首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Soils harbor more than three times as much carbon (C) as the atmosphere, a large fraction of which (stable organic matter) serves as the most important global C reservoir due to its long residence time. Litter and root inputs bring fresh organic matter (FOM) into the soil and accelerate the turnover of stable C pools, and this phenomenon is termed the “priming effect” (PE). Compared with knowledge about labile soil C pools, very little is known about the vulnerability of stable C to priming. Using two soils that substantially differed in age (500 and 5300 years before present) and in the degree of chemical recalcitrance and physical protection of soil organic matter (SOM), we showed that leaf litter amendment primed 264% more organic C from the young SOM than from the old soil with very stable C. Hierarchical partitioning analysis confirmed that SOM stability, reflected mainly by available C and aggregate protection of SOM, is the most important predictor of leaf litter-induced PE. The addition of complex FOM (i.e., leaf litter) caused a higher bacterial oligotroph/copiotroph (K-/r-strategists) ratio, leading to a PE that was 583% and 126% greater than when simple FOM (i.e., glucose) was added to the young and old soils, respectively. This implies that the PE intensity depends on the chemical similarity between the primer (here FOM) and SOM. Nitrogen (N) mining existed when N and simple FOM were added (i.e., Glucose+N), and N addition raised the leaf litter-induced PE in the old soil that had low N availability, which was well explained by the microbial stoichiometry. In conclusion, the PE induced by FOM inputs strongly decreases with increasing SOM stability. However, the contribution of stable SOM to CO2 efflux cannot be disregarded due to its huge pool size.  相似文献   

2.
To predict the behavior of the terrestrial carbon cycle, it is critical to understand the source, formation pathway, and chemical composition of soil organic matter (SOM). There is emerging consensus that slow‐cycling SOM generally consists of relatively low molecular weight organic carbon substrates that enter the mineral soil as dissolved organic matter and associate with mineral surfaces (referred to as “mineral‐associated OM,” or MAOM). However, much debate and contradictory evidence persist around: (a) whether the organic C substrates within the MAOM pool primarily originate from aboveground vs. belowground plant sources and (b) whether C substrates directly sorb to mineral surfaces or undergo microbial transformation prior to their incorporation into MAOM. Here, we attempt to reconcile disparate views on the formation of MAOM by proposing a spatially explicit set of processes that link plant C source with MAOM formation pathway. Specifically, because belowground vs. aboveground sources of plant C enter spatially distinct regions of the mineral soil, we propose that fine‐scale differences in microbial abundance should determine the probability of substrate–microbe vs. substrate–mineral interaction. Thus, formation of MAOM in areas of high microbial density (e.g., the rhizosphere and other microbial hotspots) should primarily occur through an in vivo microbial turnover pathway and favor C substrates that are first biosynthesized with high microbial carbon‐use efficiency prior to incorporation in the MAOM pool. In contrast, in areas of low microbial density (e.g., certain regions of the bulk soil), MAOM formation should primarily occur through the direct sorption of intact or partially oxidized plant compounds to uncolonized mineral surfaces, minimizing the importance of carbon‐use efficiency, and favoring C substrates with strong “sorptive affinity.” Through this framework, we thus describe how the primacy of biotic vs. abiotic controls on MAOM dynamics is not mutually exclusive, but rather spatially dictated. Such an understanding may be integral to more accurately modeling soil organic matter dynamics across different spatial scales.  相似文献   

3.
The decline of soil organic matter (SOM) and its associated fertility is one of the most important constraints to enhanced crop productivity in sub-Saharan Africa. Integrated soil fertility management recognizes the potential benefits of the combined use of organic residue and mineral fertilizer inputs for improved crop yield and SOM build up. However, these benefits may be controlled by residue quality. We examined the short- to long-term C and N dynamics following application of different quality residues with and without N fertilizer in a series of experiments comprising different timescales of measurement in a Kenyan Humic Nitisol. The combined results of these studies indicate that residue quality and fertilizer additions alter short-term C and N mineralization. Combining low quality residue and fertilizer inputs immobilized a greater amount of fertilizer-N than high quality residue. Under field conditions, this reduction in available N induced by the combination of low quality residue and fertilizer reduced environmental N losses and created a positive interactive effect on crop N uptake. While input management manipulated short-term nutrient dynamics, it did not influence long-term SOM stabilization. The input of residue, regardless of quality, contributed to long-term soil fertility improvement. In conclusion, organic residue quality can be manipulated to optimize short-term nutrient dynamics while still conferring the same benefits to long-term SOM contents.  相似文献   

4.
Mineral-associated organic matter (MAOM) is a key component of the global carbon (C) and nitrogen (N) cycles, but the processes controlling its formation from plant litter are not well understood. Recent evidence suggests that more MAOM will form from higher quality litters (e.g., those with lower C/N ratios and lower lignocellulose indices), than lower quality litters. Shoots and roots of the same non-woody plant can provide good examples of high and low quality litters, respectively, yet previous work tends to show a majority of soil organic matter is root-derived. We investigated the effect of litter quality on MAOM formation from shoots versus roots using a litter-soil slurry incubation of isotopically labeled (13C and 15N) shoots or roots of Big Bluestem (Andropogon gerardii) with isolated silt or clay soil fractions. The slurry method minimized the influence of soil structure and maximized contact between plant material and soil. We tracked the contribution of shoot- and root-derived C and N to newly formed MAOM over 60 days. We found that shoots contributed more C and N to MAOM than roots. The formation of shoot-derived MAOM was also more efficient, meaning that less CO2 was respired per unit MAOM formed. We suggest that these results are driven by initial differences in litter chemistry between the shoot and root material, while results of studies showing a majority of soil organic matter is root-derived may be driven by alternate mechanisms, such as proximity of roots to mineral surfaces, greater contribution of roots to aggregate formation, and root exudation. Across all treatments, newly formed MAOM had a low C/N ratio compared to the parent plant material, which supports the idea that microbial processing of litter is a key pathway of MAOM formation.  相似文献   

5.
长期不同养分投入对土壤养分和水稻生产持续性的影响   总被引:5,自引:0,他引:5  
以中国科学院桃源农业生态试验站15a长期田间定位试验为研究对象,分析了不同养分投入对稻田土壤养分和水稻产量可持续性的影响.结果表明,化肥与系统内循环的有机物料循环的肥力效力和产量效应基本一致,有机物料循环更有利于土壤有机质和氮素的积累;在不同养分投入下,土壤耕层有机质和全氮均呈上升趋势,年均增长率分别为1.5%~5.8%和2.5%~9.4%;与试验前相比,不同养分投入耕层磷素变动幅度在-18.3%到30%之间,钾素养分有所亏缺,下降幅度在8.1%~22.6%之间;通过可持续性指数的分析得出,土壤N素养分的可持续性对化肥的依赖性较大,而P、K养分的可持续性则对有机肥的依赖性更高.稻田生态系统具有良好的自维持能力,系统内有机物循环有利于提高稻谷产量的稳定性和可持续性.  相似文献   

6.
Mountain soils stock large quantities of carbon as particulate organic matter that may be highly vulnerable to climate change. To explore potential shifts in soil organic matter (SOM) form and stability under climate change (warming and reduced precipitations), we studied the dynamics of SOM pools of a mountain grassland in the Swiss Jura as part of a climate manipulation experiment. The climate manipulation (elevational soil transplantation) was set up in October 2009 and simulated two realistic climate change scenarios. After 4 years of manipulation, we performed SOM physical fractionation to extract SOM fractions corresponding to specific turnover rates, in winter and in summer. Soil organic matter fraction chemistry was studied with ultraviolet, 3D fluorescence, and mid-infrared spectroscopies. The most labile SOM fractions showed high intra-annual dynamics (amounts and chemistry) mediated via the seasonal changes of fresh plant debris inputs and confirming their high contribution to the microbial loop. Our climate change manipulation modified the chemical differences between free and intra-aggregate organic matter, suggesting a modification of soil macro-aggregates dynamics. Interestingly, the 4-year climate manipulation affected directly the SOM dynamics, with a decrease in organic C bulk soil content, resulting from significant C-losses in the mineral-associated SOM fraction (MAOM), the most stable form of SOM. This SOC decrease was associated with a decrease in clay content, above- and belowground plants biomass, soil microbial biomass and activity. The combination of these climate changes effects on the plant–soil system could have led to increase C-losses from the MAOM fraction through clay-SOM washing out and DOC leaching in this subalpine grassland.  相似文献   

7.
Grassland ecosystems store an estimated 30% of the world's total soil C and are frequently disturbed by wildfires or fire management. Aboveground litter decomposition is one of the main processes that form soil organic matter (SOM). However, during a fire biomass is removed or partially combusted and litter inputs to the soil are substituted with inputs of pyrogenic organic matter (py‐OM). Py‐OM accounts for a more recalcitrant plant input to SOM than fresh litter, and the historical frequency of burning may alter C and N retention of both fresh litter and py‐OM inputs to the soil. We compared the fate of these two forms of plant material by incubating 13C‐ and 15N‐labeled Andropogon gerardii litter and py‐OM at both an annually burned and an infrequently burned tallgrass prairie site for 11 months. We traced litter and py‐OM C and N into uncomplexed and organo‐mineral SOM fractions and CO2 fluxes and determined how fire history affects the fate of these two forms of aboveground biomass. Evidence from CO2 fluxes and SOM C:N ratios indicates that the litter was microbially transformed during decomposition while, besides an initial labile fraction, py‐OM added to SOM largely untransformed by soil microbes. Additionally, at the N‐limited annually burned site, litter N was tightly conserved. Together, these results demonstrate how, although py‐OM may contribute to C and N sequestration in the soil due to its resistance to microbial degradation, a long history of annual removal of fresh litter and input of py‐OM infers N limitation due to the inhibition of microbial decomposition of aboveground plant inputs to the soil. These results provide new insight into how fire may impact plant inputs to the soil, and the effects of py‐OM on SOM formation and ecosystem C and N cycling.  相似文献   

8.
胥娇  李强 《微生物学报》2023,63(6):2153-2172
碳酸盐岩经风化作用并在地形、植被、气候、时间及生物等因素的影响下逐渐演替出黑色石灰土、棕色石灰土、黄色石灰土和红色石灰土。【目的】研究不同演替阶段石灰土颗粒态有机质(particulate organic matter, POM)和矿物结合态有机质(mineral-associated organic matter, MAOM)的微生物群落特征,为岩溶土壤有机质稳定机制研究提供理论依据。【方法】以广西弄岗国家级自然保护区的黑色石灰土、棕色石灰土、黄色石灰土和红色石灰土为研究对象,运用湿筛法将土壤有机质(soil organic matter, SOM)分为POM和MAOM,分析其理化性质以及微生物群落特征。【结果】石灰土演替过程中POM和MAOM的有机碳、总氮、交换性钙含量均呈下降趋势,且MAOM的C/N均大于POM,POM的C/P均大于MAOM。细菌α多样性在黑色石灰土POM和MAOM中最高,且四类石灰土MAOM的真菌多样性比POM要高。Acidobacteria、Proteobacteria、Ascomycota均为石灰土演替过程中POM和MAOM的优势菌门。总磷是影响石灰土演替过...  相似文献   

9.
Managing soil organic matter (SOM) stocks to address global change challenges requires well‐substantiated knowledge of SOM behavior that can be clearly communicated between scientists, management practitioners, and policy makers. However, SOM is incredibly complex and requires separation into multiple components with contrasting behavior in order to study and predict its dynamics. Numerous diverse SOM separation schemes are currently used, making cross‐study comparisons difficult and hindering broad‐scale generalizations. Here, we recommend separating SOM into particulate (POM) and mineral‐associated (MAOM) forms, two SOM components that are fundamentally different in terms of their formation, persistence, and functioning. We provide evidence of their highly contrasting physical and chemical properties, mean residence times in soil, and responses to land use change, plant litter inputs, warming, CO2 enrichment, and N fertilization. Conceptualizing SOM into POM versus MAOM is a feasible, well‐supported, and useful framework that will allow scientists to move beyond studies of bulk SOM, but also use a consistent separation scheme across studies. Ultimately, we propose the POM versus MAOM framework as the best way forward to understand and predict broad‐scale SOM dynamics in the context of global change challenges and provide necessary recommendations to managers and policy makers.  相似文献   

10.
While plant litters are the main source of soil organic matter (SOM) in forests, the controllers and pathways to stable SOM formation remain unclear. Here, we address how litter type (13C/15N‐labeled needles vs. fine roots) and placement‐depth (O vs. A horizon) affect in situ C and N dynamics in a temperate forest soil after 5 years. Litter type rather than placement‐depth controlled soil C and N retention after 5 years in situ, with belowground fine root inputs greatly enhancing soil C (x1.4) and N (x1.2) retention compared with aboveground needles. While the proportions of added needle and fine root‐derived C and N recovered into stable SOM fractions were similar, they followed different transformation pathways into stable SOM fractions: fine root transfer was slower than for needles, but proportionally more of the remaining needle‐derived C and N was transferred into stable SOM fractions. The stoichiometry of litter‐derived C vs. N within individual SOM fractions revealed the presence at least two pools of different turnover times (per SOM fraction) and emphasized the role of N‐rich compounds for long‐term persistence. Finally, a regression approach suggested that models may underestimate soil C retention from litter with fast decomposition rates.  相似文献   

11.
Recent advances in soil C saturation concepts have increased our understanding of soil C storage and mineralization without explicit links to N retention and saturation theories. Here, we exploit soil texture and organic matter (OM) gradients in a Maryland, USA hardwood forest to test hypotheses that link soil organic C saturation with soil 15N retention and nitrification. At our site, mineral-associated OM (MAOM) N concentrations in the silt + clay particle fraction (g MAOM-N g silt + clay−1) were negatively correlated with the fraction of NH4-N transferred to MAOM during a 3-day in situ incubation (R = −0.85), but positively correlated with potential net nitrification (R = 0.76). Moreover, the fraction of NH4-N transferred to MAOM was negatively correlated with potential net nitrification (R = −0.76). Due to physico-chemical stabilization mechanisms, MAOM is considered to be resistant to mineralization. Carbon saturation theory suggests that the proportion of new C inputs that can be stabilized in MAOM decreases in proportion to the amount of C already present in the fraction; C inputs not stabilized in MAOM are susceptible to rapid mineralization. We demonstrate that NH4-N stabilization in MAOM is similar to C stabilization in MAOM and associated with nitrification, thereby extending soil C saturation theory to mineral N and linking it with N retention and saturation theories. These data and concepts complement N saturation models that emphasize vegetation type, N input levels, and microbial turnover. Incorporating the OM retention capacity of fine mineral particles into N saturation theory can improve predictions of N saturation rates and resolve inconsistent relationships between soil organic matter, texture, N mineralization, and N retention.  相似文献   

12.
Developing sustainable management practices including appropriate residue removal and nitrogen (N) fertilization for bioenergy sorghum is critical. However, the effects of residue removal and N fertilization associated with bioenergy sorghum production on soil organic carbon (SOC) are less studied compared to other crops. The objective of our research was to assess the impacts of residue removal and N fertilization on biomass yield and SOC under biomass sorghum production. Field measurements were used to calibrate the DNDC model, then verified the model by comparing simulated results with measured results using the field management practices as agronomic inputs. Both residue removal and N fertilization affected bioenergy sorghum yields in some years. The average measured SOC at 0–50 cm across the treatments and the time-frame ranged from 47.5 to 78.7 Mg C ha−1, while the simulated SOC was from 56.3 to 67.3 Mg C ha−1. The high correlation coefficients (0.65 to 0.99) and low root mean square error (3 to 18) between measured and simulated values indicate the DNDC model accurately simulated the effects of residue removal with N fertilization on bioenergy sorghum production and SOC. The model predictions revealed that there is, in the long term, a trend for higher SOC under bioenergy sorghum production regardless of residue management.  相似文献   

13.
GHG mitigation by bioenergy crops depends on crop type, management practices, and the input of residue carbon (C) to the soil. Perennial grasses may increase soil C compared to annual crops because of more extensive root systems, but it is less clear how much soil C is derived from above‐ vs. belowground inputs. The objective of this study was to synthesize the existing knowledge regarding soil C inputs from above‐ and belowground crop residues in regions cultivated with sugarcane, corn, and miscanthus, and to predict the impact of residue removal and tillage on soil C stocks. The literature review showed that aboveground inputs to soil C (to 1‐m depth) ranged from 70% to 81% for sugarcane and corn vs. 40% for miscanthus. Modeled aboveground C inputs (to 30 cm depth) ranged from 54% to 82% for sugarcane, but were 67% for miscanthus. Because 50% of observed miscanthus belowground biomass is below 30 cm depth, it may be necessary to increase the depth of modeled soil C dynamics to reconcile modeled belowground C inputs with measured. Modeled removal of aboveground corn residue (25–100%) resulted in C stock reduction in areas of corn–corn–soybean rotation under conventional tillage, while no‐till management lessoned this impact. In sugarcane, soil C stocks were reduced when total aboveground residue was removed at one site, while partial removal of sugarcane residue did not reduce soil C stocks in either area. This study suggests that aboveground crop residues were the main C‐residue source to the soil in the current bioethanol sector (corn and sugarcane) and the indiscriminate removal of crop residues to produce cellulosic biofuels can reduce soil C stocks and reduce the environmental benefits of bioenergy. Moreover, a switch to feedstocks such as miscanthus with more allocation to belowground C could increase soil C stocks at a much faster rate.  相似文献   

14.
A consensus map of QTLs controlling the root length of maize   总被引:1,自引:0,他引:1  
Despite their low carbon (C) content, most subsoil horizons contribute to more than half of the total soil C stocks, and therefore need to be considered in the global C cycle. Until recently, the properties and dynamics of C in deep soils was largely ignored. The aim of this review is to synthesize literature concerning the sources, composition, mechanisms of stabilisation and destabilization of soil organic matter (SOM) stored in subsoil horizons. Organic C input into subsoils occurs in dissolved form (DOC) following preferential flow pathways, as aboveground or root litter and exudates along root channels and/or through bioturbation. The relative importance of these inputs for subsoil C distribution and dynamics still needs to be evaluated. Generally, C in deep soil horizons is characterized by high mean residence times of up to several thousand years. With few exceptions, the carbon-to-nitrogen (C/N) ratio is decreasing with soil depth, while the stable C and N isotope ratios of SOM are increasing, indicating that organic matter (OM) in deep soil horizons is highly processed. Several studies suggest that SOM in subsoils is enriched in microbial-derived C compounds and depleted in energy-rich plant material compared to topsoil SOM. However, the chemical composition of SOM in subsoils is soil-type specific and greatly influenced by pedological processes. Interaction with the mineral phase, in particular amorphous iron (Fe) and aluminum (Al) oxides was reported to be the main stabilization mechanism in acid and near neutral soils. In addition, occlusion within soil aggregates has been identified to account for a great proportion of SOM preserved in subsoils. Laboratory studies have shown that the decomposition of subsoil C with high residence times could be stimulated by addition of labile C. Other mechanisms leading to destabilisation of SOM in subsoils include disruption of the physical structure and nutrient supply to soil microorganisms. One of the most important factors leading to protection of SOM in subsoils may be the spatial separation of SOM, microorganisms and extracellular enzyme activity possibly related to the heterogeneity of C input. As a result of the different processes, stabilized SOM in subsoils is horizontally stratified. In order to better understand deep SOM dynamics and to include them into soil C models, quantitative information about C fluxes resulting from C input, stabilization and destabilization processes at the field scale are necessary.  相似文献   

15.
The degree to which rising atmospheric CO(2) will be offset by carbon (C) sequestration in forests depends in part on the capacity of trees and soil microbes to make physiological adjustments that can alleviate resource limitation. Here, we show for the first time that mature trees exposed to CO(2) enrichment increase the release of soluble C from roots to soil, and that such increases are coupled to the accelerated turnover of nitrogen (N) pools in the rhizosphere. Over the course of 3 years, we measured in situ rates of root exudation from 420 intact loblolly pine (Pinus taeda L.) roots. Trees fumigated with elevated CO(2) (200 p.p.m.v. over background) increased exudation rates (μg C cm(-1) root h(-1) ) by 55% during the primary growing season, leading to a 50% annual increase in dissolved organic inputs to fumigated forest soils. These increases in root-derived C were positively correlated with microbial release of extracellular enzymes involved in breakdown of organic N (R(2) = 0.66; P = 0.006) in the rhizosphere, indicating that exudation stimulated microbial activity and accelerated the rate of soil organic matter (SOM) turnover. In support of this conclusion, trees exposed to both elevated CO(2) and N fertilization did not increase exudation rates and had reduced enzyme activities in the rhizosphere. Collectively, our results provide field-based empirical support suggesting that sustained growth responses of forests to elevated CO(2) in low fertility soils are maintained by enhanced rates of microbial activity and N cycling fuelled by inputs of root-derived C. To the extent that increases in exudation also stimulate SOM decomposition, such changes may prevent soil C accumulation in forest ecosystems.  相似文献   

16.
The maintenance of soil organic matter (SOM) and the balancing of nutrient flows into and out of the rainfed rice cropping systems in Northeast Thailand is of paramount importance to arresting the decline in soil fertility and crop yields. A system where small applications of leaf litters from locally grown trees are applied annually to rice paddy soils prior to transplanting is described. The annual application of 1500 kg/ha of Cajanus cajan, Acacia auriculiformis, Phyllanthus taxodifolius and Samanea saman for five seasons resulted in increases in rice grain yield of 48, 35, 32 and 23% above the no-leaf litter control, respectively. Average annual nutrient inputs from the leaf litters, in kg/ha, ranged from 62.7 N, 3.9 P, 17.9 K, and 3.5 S for Cajanus cajan to 24.5 N, 1.5 P, 8.1 K and 2.0 S for Acacia auriculiformis. Nutrient balances, determined by the difference between the inputs (fertiliser and added leaf litters) and outputs (grain and straw) indicated net positive N and P balances of up to 457 and 60 kg/ha. respectively, after five seasons of leaf litter applications. Sulfur and potassium balances resulted in net deficits of up to −3 and −52 kg S and K/ha, respectively, where no leaf litter was applied and rice straw was removed following harvest. Calculated apparent nutrient recoveries reflected the decomposition rate of the added residues and were highest for P and K, reflecting their higher soil residual value than mobile nutrients such as N and S. Sustainable farming systems will require that crop yields are stable through the maintenance of soil fertility and the balance of nutrients in the system. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
We investigated whether groundwater abstraction for urban water supply diminishes the storage of carbon (C), nitrogen (N), and organic matter in the soil of rural wetlands. Wetland soil organic matter (SOM) benefits air and water quality by sequestering large masses of C and N. Yet, the accumulation of wetland SOM depends on soil inundation, so we hypothesized that groundwater abstraction would diminish stocks of SOM, C, and N in wetland soils. Predictions of this hypothesis were tested in two types of subtropical, depressional‐basin wetland: forested swamps and herbaceous‐vegetation marshes. In west‐central Florida, >650 ML groundwater day?1 are abstracted for use primarily in the Tampa Bay metropolis. At higher abstraction volumes, water tables were lower and wetlands had shorter hydroperiods (less time inundated). In turn, wetlands with shorter hydroperiods had 50–60% less SOM, C, and N per kg soil. In swamps, SOM loss caused soil bulk density to double, so areal soil C and N storage per m2 through 30.5 cm depth was diminished by 25–30% in short‐hydroperiod swamps. In herbaceous‐vegetation marshes, short hydroperiods caused a sharper decline in N than in C. Soil organic matter, C, and N pools were not correlated with soil texture or with wetland draining‐reflooding frequency. Many years of shortened hydroperiod were probably required to diminish soil organic matter, C, and N pools by the magnitudes we observed. This diminution might have occurred decades ago, but could be maintained contemporarily by the failure each year of chronically drained soils to retain new organic matter inputs. In sum, our study attributes the contraction of hydroperiod and loss of soil organic matter, C, and N from rural wetlands to groundwater abstraction performed largely for urban water supply, revealing teleconnections between rural ecosystem change and urban resource demand.  相似文献   

18.
Alterations in forest productivity and changes in the relative proportion of above‐ and belowground biomass may have nonlinear effects on soil organic matter (SOM) storage. To study the influence of plant litter inputs on SOM accumulation, the Detritus Input Removal and Transfer (DIRT) Experiment continuously alters above‐ and belowground plant inputs to soil by a combination of trenching, screening, and litter addition. Here, we used biogeochemical indicators [i.e., cupric oxide extractable lignin‐derived phenols and suberin/cutin‐derived substituted fatty acids (SFA)] to identify the dominant sources of plant biopolymers in SOM and various measures [i.e., soil density fractionation, laboratory incubation, and radiocarbon‐based mean residence time (MRT)] to assess the stability of SOM in two contrasting forests within the DIRT Experiment: an aggrading deciduous forest and an old‐growth coniferous forest. In the deciduous forest, removal of both above‐ and belowground inputs increased the total amount of SFA over threefold compared with the control, and shifted the SFA signature towards a root‐dominated source. Concurrently, light fraction MRT increased by 101 years and C mineralization during incubation decreased compared with the control. Together, these data suggest that root‐derived aliphatic compounds are a source of SOM with greater relative stability than leaf inputs at this site. In the coniferous forest, roots were an important source of soil lignin‐derived phenols but needle‐derived, rather than root‐derived, aliphatic compounds were preferentially preserved in soil. Fresh wood additions elevated the amount of soil C recovered as light fraction material but also elevated mineralization during incubation compared with other DIRT treatments, suggesting that not all of the added soil C is directly stabilized. Aboveground needle litter additions, which are more N‐rich than wood debris, resulted in accelerated mineralization of previously stored soil carbon. In summary, our work demonstrates that the dominant plant sources of SOM differed substantially between forest types. Furthermore, inputs to and losses from soil C pools likely will not be altered uniformly by changes in litter input rates.  相似文献   

19.
The atmospheric concentration of CO2 is predicted to reach double current levels by 2075. Detritus from aboveground and belowground plant parts constitutes the primary source of C for soil organic matter (SOM), and accumulation of SOM in forests may provide a significant mechanism to mitigate increasing atmospheric CO2 concentrations. In a poplar (three species) plantation exposed to ambient (380 ppm) and elevated (580 ppm) atmospheric CO2 concentrations using a Free Air Carbon Dioxide Enrichment (FACE) system, the relative importance of leaf litter decomposition, fine root and fungal turnover for C incorporation into SOM was investigated. A technique using cores of soil in which a C4 crop has been grown (δ13C −18.1‰) inserted into the plantation and detritus from C3 trees (δ13C −27 to −30‰) was used to distinguish between old (native soil) and new (tree derived) soil C. In-growth cores using a fine mesh (39 μm) to prevent in-growth of roots, but allow in-growth of fungal hyphae were used to assess contribution of fine roots and the mycorrhizal external mycelium to soil C during a period of three growing seasons (1999–2001). Across all species and treatments, the mycorrhizal external mycelium was the dominant pathway (62%) through which carbon entered the SOM pool, exceeding the input via leaf litter and fine root turnover. The input via the mycorrhizal external mycelium was not influenced by elevated CO2, but elevated atmospheric CO2 enhanced soil C inputs via fine root turnover. The turnover of the mycorrhizal external mycelium may be a fundamental mechanism for the transfer of root-derived C to SOM.  相似文献   

20.
Previous studies have found that root carbon inputs to the soil can stimulate the mineralization of existing soil carbon (C) pools. It is still uncertain, however, whether this “primed” C is derived from elevated rates of soil organic matter (SOM) decomposition, greater C release from microbial pools, or both. The goal of this research was to determine how the activities of the microbial exoenzymes that control SOM decomposition are affected by root C inputs. This was done by manipulating rhizodeposition with tree girdling in a coniferous subalpine forest in the Rocky Mountains of Colorado, USA, and following changes in the activities of nine exoenzymes involved in decomposition, as well as soil dissolved organic C, dissolved organic and inorganic nitrogen (N), and microbial biomass C and N. We found that rhizodeposition is high in the spring, when the soils are still snow-covered, and that there are large ephemeral populations of microorganisms dependent upon this C. Microbial N acquisition from peptide degradation increased with increases in microbial biomass when rhizodeposition was highest. However, our data indicate that the breakdown of cellulose, lignin, chitin, and organic phosphorus are not affected by springtime increases in soil microbial biomass associated with increases in rhizodeposition. We conclude that the priming of soil C mineralization by rhizodeposition is due to growth of the microbial biomass and an increase in the breakdown of N-rich proteins, but not due to increases in the degradation of plant litter constituents such as cellulose and lignin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号