首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under the current accounting systems, emissions produced when biomass is burnt for energy are accounted as zero, resulting in what is referred to as the ‘carbon neutrality’ assumption. However, if current harvest levels are increased to produce more bioenergy, carbon that would have been stored in the biosphere might be instead released in the atmosphere. This study utilizes a comparative approach that considers emissions under alternative energy supply options. This approach shows that the emission benefits of bioenergy compared to use of fossil fuel are time‐dependent. It emerges that the assumption that bioenergy always results in zero greenhouse gas (GHG) emissions compared to use of fossil fuels can be misleading, particularly in the context of short‐to‐medium term goals. While it is clear that all sources of woody bioenergy from sustainably managed forests will produce emission reductions in the long term, different woody biomass sources have various impacts in the short‐medium term. The study shows that the use of forest residues that are easily decomposable can produce GHG benefits compared to use of fossil fuels from the beginning of their use and that biomass from dedicated plantations established on marginal land can be carbon neutral from the beginning of its use. However, the risk of short‐to‐medium term negative impacts is high when additional fellings are extracted to produce bioenergy and the proportion of felled biomass used for bioenergy is low, or when land with high C stocks is converted to low productivity bioenergy plantations. The method used in the study provides an instrument to identify the time‐dependent pattern of emission reductions for alternative bioenergy sources. In this way, decision makers can evaluate which bioenergy options are most beneficial for meeting short‐term GHG emission reduction goals and which ones are more appropriate for medium to longer term objectives.  相似文献   

2.
The unique regulatory requirements and costs of genetic engineering (GE) are likely to inhibit commercialization of dedicated bioenergy crops due to the relatively small current market. Two recent regulatory approvals for GE plants, however, may signal a shift in policy and an opening of a door to a streamlined federal regulatory pathway for commercialization for non‐food plants. The change, however, may shift regulatory battles from the federal to the state and local level, as each state has independent authority to regulate plants under respective noxious weed/plant protection statutes. This previously dormant state regulatory power could result in even more complex barriers to commercialization of GE bioenergy crops‐‐replacing the regulatory delays embedded in the federal system with regulatory chaos at the state and local level.  相似文献   

3.
This paper addresses the interface of steering, research, and business operators’ perspectives to bioenergy sustainability. Although bioenergy business operators are essential for sustainable development of bioenergy systems through implementation of sustainability criteria, their perspective to sustainability is rarely studied. We systematically studied the relevant sustainability criteria and indicators from the three perspectives in different stages of a general bioenergy life cycle and in different sustainability dimensions, and evaluated bioenergy operators’ sustainability principles, criteria and indicators simultaneously with respect to the steering and research data and a business sustainability maturity framework. We collected data from literature and a workshop for Finnish bioenergy experts. The results show a similar division of steering and operators’ sustainability criteria and indicators to life cycle stages and sustainability dimensions with a slight emphasis on business economic sustainability from operators’ perspective. The acceptability principle could provide bioenergy operators a meaningful way of identifying the role of sustainability criteria and indicators from steering and research sources in advancing their business sustainability maturity.  相似文献   

4.
Harvesting branches, stumps and unmercantable tops, in addition to stem wood, decreases the carbon input to the soil and consequently reduces the forest carbon stock. We examine the changes in the forest carbon cycle that would compensate for this carbon loss over a rotation period and lead to carbon neutral forest residue bioenergy systems. In addition, we analyse the potential climate impact of these carbon neutral systems. In a boreal forest, the carbon loss was compensated for with a 10% increase in tree growth or a postponing of final felling for 20 years from 90 to 110 years in one forest rotation period. However, these changes in carbon sequestration did not prevent soil carbon loss. To recover soil carbon stock, a 38% increase in tree growth or a 21% decrease in the decomposition rate of the remaining organic matter was needed. All the forest residue bioenergy scenarios studied had a warming impact on climate for at least 62 years. Nevertheless, the increases in the carbon sequestration from forest growth or reduction in the decomposition rate of the remaining organic matter resulted in a 50% smaller warming impact of forest bioenergy use or even a cooling climate impact in the long term. The study shows that carbon neutral forest residue bioenergy systems have warming climate impacts. Minimization of the forest carbon loss improves the climate impact of forest bioenergy.  相似文献   

5.
The intensified use of biomass as an energy source is an often-repeated goal of the German and European climate protection policy. Therefore, framework conditions have been created in recent years, which allow for a wider use of biomass within the energy system especially for a provision of electricity and fuels. Due to this policy, Germany, for example, has emerged as the leading producer of biogas from energy crops and fatty methyl ester (FAME) in Europe. However, due to the high energy price level, the use of biomass for heating purposes and as a renewable raw material have increased at the same time. To supply the obviously increased demand for biomass or biobased energy carriers cost efficiently, nationwide and to some extend even global markets are under development at present. As the demand for biomass is expected to continue to increase strongly, it is feared that an increasing competition with the use for food and fodder as well as a raw material might occur in the years to come. Against this background we have analyzed the competitions that can be expected, and the influence that they may have on the further expansion of the use of biomass for energy production. Experiences from Germany are provided exemplarily. Based on this, it is concluded that measures need to be taken to support an efficient and sustainable use of bioenergy in the future.  相似文献   

6.
Energy production from bioenergy crops may significantly reduce greenhouse gas (GHG) emissions through substitution of fossil fuels. Biochar amendment to soil may further decrease the net climate forcing of bioenergy crop production, however, this has not yet been assessed under field conditions. Significant suppression of soil nitrous oxide (N2O) and carbon dioxide (CO2) emissions following biochar amendment has been demonstrated in short‐term laboratory incubations by a number of authors, yet evidence from long‐term field trials has been contradictory. This study investigated whether biochar amendment could suppress soil GHG emissions under field and controlled conditions in a Miscanthus × Giganteus crop and whether suppression would be sustained during the first 2 years following amendment. In the field, biochar amendment suppressed soil CO2 emissions by 33% and annual net soil CO2 equivalent (eq.) emissions (CO2, N2O and methane, CH4) by 37% over 2 years. In the laboratory, under controlled temperature and equalised gravimetric water content, biochar amendment suppressed soil CO2 emissions by 53% and net soil CO2 eq. emissions by 55%. Soil N2O emissions were not significantly suppressed with biochar amendment, although they were generally low. Soil CH4 fluxes were below minimum detectable limits in both experiments. These findings demonstrate that biochar amendment has the potential to suppress net soil CO2 eq. emissions in bioenergy crop systems for up to 2 years after addition, primarily through reduced CO2 emissions. Suppression of soil CO2 emissions may be due to a combined effect of reduced enzymatic activity, the increased carbon‐use efficiency from the co‐location of soil microbes, soil organic matter and nutrients and the precipitation of CO2 onto the biochar surface. We conclude that hardwood biochar has the potential to improve the GHG balance of bioenergy crops through reductions in net soil CO2 eq. emissions.  相似文献   

7.
8.
Sustainable feedstock supply is a critical issue for the bioenergy sector. One concern is that feedstock production will impact biodiversity. We analyze how this concern is addressed in assessments of biomass supply potentials and in selected governance systems in the EU and Brazil, including the EU Renewable Energy Directive (RED), the EU Common Agricultural Policy (CAP), and the Brazilian Forest Act. The analysis focuses on grasslands and includes estimates of the amount of grassland area (and corresponding biomass production volume) that would be excluded from cultivation in specific biodiversity protection scenarios. The reviewed assessments used a variety of approaches to identify and exclude biodiverse grasslands as unavailable for bioenergy. Because exclusion was integrated with other nature protection considerations, quantification of excluded grassland areas was often not possible. The RED complements and strengthens the CAP in terms of biodiversity protection. Following the RED, an estimated 39%–48% (about 9–11 Mha) and 15%–54% (about 10–38 Mha) of natural and non‐natural grassland, respectively, may be considered highly biodiverse in EU‐28. The estimated biomass production potential on these areas corresponds to some 1–3 and 1.5–10 EJ/year for natural and non‐natural grassland, respectively (depending on area availability and management intensity). However, the RED lacks clear definitions and guidance, creating uncertainty about its influence on grassland availability for bioenergy feedstock production. For Brazil, an estimated 16%–77% (about 16–76 Mha) and 1%–32% (about 7–24 Mha) of natural and non‐natural grassland, respectively, may be considered highly biodiverse. In Brazil, ecological–economic zoning was found potentially important for grassland protection. Further clarification of grassland definitions and delineation in regulations will facilitate a better understanding of the prospects for bioenergy feedstock production on grasslands, and the impacts of bioenergy deployment on biodiversity.  相似文献   

9.
The climate impacts from bioenergy involve an important time aspect. Using forest residues for energy may result in high initial emissions, but net emissions are reduced over time since, if the residues were left on the ground, they would decompose and release CO2 to the atmosphere. This article investigates the climate impacts from bioenergy with special focus on the time aspects. More specifically, we analyze the climate impacts of forest residues and stumps where combustion related emissions are compensated by avoided emissions from leaving them on the ground to decompose. These biofuels are compared with fossil gas and coal. Net emissions are defined as emissions from utilizing the fuel minus emissions from a reference case of no utilization. Climate impacts are estimated using the measures radiative forcing and global average surface temperature. We find that the climate impacts from using forest residues and stumps depend on the decomposition rates and the time perspective over which the analysis is done. Over a 100 year perspective, branches and tops have lower climate impacts than stumps which in turn have lower impacts than fossil gas and coal. Over a 20 year time perspective, branches and tops have lower climate impacts than all other fuels but the relative difference is smaller. However, stumps have slightly higher climate impacts over 20 years than fossil gas but lower impacts than coal. Regarding metrics for climate impacts, over shorter time scales, approximately 30 years or less, radiative forcing overestimates the climate impacts compared with impacts expressed by global surface temperature change, which is due to the inertia of the climate system. We also find that establishing willow on earlier crop land may reduce atmospheric CO2, provided new land is available. However, these results are inconclusive since we haven't considered the effects of producing the agricultural crops elsewhere.  相似文献   

10.
On‐farm anaerobic digestion (AD) of wastes and crops can potentially avoid greenhouse gas (GHG) emissions, but incurs extensive environmental effects via carbon and nitrogen cycles and substitution of multiple processes within and outside farm system boundaries. Farm models were combined with consequential life cycle assessment (CLCA) to assess plausible biogas and miscanthus heating pellet scenarios on dairy farms. On the large dairy farm, the introduction of slurry‐only AD led to reductions in global warming potential (GWP) and resource depletion burdens of 14% and 67%, respectively, but eutrophication and acidification burden increases of 9% and 10%, respectively, assuming open tank digestate storage. Marginal GWP burdens per Mg dry matter (DM) feedstock codigested with slurry ranged from –637 kg CO2e for food waste to +509 kg CO2e for maize. Codigestion of grass and maize led to increased imports of concentrate feed to the farm, negating the GWP benefits of grid electricity substitution. Attributing grass‐to‐arable land use change (LUC) to marginal wheat feed production led to net GWP burdens exceeding 900 kg CO2e Mg?1 maize DM codigested. Converting the medium‐sized dairy farm to a beef‐plus‐AD farm led to a minor reduction in GWP when grass‐to‐arable LUC was excluded, but a 38% GWP increase when such LUC was attributed to marginal maize and wheat feed required for intensive compensatory milk production. If marginal animal feed is derived from soybeans cultivated on recently converted cropland in South America, the net GWP burden increases to 4099 kg CO2e Mg?1 maize DM codigested – equivalent to 55 Mg CO2e yr?1 per hectare used for AD‐maize cultivation. We conclude that AD of slurry and food waste on dairy farms is an effective GHG mitigation option, but that the quantity of codigested crops should be strictly limited to avoid potentially large international carbon leakage via animal feed displacement.  相似文献   

11.
12.

Background

Genetic engineering offers the opportunity to generate unique genetic variation that is either absent in the sexually compatible gene pool or has very low heritability. The generation of transgenic plants, coupled with breeding, has led to the production of widely used transgenic cultivars in several major cash crops, such as maize, soybean, cotton and canola. The process for regulatory approval of genetically engineered crops is slow and subject to extensive political interference. The situation in forage grasses and legumes is more complicated.

Scope

Most widely grown forage, turf and bioenergy species (e.g. tall fescue, perennial ryegrass, switchgrass, alfalfa, white clover) are highly self-incompatible and outcrossing. Compared with inbreeding species, they have a high potential to pass their genes to adjacent plants. A major biosafety concern in these species is pollen-mediated transgene flow. Because human consumption is indirect, risk assessment of transgenic forage, turf and bioenergy species has focused on their environmental or ecological impacts. Although significant progress has been made in genetic modification of these species, commercialization of transgenic cultivars is very limited because of the stringent and costly regulatory requirements. To date, the only transgenic forage crop deregulated in the US is ‘Roundup Ready’ (RR) alfalfa. The approval process for RR alfalfa was complicated, involving several rounds of regulation, deregulation and re-regulation. Nevertheless, commercialization of RR alfalfa is an important step forward in regulatory approval of a perennial outcrossing forage crop. As additional transgenic forage, turf and bioenergy crops are generated and tested, different strategies have been developed to meet regulatory requirements. Recent progress in risk assessment and deregulation of transgenic forage and turf species is summarized and discussed.  相似文献   

13.
The potential power generation from land‐based bioenergy is predicted globally using a computer model. Simultaneous consideration of land use, cost and carbon restrictions enables practical evaluation of net power output. Comparisons are made with wind and solar power, and a sensitivity analysis is used to explore the effects of different policy assumptions. Biomass is shown to offer only moderate power‐generating potential, and would satisfy less than half of current demand even if all suitable existing arable land were used to grow bioenergy crops. However, bioenergy can be cheap to generate given current economics, and is able to remove atmospheric carbon in some cases if coupled with carbon capture and storage. Wind turbines are able to provide more power globally, but photovoltaic solar panels are the only source considered with the potential to satisfy existing demand. Since land‐based bioenergy is also restricted by the need to grow food for an expanding population, and technological developments are likely to greatly increase the viability of other renewable sources, the role of land‐based bioenergy appears relatively limited and short‐term.  相似文献   

14.
Land to produce biomass is essential if the United States is to expand bioenergy supply. Use of agriculturally marginal land avoids the food vs. fuel problems of food price rises and carbon debt that are associated with crop and forestland. Recent remote sensing studies have identified large areas of US marginal land deemed suitable for bioenergy crops. Yet the sustainability benefits of growing bioenergy crops on marginal land only pertain if land is economically available. Scant attention has been paid to the willingness of landowners to supply land for bioenergy crops. Focusing on the northern tier of the Great Lakes, where grassland transitions to forest and land prices are low, this contingent valuation study reports on the willingness of a representative sample of 1124 private, noncorporate landowners to rent land for three bioenergy crops: corn, switchgrass, and poplar. Of the 11% of land that was agriculturally marginal, they were willing to make available no more than 21% for any bioenergy crop (switchgrass preferred on marginal land) at double the prevailing land rental rate in the region. At the same generous rental rate, of the 28% that is cropland, they would rent up to 23% for bioenergy crops (corn preferred), while of the 55% that is forestland, they would rent up to 15% for bioenergy crops (poplar preferred). Regression results identified deterrents to land rental for bioenergy purposes included appreciation of environmental amenities and concern about rental disamenities. In sum, like landowners in the southern Great Lakes region, landowners in the Northern Tier are reluctant to supply marginal land for bioenergy crops. If rental markets existed, they would rent more crop and forestland for bioenergy crops than they would marginal land, which would generate carbon debt and opportunity costs in wood product and food markets.  相似文献   

15.
To reach the reduced carbon emission targets proposed by the Paris agreement, one of the widely proposed decarbonizing strategies, referred to as negative emissions technologies (NETs), is the production and combustion of bioenergy crops in conjunction with carbon capture and storage (BECCS). However, concerns have been increasingly raised that relying on the potential of BECCS to achieve negative emissions could result in delayed reductions in gross CO2 emissions, with consequent high risk of overshooting global temperature targets. We focus on two particular issues: the carbon efficiency and payback time of bioenergy use in BECCS and the potential constraints on the supply of bioenergy. The simplistic vision of BECCS is that 1 tonne of CO2 captured in the growth of biomass equates to 1 tonne of CO2 sequestered geologically, but this cannot be the case as CO2 is emitted by variable amounts during the lifecycle from crop establishment to sequestration below ground in geological formations. The deployment of BECCS is ultimately reliant on the availability of sufficient, sustainably sourced, biomass. The two most important factors determining this supply are land availability and land productivity. The upper bounds of the area estimates required correspond to more than the world's harvested land for cereal production. To achieve these estimates of biomass availability requires the rapid evolution of a multitude of technological, social, political and economic factors. Here, we question whether, because of the limited sustainable supply of biomass, BECCS should continue to be considered the dominant NET in IPCC and other scenarios achieving the Paris targets, or should it be deemed no longer fit for purpose?  相似文献   

16.
The biogas‐to‐electricity pathway under the Renewable Fuel Standard (RFS) allows for Renewable Identification Number (RIN) credits to be generated when electricity produced from biogas is used in the transportation sector. Though approved as a general pathway, EPA has proposed multiple credit allocation methods to functionalize this pathway. This study describes and evaluates a potential credit allocation framework where vehicle manufacturers generate electricity RIN (E‐RIN) credits and use these credits to increase the sales of plug‐in electric vehicles (PEVs). Under this framework, manufacturers use part of the credit value to reimburse electricity generators, offsetting potential higher biogas electricity generation cost. The remaining credit value is passed on to consumers as an annual PEV rebate to stimulate PEV sales. An iterative simulation framework is developed to fulfill two tasks: (a) to estimate the annual rebate amounts and their upfront value to consumers based on various factors, such as vehicle mileage, E‐RIN equivalence value, and biogas capacity, and (b) to evaluate potential impacts of the E‐RIN program on electrification of the future light‐duty vehicles (LDVs) and energy use. The annual rebate amount varies by vehicle technology and could be up to $870/year for battery electric vehicles (BEVs) and range between $230 and 825/year for plug‐in hybrid electric vehicles (PHEVs) depending on the electric range. These per vehicle rebates decrease when demand for electricity exceeds biogas electricity availability. The effectiveness of the program as modeled here is subject to different factors, such as the E‐RIN equivalence value, biogas electricity generation cost, biogas electricity generation capacity, and consumers’ valuation of the E‐RIN rebate. Our modeling results indicate that an E‐RIN program has the potential to produce nearly $12 billion in E‐RIN credits annually and to significantly increase PEV annual sales by up to 2.3 million and the PEV population by about 19.7 million in 2030.  相似文献   

17.
Bioenergy is expected to have a prominent role in limiting global greenhouse emissions to meet the climate change target of the Paris Agreement. Many studies identify negative emissions from bioenergy generation with carbon capture and storage (BECCS) as its key contribution, but assume that no other CO2 removal technologies are available. We use a global integrated assessment model, TIAM‐UCL, to investigate the role of bioenergy within the global energy system when direct air capture and afforestation are available as cost‐competitive alternatives to BECCS. We find that the presence of other CO2 removal technologies does not reduce the pressure on biomass resources but changes the use of bioenergy for climate mitigation. While we confirm that when available BECCS offers cheaper decarbonization pathways, we also find that its use delays the phase‐out of unabated fossil fuels in industry and transport. Furthermore, it displaces renewable electricity generation, potentially increasing the likelihood of missing the Paris Agreement target. We found that the most cost‐effective solution is to invest in a basket of CO2 removal technologies. However, if these technologies rely on CCS, then urgent action is required to ramp up the necessary infrastructure. We conclude that a sustainable biomass supply is critical for decarbonizing the global energy system. Since only a few world regions carry the burden of producing the biomass resource and store CO2 in geological storage, adequate international collaboration, policies and standards will be needed to realize this resource while avoiding undesired land‐use change.  相似文献   

18.
The area under the cultivation of perennial bioenergy crops on organic soils in the northern countries is fast increasing. To understand the impact of reed canary grass (RCG, Phalaris arundinaceae L.) cultivation on the carbon dioxide (CO2) balance of an organic soil, net ecosystem CO2 exchange (NEE) was measured for four years in a RCG cultivated cutover peatland in eastern Finland using the eddy covariance technique. There were striking differences among the years in the annual precipitation. The annual precipitation was higher during 2004 and 2007 and lower during 2005 and 2006 than the 1971–2000 regional mean. During wet growing seasons, moderate temperatures, high surface soil moisture and low evaporative demand favoured high CO2 uptake. During dry seasons, owing to soil moisture and atmospheric stress, photosynthetic activity was severely restricted. The CO2 uptake [gross primary productivity (GPP)] was positively correlated with soil moisture, air temperature and inversely with vapour pressure deficit. Total ecosystem respiration (TER) increased with increasing soil temperature but decreased with increasing soil moisture. The relative responses of GPP and TER to moisture stress were different. While changes in TER for a given change in soil moisture were moderate, variations in GPP were drastic. Also, the seasonal variations in TER were not as conspicuous as those in GPP implying that GPP is the primary regulator of the interannual variability in NEE in this ecosystem. The ecosystem accumulated a total of 398 g C m?2 from the beginning of 2004 until the end of 2007. It retained some carbon during a wet year such as 2004 even after accounting for the loss of carbon in the form of harvested biomass. Based on this CO2 balance analysis, RCG cultivation is found to be a promising after‐use option on an organic soil.  相似文献   

19.
Populus is a genus of fast growing trees that may be suitable as a bioenergy crop grown in short rotation, but understanding the genetic nature of yield and genotype interactions with the environment is critical in developing new high-yield genotypes for wide-scale planting. In the present study, 210 genotypes from an F2 population (Family 331; POP1) derived from a cross between Populus trichocarpa 93-968 and P. deltoides ILL-129 were grown in southern UK, central France and northern Italy. The performance of POP1, based upon first- and second-year main stem traits and biomass production, improved from northern to southern Europe. Trees at the Italian site produced the highest mean biomass ranging from 0.77 to 18.06 oven-dried tonnes (ODT) ha−1 year−1, and the UK site produced the lowest mean biomass ranging from 0.18 to 10.31 ODT ha−1 year−1. Significant genotype × environment interactions were seen despite heritability values across sites being moderate to high. Using a pseudo-testcross analysis, 37 quantitative trait loci (QTL) were identified for the maternal parent and 45 for the paternal parent for eight stem and biomass traits across the three sites. High genetic correlations between traits suggested that collocating QTL could be inferred as a single pleiotropic QTL, reducing the number of unique QTL to 23 and 24 for the maternal and paternal parent, respectively. Additive genetic effects were seen to differ significantly for eight QTL on the maternal map and 20 on the paternal map across sites. An additive main effects and multiplicative interaction analysis was carried out to obtain stability parameters for each trait. These parameters were mapped as QTL, and collocation to trait QTL was accessed. Two of the eight stability QTL collocate to trait QTL on the maternal map, and 8 of the 20 stability QTL collocate to trait QTL on the paternal map, suggesting that a regulatory gene model is prevalent over an allele sensitivity model for stem trait stability across these environments.  相似文献   

20.

Purpose

With many environmental burdens associated with bioenergy production occurring at the regional level, there is a need to produce more regional and spatially representative life cycle assessment of bioenergy systems. On the other hand, such assessments also need to account for the global and cumulative impacts along the full bioenergy life cycle in order to support effective regional policy measures and decision making. Therefore, the challenge is to find a balance. In other words, how should we define the regional context for bioenergy system assessments in order to complement life cycle thinking? The aim of this review is to answer this question by providing an overview of important considerations when assessing bioenergy systems in a regional and LCA context and how these two contexts intersect. It also aims to help guide and orientate LCA practitioners interested in including more regional aspects in their bioenergy studies. Until now, such a review which explores the integration of regional and life cycle contexts in relation to bioenergy systems and their products has not been done.

Methods

As a first step, we define what we mean by the term region. We then look at the potential burdens relating to bioenergy systems and their relationship with the regional context. In a next step, we explore life cycle thinking and the intersection between the regional and LCA contexts by providing some examples from the literature. We then discuss the benefits and limitations of such regionally contextualized life cycle approaches in relation to bioenergy production systems and indeed other alternative biomass uses.

Results and discussion

Three regional contexts were identified to help orientate life cycle thinking aiming to assess the regional and nonregional environmental implications of bioenergy production. These contexts were as follows: “within regional,” “regional and ROW,” and “regionalized.” The added value of implementing a regionally contextualized life cycle approach is the ability, therefore, to include greater regional and spatial details in the assessments of bioenergy production systems, without losing the links to the diversity of global supply chains. Thus, providing greater geographical and regional insight into how such potential burdens can be reduced or shifted burdens avoided or how associated regional production activities could be optimized to mitigate such burdens.

Conclusions

The use of different regional contexts as proposed in this paper is not only useful to orientate life cycle thinking in relation to bioenergy systems but also for the assessment of alternative novel bio-based systems.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号