共查询到20条相似文献,搜索用时 0 毫秒
1.
Imran Ali Kishwar Saleem Vinay D. Gaitonde Hassan Y. Aboul‐Enein Iqbal Hussain 《Chirality》2010,22(1):24-28
Sixteen β‐adrenergic antagonists namely acebutalol, alprenolol, atenolol, bisoprolol, bopindolol, bufurolol, carazolol, celiprolol, indenolol, metaprolol, nebivolol, oxprenolol, practolol, propranolol, tertalol, and timolol, and two β‐adrenergic agonists namely cimeterol and clenbuterol were resolved on AmyCoat (150 × 46 mm, 3 μm size of silica particle) by using (85:15:0.1, v/v/v), (90:10:0.1, v/v/v), and (95:05:0.1, v/v/v) combinations of n‐heptane, ethanol, and diethylamine solvents, respectively. The flow rates used were 0.5, 1.0, 2.0, and 3.0 ml/min with detection at 225 nm. The values of capacity, separation, and resolution factors ranged from 0.38 to 19.70, 1.08–2.33, and 1.0 and 4.50, respectively. The maximum and minimum resolutions were achieved for celiprolol and bufurolol, respectively. The chiral recognition mechanisms were also discussed. The values of validation parameters were calculated. Chirality 2010. © 2009 Wiley‐Liss, Inc. 相似文献
2.
Ana M. Rodríguez Santiago Quevedo‐Coli Pilar Roca Andreu Palou 《Obesity (Silver Spring, Md.)》2001,9(9):579-588
Objective: The aim of this study was to determine the sex‐dependent differences in the response of key parameters involved in thermogenesis and control of body weight in brown adipose tissue (BAT) and white adipose tissue (WAT) in postcafeteria‐fed rats, a model of dietary obesity. Research Methods and Procedures: BAT and WAT were obtained from male and female control and postcafeteria‐fed Wistar rats. Postcafeteria‐fed rats were initially fed with cafeteria diet from day 10 of life until day 110 (cafeteria period) and with standard chow diet from then until day 180 of life (postcafeteria period). Body mass and energy intake were evaluated. Biometric parameters were analyzed in interscapular BAT (IBAT). Levels of uncoupling protein 1 (UCP1), α2‐adrenergic receptor (AR), and β3‐AR proteins and UCP1, UCP2, UCP3, β3‐AR, and leptin mRNAs, in IBAT or WAT, were studied by Western blot and Northern blot analyses, respectively. Results: Rats attained 59% (females) and 39% (males) increase in body weight at the end of the cafeteria period. During the postcafeteria period, the rats showed a loss of body weight, which was higher in females. Postcafeteria‐fed female rats also presented higher activation of thermogenic parameters in IBAT, including UCP1, UCP2, and UCP3 mRNAs. Female control rats showed lower levels of both α2 and β3‐ARs in BAT compared with male rats, but these levels in postcafeteria‐fed female and male rats were the same, because males tended to down‐regulate them. Levels of leptin mRNA in response to the postcafeteria state depended on gender and the specific WAT depot studied. Discussion: It is suggested that in postcafeteria‐fed female rats, BAT thermogenic capacity becomes more efficiently activated than in males. Female rats also showed a bigger weight loss. The parallel regulation of the levels of UCP2 and UCP3 mRNAs, with respect to UCP1 mRNA, with higher activation in female postcafeteria‐fed rats, suggests a possible role of both UCP2 and UCP3 in the regulation of energy expenditure and in the control of body weight. The distinct responses to overweight of α2 and β3‐ARs—which were sex dependent—and leptin mRNA—which depended on both sex and WAT depot—also support the different response of thermogenesis‐related parameters between overweight males and females. 相似文献
3.
The host–guest interaction between sulfobutylether‐β‐cyclodextrin (SBE‐β‐CD) and reserpine (RSP) is described using flow injection‐chemiluminescence (FI‐CL) and site‐directed molecular docking methods. It was found that RSP could inhibit the CL intensity produced by a luminol/SBE‐β‐CD system. The decrease in CL intensity was logarithmic over an RSP concentration range of 0.03 to 700.0 nM, giving a regression equation of ?I = 107.1lgCRES + 186.1 with a detection limit of 10 pM (3σ). The CL assay was successfully applied in the determination of RSP in injection, saliva and urine samples with recoveries in the range 93.5–106.1%. Using the proposed CL model, the binding constant (KCD‐R) and the stoichiometric ratio of SBE‐β‐CD/RSP were calculated to be 7.4 × 106 M‐1 and 1 : 1, respectively. Using molecular docking, it was confirmed that luminol binds to the small cavity of SBE‐β‐CD with a nonpolar interaction, while RSP targeted the larger cavity of SBE‐β‐CD and formed a 1 : 1 complex with hydrogen bonds. The proposed new CL method has the potential to become a powerful tool for revealing the host–guest interaction between CDs and drugs, as well as monitoring drugs with high sensitivity. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
4.
Preparative enantioseparation of four β‐substituted‐2‐phenylpropionic acids was performed by countercurrent chromatography with substituted β‐cyclodextrin as chiral selectors. The two‐phase solvent system was composed of n‐hexane‐ethyl acetate‐0.10 mol L‐1 of phosphate buffer solution at pH 2.67 containing 0.10 mol L‐1 of hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) or sulfobutylether‐β‐cyclodextrin (SBE‐β‐CD). The influence factors, including the type of substituted β‐cyclodextrin, composition of organic phase, concentration of chiral selector, pH value of the aqueous phase, and equilibrium temperature were optimized by enantioselective liquid–liquid extraction. Under the optimum separation conditions, 100 mg of 2‐phenylbutyric acid, 100 mg of tropic acid, and 50 mg of 2,3‐diphenylpropionic acid were successfully enantioseparated by high‐speed countercurrent chromatography, and the recovery of the (±)‐enantiomers was in the range of 90–91% for (±)‐2‐phenylbutyric acid, 91–92% for (±)‐tropic acid, 85–87% for (±)‐2,3‐diphenylpropionic acid with purity of over 97%, 96%, and 98%, respectively. The formation of 1:1 stoichiometric inclusion complex of β‐substituted‐2‐phenylpropionic acids with HP‐β‐CD was determined by UV spectrophotometry and the inclusion constants were calculated by a modified Benesi‐Hildebrand equation. The results showed that different enantioselectivities among different racemates were mainly caused by different enantiorecognition between each enantiomer and HP‐β‐CD, while it might be partially caused by different inclusion capacity between racemic solutes and HP‐β‐CD. Chirality 27:795–801, 2015. © 2015 Wiley Periodicals, Inc. 相似文献
5.
The interaction of saturated fatty acids of different length (C8:0 to C18:0) with β‐lactoglobulin (βLG) was investigated by molecular dynamics simulation and docking approaches. The results show that the presence of such ligands in the hydrophobic central cavity of βLG, known as the protein calyx, determines an enhancement of atomic fluctuations compared with the unliganded form, especially for loops at the entrance of the binding site. Concerted motions are evidenced for protein regions that could favor the binding of ligands. The mechanism of anchoring of fatty acids of different length is similar for the carboxylate head‐group, through electrostatic interactions with the side chains of Lys60/Lys69. The key protein residues to secure the hydrocarbon chain are Phe105/Met107, which adapt their conformation upon ligand binding. In particular, Phe105 provides an additional hydrophobic clamp only for the tail of the two fatty acids with the longest chains, palmitic, and stearic acid, which are known to bind βLG with a high affinity. The search of additional external binding sites for fatty acids, distinct from the calyx, was also carried out for palmitic acid. Two external sites with a lower affinity were identified as secondary sites, one consisting in a hydrophobic cavity allowing two distinct binding modes for the fatty acid, and the other corresponding to a surface crevice close to the protein α‐helix. The overall results provide a comprehensive picture of the dynamical behavior of βLG in complex with fatty acids, and elucidate the structural basis of the binding of these physiological ligands. Proteins 2014; 82:2609–2619. © 2014 Wiley Periodicals, Inc. 相似文献
6.
《Peptide Science》2017,108(3)
The conformational characteristics of protected homo‐oligomeric Boc‐[β3(R)Val]n‐OMe, n = 1, 2, 3, 4, 6, 9, and 12 have been investigated in organic solvents using nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) absorption spectroscopy and circular dichroism (CD) methods. The detailed 1H NMR analysis of Boc‐[β3(R)Val]12‐OMe reveals that the peptide aggregates extensively in CDCl3, but is disaggregated in 20%, (v/v) dimethyl sulfoxide (DMSO) in CDCl3 and in CD3OH. Limited assignment of the N‐terminus NH groups, together with solvent dependence of NH chemical shifts and temperature coefficients provides evidence for 14‐helix conformation in the 12‐residue peptide. FTIR analysis in CHCl3 establishes that the onset of folding and aggregation, as evidenced by NH stretching bands at 3375 cm−1 (intramolecular) and 3285 cm−1 (intermolecular), begins at the level of the tetrapeptide. The observed CD bands, 214 nm (negative) and 198 nm (positive), support 14‐helix formation in the 9 and 12 residue sequences. The folding and aggregation tendencies of homo‐oligomeric α‐, β‐, and γ‐ residues is compared in the model peptides Boc‐[ωVal]n‐NHMe, ω = α, β, and γ and n = 1, 2, and 3. Analysis of the FTIR spectra in CHCl3, establish that the tendency to aggregate at the di and tripeptide level follows the order β > α∼γ, while the tendency to fold follows the order γ > β > α. 相似文献
7.
8.
Masahiro Nakajima Ryuta Yoshida Akimasa Miyanaga Hayao Taguchi 《Acta Crystallographica. Section F, Structural Biology Communications》2014,70(10):1398-1401
Lin1840 is a putative β‐glucosidase that is predicted to be involved in 1,2‐β‐glucan metabolism since the lin1839 gene encoding a 1,2‐β‐oligoglucan phosphorylase and the lin1840 gene are located in the same gene cluster. Here, Lin1840 was crystallized. The crystals of Lin1840 diffracted to beyond 1.8 Å resolution. The crystal belonged to space group I121, with unit‐cell parameters a = 89.75, b = 95.10, c = 215.00 Å, α = 90.00, β = 96.34, γ = 90.00°. 相似文献
9.
Xiaohui Cang Linlin Yang Jing Yang Cheng Luo Mingyue Zheng Kunqian Yu Huaiyu Yang Hualiang Jiang 《Proteins》2014,82(5):760-770
Two 8‐µs all‐atom molecular dynamics simulations have been performed on the two highly homologous G protein‐coupled receptor (GPCR) subtypes, β1‐ and β2‐adrenergic receptors, which were embedded in a lipid bilayer with randomly dispersed cholesterol molecules. During the simulations, cholesterol molecules accumulate to different surface regions of the two receptors, suggesting the subtype specificity of cholesterol–β‐adrenergic receptor interaction and providing some clues to the physiological difference of the two subtypes. Meanwhile, comparison between the two receptors in interacting with cholesterols shed some new light on general determinants of cholesterol binding to GPCRs. Our results indicate that although the concave surface, charged residues and aromatic residues are important, neither of these stabilizing factors is indispensable for a cholesterol interaction site. Different combinations of these factors lead to the diversified binding modes of cholesterol binding to the receptors. Our long‐time simulations, for the first time, revealed the pathway of a cholesterol molecule entering the consensus cholesterol motif (CCM) site, and the binding process of cholesterol to CCM is accompanied by a side chain flipping of the conserved Trp4.50. Moreover, the simulation results suggest that the I‐/V‐/L‐rich region on the extracellular parts of helix 6 might be an alternatively conserved cholesterol‐binding site for the class‐A GPCRs. Proteins 2014; 82:760–770. © 2013 Wiley Periodicals, Inc. 相似文献
10.
Isabel Llad Sergio Rodríguez‐Cuenca Esperanza Pujol Marta Monjo M. Elena Estrany Pilar Roca Andreu Palou 《Obesity (Silver Spring, Md.)》2002,10(4):296-305
Objective: To investigate the effects of short‐term (15 days) cafeteria‐diet feeding on the expression of α‐ and β‐adrenergic receptors (AR) and its association with lipolytic stimulation in isolated retroperitoneal white adipocytes. Research Methods and Procedures: Six female and 6 male Wistar rats (4 weeks old) were fed a cafeteria diet plus standard diet for 15 days. The remaining 12 age‐ and sex‐matched rats received a standard diet only. White retroperitoneal adipose tissue was isolated and used for the determination of both α2 and β‐AR expression and for in vitro studies of lipolytic activity. Results: In female control rats, we found higher lipolytic capacities located at the postreceptor level and a lower α2/β3‐AR ratio than male rats. Cafeteria‐diet feeding for 15 days decreased lipolytic activity in both male and female rats and altered the α2A‐ and β3‐AR protein levels with an increase of α2A‐AR in males and a β3‐AR decrease in females. Discussion: Our results indicate that a 15‐day cafeteria‐diet feeding induced an increase in the α2/β3‐AR balance and impaired adipose tissue lipolytic activity, which was higher in males and may contribute to the development of increased fat mass. The higher functionality of α2‐AR, together with the minor role developed by β3‐AR and lower lipolytic capacities located at the postreceptor level in cafeteria‐diet‐fed male rats compared with female rats, may be responsible for the gender‐dependent differences observed in this study. 相似文献
11.
Nobuo Okazaki Maki Kumei Miho Manzoku Seiki Kuramitsu Mikako Shirouzu Akeo Shinkai Shigeyuki Yokoyama 《Acta Crystallographica. Section F, Structural Biology Communications》2007,63(3):173-177
TTHA0281 is a hypothetical protein from Thermus thermophilus HB8 that belongs to an uncharacterized protein family, UPF0150, in the Pfam database and to COG1598 in the National Center for Biotechnology Information Database of Clusters of Orthologous Groups. The X‐ray crystal structure of the protein was determined by a multiple‐wavelength anomalous dispersion technique and was refined at 1.9 Å resolution to a final R factor of 18.5%. The TTHA0281 monomer adopts an α‐β‐β‐β‐α fold and forms a homotetramer. Based on the properties and functions of structural homologues of the TTHA0281 monomer, the TTHA0281 protein is speculated to be involved in RNA metabolism, including RNA binding and cleavage. 相似文献
12.
Marianne Suter Paolo Salvioni Ramon F Thali Roland Scholz Kari Vaahtomeri Yolanda Auchli Helene Rechsteiner René A Brunisholz Benoit Viollet Tomi P Mäkelä Theo Wallimann Dietbert Neumann Wilhelm Krek 《The EMBO journal》2010,29(2):469-481
The mobilization of metabolic energy from adipocytes depends on a tightly regulated balance between hydrolysis and resynthesis of triacylglycerides (TAGs). Hydrolysis is stimulated by β‐adrenergic signalling to PKA that mediates phosphorylation of lipolytic enzymes, including hormone‐sensitive lipase (HSL). TAG resynthesis is associated with high‐energy consumption, which when inordinate, leads to increased AMPK activity that acts to restrain hydrolysis of TAGs by inhibiting PKA‐mediated activation of HSL. Here, we report that in primary mouse adipocytes, PKA associates with and phosphorylates AMPKα1 at Ser‐173 to impede threonine (Thr‐172) phosphorylation and thus activation of AMPKα1 by LKB1 in response to lipolytic signals. Activation of AMPKα1 by LKB1 is also blocked by PKA‐mediated phosphorylation of AMPKα1 in vitro. Functional analysis of an AMPKα1 species carrying a non‐phosphorylatable mutation at Ser‐173 revealed a critical function of this phosphorylation for efficient release of free fatty acids and glycerol in response to PKA‐activating signals. These results suggest a new mechanism of negative regulation of AMPK activity by PKA that is important for converting a lipolytic signal into an effective lipolytic response. 相似文献
13.
An efficient methodology for the preparation of the α‐tetrasubstituted proline analog (S,S,S)‐2‐methyloctahydroindole‐2‐carboxylic acid, (S,S,S)‐(αMe)Oic, and its enantiomer, (R,R,R)‐(αMe)Oic, has been developed. Starting from easily available substrates and through simple transformations, a racemic precursor has been synthesized in excellent yield and further subjected to HPLC resolution using a cellulose‐derived chiral stationary phase. Specifically, a semipreparative (250 mm × 20 mm ID) Chiralpak® IC column has allowed the efficient resolution of more than 4 g of racemate using a mixture of n‐hexane/tert‐butyl methyl ether/2‐propanol as the eluent. Multigram quantities of the target amino acids have been isolated in enantiomerically pure form and suitably protected for incorporation into peptides. Chirality, 2011. © 2011 Wiley‐Liss, Inc. 相似文献
14.
15.
Prolonged stimulation of the β2‐adrenergic receptor (β2AR) leads to receptor ubiquitination and downregulation. Using a genome‐wide RNA interference screen, we identified arrestin domain‐containing 3 (ARRDC3) as a gene required for β2AR regulation. The ARRDC3 protein interacts with ubiquitin ligase neural precursor development downregulated protein 4 (NEDD4) through two conserved PPXY motifs and recruits NEDD4 to the activated receptor. The ARRDC3 protein also interacts and co‐localizes with activated β2AR. Knockdown of ARRDC3 expression abolishes the association between NEDD4 and β2AR. Furthermore, functional inactivation of ARRDC3, either through small interfering RNA (siRNA)‐mediated knockdown or overexpression of a mutant that does not interact with NEDD4, blocks receptor ubiquitination and degradation. Our results establish ARRDC3 as an essential adaptor for β2AR ubiquitination. 相似文献
16.
Stefanie Kobus Pablo Perez-Garcia Astrid Hoeppner Nicholas Holzscheck Filip Kovacic Wolfgang R. Streit Karl-Erich Jaeger Jennifer Chow Sander H. J. Smits 《Acta Crystallographica. Section F, Structural Biology Communications》2019,75(4):307-311
The hyperthermophilic crenarchaeon Ignicoccus hospitalis KIN4/I possesses at least 35 putative genes encoding enzymes that belong to the α/β‐hydrolase superfamily. One of those genes, the metallo‐hydrolase‐encoding igni18, was cloned and heterologously expressed in Pichia pastoris. The enzyme produced was purified in its catalytically active form. The recombinant enzyme was successfully crystallized and the crystal diffracted to a resolution of 2.3 Å. The crystal belonged to space group R32, with unit‐cell parameters a = b = 67.42, c = 253.77 Å, α = β = 90.0, γ = 120.0°. It is suggested that it contains one monomer of Igni18 within the asymmetric unit. 相似文献
17.
Nurul Raihana Azhari Noorfatimah Yahaya Faiz Bukhari M. Mohd Suah Samikannu Prabu Boon Yih Hui Mohamad Shariff Shahriman Nur Nadhirah Mohamad Zain Muggundha Raoov 《Chirality》2021,33(1):37-50
A chiral separation method coupled with capillary electrophoresis (CE) analysis for ketoconazole and miconazole enantiomers using chiral selectors such as β‐cyclodextrin (β‐CD) and hydroxypropyl‐β‐CD (HP‐β‐CD) was developed in this study, which included the optimisation, validation and application of the method on the antifungal cream samples. The formation of inclusion complex between the hosts (β‐CD and HP‐β‐CD) and guests (ketoconazole and miconazole) were compared and analysed using ultraviolet–visible spectrophotometry, nuclear magnetic resonance (NMR) spectroscopy and molecular docking methods. Results from the study showed that in a concentration that ranged between 0.25 and 50 mg L?1, the linear calibration curves of each enantiomer had a high coefficient of regression (R2 > 0.999), low limit of detection (0.075 mg L?1) and low limit of quantification (0.25 mg L?1). The relative standard deviation (RSD) of the intraday and interday analyses ranged from 0.79% to 8.01% and 3.30% to 11.43%, respectively, while the recoveries ranged from 82.0% to 105.7% (RSD < 7%, n = 3). The most probable structure of the inclusion complexes was proposed based on the findings from the molecular docking studies conducted using the PatchDock server. 相似文献
18.
Yoshihiro Yamaguchi Genta Sato Yuriko Yamagata Yohei Doi Jun‐ichi Wachino Yoshichika Arakawa Koki Matsuda Hiromasa Kurosaki 《Acta Crystallographica. Section F, Structural Biology Communications》2009,65(6):540-543
The X‐ray crystal structure of AmpC β‐lactamase (AmpCD) with a tripeptide deletion (Gly286‐Ser287‐Asp288) produced by Escherichia coli HKY28, a ceftazidime‐resistant strain, was determined at a resolution of 1.7 Å. The structure of AmpCD suggests that the tripeptide deletion at positions 286–288 located in the H10 helix causes a structural change of the Asn289–Asn294 region from the α‐helix present in the native AmpC β‐lactamase of E. coli to a loop structure, which results in a widening of the substrate‐binding site. 相似文献
19.
The stress response neuropeptide CRF increases amyloid‐β production by regulating γ‐secretase activity
下载免费PDF全文

Hyo‐Jin Park Yong Ran Joo In Jung Oliver Holmes Ashleigh R Price Lisa Smithson Carolina Ceballos‐Diaz Chul Han Michael S Wolfe Yehia Daaka Andrey E Ryabinin Seong‐Hun Kim Richard L Hauger Todd E Golde Kevin M Felsenstein 《The EMBO journal》2015,34(12):1674-1686
The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid‐β (Aβ) production. In cells, CRF treatment increases Aβ production and triggers CRF receptor 1 (CRFR1) and γ‐secretase internalization. Co‐immunoprecipitation studies establish that γ‐secretase associates with CRFR1; this is mediated by β‐arrestin binding motifs. Additionally, CRFR1 and γ‐secretase co‐localize in lipid raft fractions, with increased γ‐secretase accumulation upon CRF treatment. CRF treatment also increases γ‐secretase activity in vitro, revealing a second, receptor‐independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ‐secretase activity. Unexpectedly, CRFR1 antagonists also increased Aβ. These data collectively link CRF to increased Aβ through γ‐secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aβ and in some cases preferentially increase Aβ42 via complex effects on γ‐secretase. 相似文献
20.
Wen‐bo Zhang Yun‐qi Liu Xi Zhang Lin Lin Sheng‐li Yin 《Journal of cellular biochemistry》2018,119(1):1204-1214
The effects of β adrenergic receptors (β‐ARs) and p38 mitogen‐activated protein kinases (MAPK) pathways on cardiosphere‐derived cells (CDCs) are largely unknown. This study aimed to investigate the roles of β‐ARs and p38MAPK pathways on the proliferation, apoptosis, and differentiation capacity of CDCs. The CDCs were treated with β1‐AR blocker (Met group), β2‐AR antagonist (ICI group), and p38MAPK inhibitor (SB group), non‐selective β‐AR blocker (PRO group), and β‐AR agonist (ISO group). The viability, apoptotic rate and differentiation status of CDCs were determined by MST‐1 assay, flow cytometery, and Western blot, respectively. The CDCs viability significantly reduced in ICI group (all P < 0.05), and SB group had a significant high viability after 48 h treatment (P < 0.05). Compared with control group, all treated groups had a low apoptotic rate. After treatment for 72 h, ISO treatment elevated the expression of Nkx2.5, and could partially or fully attenuate the inhibitory effects of β‐AR antagonists and/or p38MAPK inhibitor. A similar overall trend of protein expression levels among all groups could be observed between protein pairs of cTnT and β1‐AR as well as c‐Kit and β2‐AR, respectively. These results suggested that β‐ARs and p38MAPK signaling pathways play crucial roles in the proliferation and differentiation of CDCs. Our findings should be helpful for better understanding the molecular mechanism underlying the physiological processes of CDCs. 相似文献