestration in soil. The second database (116 observations from 21 studies) was used to evaluate the priming effects after biochar addition. Biochar slightly retarded the mineralization of soil organic matter (SOM; overall mean: ?3.8%, 95% CI = ?8.1–0.8%) compared to the soil without biochar addition. Significant negative priming was common for studies with a duration shorter than half a year (?8.6%), crop‐derived biochar (?20.3%), fast pyrolysis (?18.9%), the lowest pyrolysis temperature (?18.5%), and small application amounts (?11.9%). In contrast, biochar addition to sandy soils strongly stimulated SOM mineralization by 20.8%. This indicates that biochar stimulates microbial activities especially in soils with low fertility. Furthermore, abiotic and biotic processes, as well as the characteristics of biochar and soils, affecting biochar decomposition are discussed. We conclude that biochar can persist in soils on a centennial scale and that it has a positive effect on SOM dynamics and thus on C sequestration.  相似文献   

7.
Biochar from Miscanthus: a potential silicon fertilizer   总被引:1,自引:0,他引:1  

Background and aims

Silicon (Si) is largely recognized to improve plant growth subjected to various biotic and abiotic stresses. As plants accumulate Si in the form of readily-soluble phytolith, we examine the possibility of using phytolith-rich biochar as a bio-available Si source for increasing the agronomical productivity of Si high-accumulator plants while augmenting soil fertility and C sequestration.

Methods

By adding three different biochars (Miscanthus x giganteus straws, coffee husks and woody material) at two different concentrations (1 % and 3 %; w/w) to soil samples, we investigated the effects on the soil respiration, the chemical characteristics and the kinetic release of bio-available Si (CaCl2-extractable Si).

Results

Here we show that the biochar from Miscanthus straws was the most attractive amendment. Its incorporation at a 3 % rate improved the soil fertility parameters (pH and available cations) and combined the highest mean residence time of carbon (C) in soil (MRT?=?50 years) with the highest rate of release of bio-available Si. We attribute this result to the presence of phytoliths in this biochar, as revealed by SEM-EDS analysis.

Conclusions

Not only did the biochar from Miscanthus enhance both soil C sequestration and fertility, but the results of this study suggest that it can also be considered as a potential source of bio-available Si. Although our conclusions should be substantiated in the field, we suggest that Miscanthus biochar could be used as a potential source of bio-available silicon for the culture of such crop as Si-accumulator plants growing, for instance, in highly weathered tropical soils with low content in carbon, nutrients and bio-available Si.  相似文献   

8.
Abiotic stresses caused by cadmium (Cd) contamination in soil retard plant growth and decline the quality of food. Amendment of biochar was reported effective in reduction of mobility, plant uptake and toxicity of Cd in plants. The aim of this study was to investigate the effect of biochar applications produced from corn cob and rice husk at three different pyrolysis temperatures (400, 500 and 600 °C) on Cd uptake of tobacco plants. The results showed that the shoot Cd concentration and content of tobacco plants significantly increased with the application of Cd in increasing doses. The results showed that increasing Cd dosescaused significant increase (P < 0.01) in shoot Cd concentration and content of the tobacco plant at three different pyrolysis temperatures of both corn cob and rice husk biochars. The concentration of Cd was 0.48 mg kg?1 in Cd0 dose of corn cob biochar produced at 500 °C and increased to 61.6 mg kg?1 at Cd5, while Cd concentration increased to 72.3 mg kg?1 with rice husk biochar. Despite the increase in Cd concentrations and content, shoot Cd concentrations and contents were significantly (P < 0.01) reduced with the treatments of corn cob and rice husk biochars produced at different pyrolysis temperatures. The Cd concentration at Cd5 dose in the absence of biochar addition was 90.5 mg kg?1, while Cd concentration at Cd5 dose in 400, 500 and 600 °C treatments of corn cob biochar was reduced to 66.5, 61.6 and 67.3 mg kg?1 respectively, and to 77.0, 72.3 and 70.2 mg kg?1 in rice husk biochar. The results also revealed that corn cob biochar treatments were more effective in reducing Cd uptake of tobacco plants compared to rice husk biochar. Higher specific surface area of corncob biochar compared to rice husk biochar caused to the difference between two biochar sources on Cd uptake of tobacco plants.  相似文献   

9.
生物炭提高土壤磷素有效性的整合分析   总被引:4,自引:0,他引:4  
生物炭改善土壤肥力和提高作物产量的作用与土壤磷素有效性的提高密切相关,但是关于生物炭添加对土壤磷素有效性影响的定量效应尚不明确。本研究对95篇符合条件的文献中的507组数据进行整合分析,以评估生物炭添加对土壤磷素有效性的定量影响。结果表明: 不论生物炭原料、制备温度、C/N、施用量、配施化肥与否,以及土壤质地、pH、有机碳含量如何变化,生物炭添加均使土壤有效磷含量显著提高,平均较不添加对照提高57.6%。同时,生物炭添加促进了作物对磷的利用,但植株含磷量对不同添加条件下生物炭的响应程度基本上均低于土壤有效磷,部分条件下未达到显著水平,平均响应比为30.6%。在砂质和壤质土壤中,添加拥有较多灰分的畜禽粪便生物炭,以及较低C/N、低温裂解的碱性生物炭、较大施用量对增加土壤有效磷和植株磷含量更有效。作为土壤磷素循环的主要酶,生物炭添加使碱性磷酸酶活性平均增加2.8%,而酸性磷酸酶活性则平均降低17.8%。总体上,生物炭对土壤有效磷和植株磷含量有显著的正向效应,但对土壤磷酸酶活性的影响较小,磷素有效性的提高可能主要源于生物炭自身携带较高含量的有效磷组分。  相似文献   

10.
Biochar (a carbon-rich product from pyrolysis of organic materials) additions to agricultural soils have been shown to often result in neutral to positive influences on soil properties and processes; however, the only a limited number of studies have been conducted on active organic farming systems and of those, none have used multivariate analytical methods to examine the influence of biochar on soil microbial activity, nutrient cycling, and crop performance. In this study, biochar produced from local timber harvest residues on Waldron Island, WA was applied in factorial combination with a poultry litter based fertilizer to replicated plots on six organic farms that were all growing Kabocha squash (Cucurbita maxima) in the summer of 2016. A series of soil physicochemical and biochemical properties were examined after 5 months of biochar application; squash samples were evaluated for productivity and nutrient uptake. Factorial multivariate analysis of variance (MANOVA) revealed a significant influence of biochar on soil properties as well as a synergistic effect of biochar and poultry litter during a 5 month field trial. Principle component analysis (PCA) highlighted soil total C content, microbial biomass C, enzyme activities, bioavailable P, and phosphatase enzyme activity as the variables most influenced by biochar incorporation into surface mineral soil. Redundancy analysis (RDA) further indicated that better soil biochemical conditions, particularly soil enzyme activities and available P concentrations, were associated with higher crop productivity in biochar-treated plots. Overall, our study demonstrates that locally produced wood biochar, in addition to improving soil C storage, has the potential to significantly improve soil fertility and crop productivity in organic farming systems on sandy soils.  相似文献   

11.
Biochar amendment of soil improves resilience to climate change   总被引:1,自引:0,他引:1  
Because of climate change, insufficient soil moisture may increasingly limit crop productivity in certain regions of the world. This may be particularly consequential for biofuel crops, many of which will likely be grown in drought‐prone soils to avoid competition with food crops. Biochar is the byproduct of a biofuel production method called pyrolysis. If pyrolysis becomes more common as some scientists predict, biochar will become more widely available. We asked, therefore, whether the addition of biochar to soils could significantly increase the availability of water to a crop. Biochar made from switchgrass (Panicum virgatum L.) shoots was added at the rate of 1% of dry weight to four soils of varying texture, and available water contents were calculated as the difference between field capacity and permanent wilting point water contents. Biochar addition significantly increased the available water contents of the soils by both increasing the amount of water held at field capacity and allowing plants to draw the soil to a lower water content before wilting. Among the four soils tested, biochar amendment resulted in an additional 0.8–2.7 d of transpiration, which could increase productivity in drought‐prone regions or reduce the frequency of irrigation. Biochar amendment of soils may thus be a viable means of mitigating some of the predicted decrease in water availability accompanying climate change that could limit the future productivity of biofuel crops.  相似文献   

12.
Plants fractionate Si isotopes which provides a useful Si tracer in the Si soil-plant cycle. This study reports plant Si content and Si-isotopic signatures in mature banana plants grown on soils with different weathering degree, but all developed from basaltic pyroclasts in the Mungo area, Cameroon. The δ30Si compositions were determined in various plant parts and soil surface horizons by MC-ICP-MS in dry plasma mode with external Mg doping to a precision of ± 0.15‰ (± 2σSD). The Si-isotopic compositions in banana plants grown on weathered clayey soils (+0.54 ± 0.15‰) are heavier than on weakly developed soils rich in fresh ash and pumice (+0.02 ± 0.15‰). The corresponding bulk soils display lower δ30Si value in weathered soil (?1.41‰) than in poorly developed soil (?0.41‰). We suggest that the dissolved Si source for the plant, governed firstly by dissolution of easily weatherable minerals, was isotopically enriched in heavy isotopes through clay formation over long periods. At seasonal to annual time scale, this source is influenced by a combination of following processes: Si adsorption of light isotopes onto Fe oxides, plant Si uptake and recycling in surface horizons. This would provide an isotopically heavier Si source in the more weathered soil since the Fe oxides content increases with weathering. Plant Si-isotopic signature might thus reflect the soil weathering degree. This study further suggests that in addition to weathering processes, rivers isotopic signatures likely depend on the fate of phytoliths in the soil-plant-river system.  相似文献   

13.
Liu  Cheng  Sun  Baobao  Zhang  Xuhui  Liu  Xiaoyu  Drosos  Marios  Li  Lianqing  Pan  Genxing 《Journal of Plant Growth Regulation》2021,40(4):1466-1476

Although amending biochar into agricultural soils has been regarded as an effective measure to improve crop productivity, it remains unclear why biochar increases crop yield. The objective of this study was to compare the relative contribution of different biochar components in crop growth promotion. Three biochar components were separated: (i) water-soluble biochar extract (BE), (ii) mineral nutrients from biochar ash (BA), and (iii) washed biochar residue (WB). Two soils (Anthrosol and Primosol) with distinctly different organic carbon content, soil texture and land use were amended with the three biochar components and their effects on maize (Zea mays L.) growth were tested in a pot experiment. We hypothesized that (1) plant grown in the Anthrosol benefitted more from the water-soluble compounds of biochar than from its mineral nutrients or washed residue, since the soil is already fertile and has a good structure; (2) plant grown in the Primosol benefitted more from the mineral nutrients of biochar and its washed residual, since the soil is nutrient-poor and has a poor structure. The addition of biochar and its three components increased maize aboveground biomass for both soils. In the Anthrosol, BE, BA, and WB increased the aboveground biomass by 41.6%, 32.7%, and 27.1%; in the Primosol, they increased the aboveground biomass by 41.3%, 24.4%, and 18.2%, respectively. BE had the highest plant growth-promoting effect compared to the other two biochar components, which was regardless of soil condition. In addition, the biomass, total volume, surface area, and number of maize root tips under BE amendment were significantly enhanced, particularly the fine roots (< 0.2 mm in diameter). And a strong positive correlation was observed between maize aboveground biomass and the total length of the fine roots. The results demonstrated that the water-soluble compounds present in biochar, in addition to the mineral nutrients and the washed biochar residue, dominate the plant growth promotion under both soil conditions.

  相似文献   

14.
Biochar additions can improve soil fertility and sequester carbon, but biochar effects have been investigated primarily in agricultural systems. Biochar from spruce and maple sawdust feedstocks (with and without inorganic phosphorus in a factorial design) were added to plots in a commercially managed temperate hardwood forest stand in central Ontario, Canada; treatments were applied as a top‐dressing immediately prior to fall leaf abscission in September 2011. Forests in this region have acidic, sandy soils, and due to nitrogen deposition may exhibit phosphorus, calcium, and magnesium limitation. To investigate short‐term impacts of biochar application on soil nutrient supply and greenhouse gas fluxes as compared to phosphorus fertilization, data were collected over the first year after treatment application; linear mixed models were used to analyze data. Two to six weeks after treatment application, there were higher concentrations of potassium in spruce and maple biochar plots, and phosphorus in spruce biochar plots, as compared to the control treatment. There were higher concentrations of calcium, magnesium, and phosphorus in the phosphorus plots. In the following spring and summer (9–12 months after treatment application), there were higher soil calcium concentrations in maple biochar plots, and phosphorus plots still had higher soil phosphorus concentrations than control plots. No treatment effects on fluxes of carbon dioxide, methane, or nitrous oxide were detected in the field; however, laboratory incubations after 12 months showed higher microbial respiration in soils from maple biochar plots as compared to spruce biochar, despite no effect on microbial biomass. The results suggest that the most important short‐term impact of biochar additions in this system is the increased supply of the limiting plant nutrients phosphorus and calcium. We expect that larger changes in mineral soil physical and chemical properties will occur when the surface‐applied biochar becomes incorporated into the soil after a few years.  相似文献   

15.
Application of organic manure (OM) and crop residues in agricultural soils can potentially influence positively or negatively the availability of soil phosphorus (P) through soil mineralization, sorption, or desorption of soil-bound P. Traditionally, the addition of OM can reduce the capacity of the soil colloids to adsorb P, thus increasing the release of P in soil solution, but also added OM can increase the adsorption site and increase the fixation or sorption of P to soil colloids, thus reducing the availability of P in soil solution and loss to the environment. The highly weathered tropical soils (HWTS) are susceptible to P insufficiency because HWTS have high P adsorption and fixation; this is mainly due to high concentration of P adsorbent. The main P adsorbents in HWTS include Al, Fe, Ca, and clay minerals, which are principally the same binding or adsorbent for OM compounds, but in excess, are toxic (Al and Fe) to crops. Thus, the presence of OM in HWTS can compromise the adsorption and availability of P in agricultural soils following phosphatic fertilizer applications. In this study, the influence of OM on P adsorption and availability was characterized to have a clear understanding of how OM influences P availability in agricultural soils, especially in highly weathered tropical soil. It is clearly outlined that the application of OM and crop residues can positively or negatively influence the availability of P in agricultural soils for plant uptake and dictate the P that is available for loss to the environment. Thus, the addition of organic matter as a strategy to increase P bioavailability for plant uptake must be treated with care because their contribution is not strait forward to be positive in many agricultural soils.  相似文献   

16.
The potential of biochar to improve numerous soil physical, chemical and biological properties is well known. However, previous research has concentrated on old and highly weathered tropical soils with poor fertility, while reports regarding the influence of biochar application on relatively young and fertile temperate prairie soils are limited. Furthermore, the mechanism(s) underlying biochar-induced effects on the plant availability of inorganic nitrogen (N) fertilizers and their relationship to greenhouse gas production is not well understood. The objective of this study was to determine the effect of a biochar soil amendment, produced by slow pyrolysis using shrub willow (Salix spp.) bioenergy feedstock, on CO2, N2O and CH4 fluxes by two contrasting marginal soils from Saskatchewan, Canada with and without added urea, over a 6-week incubation period. Biochar decreased soil N availability after 6 weeks only in the lower organic matter (Brown) soil, with no effect on the Black soil, regardless of fertilizer N addition, which was attributed to soil N immobilization by heterotrophs mineralizing the labile biochar-carbon. There appeared to be a synergistic effect when combining biochar and urea, evidenced by enhanced urease activity and higher initial nitrification rates compared to biochar or fertilization alone. The accelerated urea hydrolysis in the presence of biochar may increase NH3 volatilization losses associated with urea fertilization and, therefore, warrants further investigation. The decreased N2O emissions following biochar addition, with (both soils) or without (Black soil) fertilizer N, could be due to decreased ammonium and nitrate availability, along with changes in denitrification potential as related to improved aeration. Biochar significantly reduced the water-filled pore space, which concurrently increased CH4 consumption in both soils. The lack of biochar effect on CO2 emissions from either soil, with or without fertilizer N, suggests enhanced CO2 consumption by autotrophic nitrifiers. Biochar application appears to be an effective management approach for improving N2O and CH4 fluxes in temperate prairie soils.  相似文献   

17.
The application of pyrogenic carbon, biochar, to agricultural soils is currently discussed as a win-win strategy to sequester carbon in soil, thus improving soil fertility and mitigate global warming. Our aim was to investigate if biochar may improve plant eco-physiological responses under sufficient water supply as well as moderate drought stress. A fully randomized greenhouse study was conducted with the pseudo-cereal Chenopodium quinoa Willd, using three levels of biochar addition (0, 100 and 200?t ha?1) to a sandy soil and two water treatments (60% and 20% of the water holding capacity of the control), investigating growth, water use efficiency, eco-physiological parameters and greenhouse gas (GHG) fluxes. Biochar application increased growth, drought tolerance and leaf-N- and water-use efficiency of quinoa despite larger plant?Cleaf areas. The plants growing in biochar-amended soil accumulated exactly the same amount of nitrogen in their larger leaf biomass than the control plants, causing significantly decreased leaf N-, proline- and chlorophyll-concentrations. In this regard, plant responses to biochar closely resembled those to elevated CO2. However, neither soil- nor plant?Csoil-respiration was higher in the larger plants, indicating less respiratory C losses per unit of biomass produced. Soil-N2O emissions were significantly reduced with biochar. The large application rate of 200?t ha?1 biochar did not improve plant growth compared to 100?t ha?1; hence an upper beneficial level exists. For quinoa grown in a sandy soil, biochar application might hence provide a win-win strategy for increased crop production, GHG emission mitigation and soil C sequestration.  相似文献   

18.
Climate change is predicted to increase climate variability and frequency of extreme events such as drought, straining water resources in agricultural systems. Thus, limited irrigation strategies and soil amendments are being explored to conserve water in crop production. Biochar is the recalcitrant, carbon‐based coproduct of biomass pyrolysis during bioenergy production. When used as a soil amendment, biochar can increase soil water retention while enhancing soil properties and stimulating food webs. We investigated the effects of coupled biochar amendment and limited irrigation on belowground food web structure and function in an irrigated maize agroecosystem. We hypothesized that soil biota biomass and activity would decrease with limited irrigation and increase with biochar amendment and that biochar amendment would mitigate the impact of limited irrigation on the soil food web. One year after biochar addition, we extracted, identified, and estimated the biomass of taxonomic groups of soil biota (e.g., bacteria, fungi, protozoa, nematodes, and arthropods) from wood‐derived biochar‐amended (30 Mg ha?1) and nonamended soils under maize with limited (two‐thirds of full) and full irrigation. We modeled structural and functional properties of the soil food web. Neither biochar amendment nor limited irrigation had a significant effect on biomass of the soil biota groups. Modeled soil respiration and nitrogen mineralization fluxes were not different between treatments. A comparison of the structure and function of the agroecosystem soil food web and a nearby native grassland revealed that in this temperate system, the negative impact of long‐term conventional agricultural management outweighed the impact of limited irrigation. One year of biochar amendment did not mitigate nor further contribute to the negative effects of historical agricultural management.  相似文献   

19.
Biochar is beneficial for improving soil quality and crop productivity. However, the long‐term effects of biochar addition on temporal dynamics of plant shoot and root growth, and the changes in soil properties and nitrogen (N) leaching are still obscure. Here, based on a long‐term (7 years) biochar field experiment with rice in northwest China, we investigated the effects of two biochar rates (0 and 9 t ha?1 year?1) and two N fertilizer rates (0 and 300 kg N ha?1 year?1) on shoot and root growth, root morphology, N leaching, and soil physicochemical properties. The results showed that both biochar and N fertilizer significantly promoted rice growth, with their interaction significant only in some cases. Both fertilizers enhanced rice shoot biomass and N accumulation in various growth stages as well as increased grain yield. Nitrogen fertilizer significantly promoted root growth regardless of biochar application. However, biochar application without N fertilizer increased root biomass and length during the whole growth period, except in the booting stage; biochar with N application promoted root growth at tillering, reduced root biomass but maintained root length with low root diameter and high specific root length during the jointing and booting stages, and then delayed root senescence in the grain filling stage. Long‐term applications of biochar and N fertilizer reduced 10%–12% bulk density of topsoil compared to the control treatment with no N fertilizer and no biochar. Long‐term biochar application also improved soil total organic carbon and concentrations of available N, phosphorus, and potassium. In addition, biochar and N fertilizer applied together significantly reduced nitrate and ammonium concentration in leachate at different soil depths. In conclusion, biochar could regulate root growth, root morphology, soil properties, and N leaching to increase rice N fertilizer‐use efficiency.  相似文献   

20.
Biochar addition to soils has been proposed as a means to increase soil fertility and carbon sequestration. However, its effect on soil nitrogen (N) cycling and N availability is poorly understood. To gain better insight into the temporal variability of the impact of biochar on gross soil N dynamics, two 15N tracing experiments, in combination with numerical data analysis, were conducted with soil from a biochar field trial, 1 day and 1 year after application of a woody biochar type. The results showed accelerated soil N cycling immediately following biochar addition, with increased gross N mineralization (+34%), nitrification (+13%) and ammonium (NH4+) and nitrate (NO3) immobilization rates (+4500% and +511%, respectively). One year after biochar application, the biochar acted as an inert substance with respect to N cycling. In the short term, biochar's labile C fraction and a pH increase can explain stimulated microbial activity, while in the longer term, when the labile C fraction has been mineralized and the pH effect has faded, the accelerating effect of biochar on N cycling ceases. In conclusion, biochar accelerates soil N transformations in the short-term through stimulating soil microbial activity, thereby increasing N bio-availability. This effect is, however, temporary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号