首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Stem‐cell antigen 1–positive (Sca‐1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5′‐azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β‐arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of β‐arrestin2 in Sca‐1+ CSC differentiation, we used β‐arrestin2–knockout mice and overexpression strategies. Real‐time PCR revealed that β‐arrestin2 promoted 5′‐azacytizine‐induced Sca‐1+ CSC differentiation in vitro. Because the microRNA 155 (miR‐155) may regulate β‐arrestin2 expression, we detected its role and relationship with β‐arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR‐155. Real‐time PCR revealed that miR‐155, inhibited by β‐arrestin2, impaired 5′‐azacytizine‐induced Sca‐1+ CSC differentiation. On luciferase report assay, miR‐155 could inhibit the activity of β‐arrestin2 and GSK3β, which suggests a loop pathway between miR‐155 and β‐arrestin2. Furthermore, β‐arrestin2‐knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in β‐arrestin2‐Knockout mice, so the activity of GSK3β was regulated by β‐arrestin2 not Akt. We transplanted Sca‐1+ CSCs from β‐arrestin2‐knockout mice to mice with myocardial infarction and found similar protective functions as in wild‐type mice but impaired arterial elastance. Furthermore, low level of β‐arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β‐arrestin2/miR‐155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease.  相似文献   

5.
6.
7.
Inflammatory cytokines are closely related to pigmentary changes. In this study, the effects of IFN‐γ on melanogenesis were investigated. IFN‐γ inhibits basal and α‐MSH‐induced melanogenesis in B16 melanoma cells and normal human melanocytes. MITF mRNA and protein expressions were significantly inhibited in response to IFN‐γ. IFN‐γ inhibited CREB binding to the MITF promoter but did not affect CREB phosphorylation. Instead, IFN‐γ inhibited the association of CBP and CREB through the increased association between CREB binding protein (CBP) and STAT1. These findings suggest that IFN‐γ inhibits both basal and α‐MSH‐induced melanogenesis by inhibiting MITF expression. The inhibitory action of IFN‐γ in α‐MSH‐induced melanogenesis is likely to be associated with the sequestration of CBP via the association between CBP and STAT1. These data suggest that IFN‐γ plays a role in controlling inflammation‐ or UV‐induced pigmentary changes.  相似文献   

8.
9.
5α‐Androst‐16‐en‐3α‐ol (α‐androstenol) is an important contributor to human axilla sweat odor. It is assumed that α‐andostenol is excreted from the apocrine glands via a H2O‐soluble conjugate, and this precursor was formally characterized in this study for the first time in human sweat. The possible H2O‐soluble precursors, sulfate and glucuronide derivatives, were synthesized as analytical standards, i.e., α‐androstenol, β‐androstenol sulfates, 5α‐androsta‐5,16‐dien‐3β‐ol (β‐androstadienol) sulfate, α‐androstenol β‐glucuronide, α‐androstenol α‐glucuronide, β‐androstadienol β‐glucuronide, and α‐androstenol β‐glucuronide furanose. The occurrence of α‐androstenol β‐glucuronide was established by ultra performance liquid chromatography (UPLC)/MS (heated electrospray ionization (HESI)) in negative‐ion mode in pooled human sweat, containing eccrine and apocrine secretions and collected from 25 female and 24 male underarms. Its concentration was of 79 ng/ml in female secretions and 241 ng/ml in male secretions. The release of α‐androstenol was observed after incubation of the sterile human sweat or α‐androstenol β‐glucuronide with a commercial glucuronidase enzyme, the urine‐isolated bacteria Streptococcus agalactiae, and the skin bacteria Staphylococcus warneri DSM 20316, Staphylococcus haemolyticus DSM 20263, and Propionibacterium acnes ATCC 6919, reported to have β‐glucuronidase activities. We demonstrated that if α‐ and β‐androstenols and androstadienol sulfates were present in human sweat, their concentrations would be too low to be considered as potential precursors of malodors; therefore, the H2O‐soluble precursor of α‐androstenol in apocrine secretion should be a β‐glucuronide.  相似文献   

10.
11.
Acetyl‐11‐keto‐β‐boswellic acid (AKBA), an active triterpenoid compound from the extract of Boswellia serrate, has been reported previously in our group to alleviate fibrosis in vascular remodelling. This study aimed to elucidate the in vivo and in vitro efficacy and mechanism of AKBA in renal interstitial fibrosis. The experimental renal fibrosis was produced in C57BL/6 mice via unilateral ureteral obstruction (UUO). Hypoxia‐induced HK‐2 cells were used to imitate the pathological process of renal fibrosis in vitro. Results showed that the treatment of AKBA significantly alleviated UUO‐induced impairment of renal function and improved the renal fibrosis by decreasing the expression of TGF‐β1, α‐SMA, collagen I and collagen IV in UUO kidneys. In hypoxia‐induced HK‐2 cells, AKBA displayed remarkable cell protective effects and anti‐fibrotic properties by increasing the cell viability, decreasing the lactate dehydrogenase (LDH) release and inhibiting fibrotic factor expression. Moreover, in obstructed kidneys and HK‐2 cells, AKBA markedly down‐regulated the expression of TGFβ‐RI, TGFβ‐RII, phosphorylated‐Smad2/3 (p‐Smad2/3) and Smad4 in a dose‐dependent fashion while up‐regulated the expression of Klotho and Smad7 in the same manner. In addition, the effects of AKBA on the Klotho/TGF‐β/Smad signalling were reversed by transfecting with siRNA‐Klotho in HK‐2 cells. In conclusion, our findings provide evidence that AKBA can effectively protect kidney against interstitial fibrosis, and this renoprotective effect involves the Klotho/TGF‐β/Smad signalling pathway. Therefore, AKBA could be considered as a promising candidate drug for renal interstitial fibrosis.  相似文献   

12.
Persistently activated IL‐6/STAT3 pathway promotes acquired resistance to targeted therapy with epidermal growth factor receptor‐tyrosine kinase inhibitors (EGFR‐TKIs) in non–small‐cell lung cancer (NSCLC) treatment. miR‐206 has been verified to be dysregulated and plays as a negative regulator in lung cancer. However, whether miR‐206 may overcome IL6‐induced gefitinib resistance in EGFR‐mutant lung cancer remains elusive. In this study, we investigated the role of miR‐206 in IL6‐induced gefitinib‐resistant EGFR‐mutated lung cancer cell lines. We showed that forced miR‐206 expression restored gefitinib sensitivity in IL6‐induced gefitinib‐resistant EGFR‐mutant lung cancer cells by inhibiting IL6/JAK1/STAT3 pathway. Specifically, mechanistic investigations revealed that miR‐206 blocked IL‐6/STAT3 signalling via directly targeting the 3'‐UTR of intracellular IL‐6 messenger RNA. Moreover, IL‐6 induced miR‐206 down‐regulation by reducing the cropping process of primary miR‐206 (pri‐miR‐206) into the Drosha/DGCR8 complex. Taken together, our findings reveal a direct role of miR‐206 in regulating IL‐6/STAT3 pathway and contrarily activated IL‐6/STAT3 signalling mediates the miR‐206 maturation process in gefitinib‐resistant EGFR‐mutant lung cancer cells.  相似文献   

13.
The proteins of 14‐3‐3 family are substantially involved in the regulation of many biological processes including the apoptosis. We studied the changes in the expression of five 14‐3‐3 isoforms (β, γ, ε, τ, and ζ) during the apoptosis of JURL‐MK1 and K562 cells. The expression level of all these proteins markedly decreased in relation with the apoptosis progression and all isoforms underwent truncation, which probably corresponds to the removal of several C‐terminal amino acids. The observed 14‐3‐3 modifications were partially blocked by caspase‐3 inhibition. In addition to caspases, a non‐caspase protease is likely to contribute to 14‐3‐3's cleavage in an isoform‐specific manner. While 14‐3‐3 γ seems to be cleaved mainly by caspase‐3, the alternative mechanism is essentially involved in the case of 14‐3‐3 τ, and a combined effect was observed for the isoforms ε, β, and ζ. We suggest that the processing of 14‐3‐3 proteins could form an integral part of the programmed cell death or at least of some apoptotic pathways. J. Cell. Biochem. 106: 673–681, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
15.
16.
17.
It has been reported recently that type 2 diabetes promotes centrosome amplification via 14‐3‐3σ/ROCK1 complex. In the present study, 14‐3‐3σ interacting proteins are characterized and their roles in the centrosome amplification by high glucose, insulin, and palmitic acid are investigated. Co‐immunoprecipitation in combination with MS analysis identified 134 proteins that interact with 14‐3‐3σ, which include heat shock 70 kDa protein 4 (Hsp74). Gene ontology analyses reveal that many of them are enriched in binding activity. Kyoto Encyclopedia of Genes and Genomes analysis shows that the top three enriched pathways are ribosome, carbon metabolism, and biosynthesis of amino acids. Molecular and functional investigations show that the high glucose, insulin, and palmitic acid increase the expression and binding of 14‐3‐3σ and Hsp74 as well as centrosome amplification, all of which are inhibited by knockdown of 14‐3‐3σ or Hsp74. Moreover, molecular docking analysis shows that the interaction between the 14‐3‐3σ and the Hsp74 is mainly through hydrophobic contacts and a lesser degree ionic interactions and hydrogen bond by different amino acids residues. In conclusion, the results suggest that the experimental treatment triggers centrosome amplification via upregulations of expression and binding of 14‐3‐3σ and Hsp74.  相似文献   

18.
19.
20.
Recently, emerging evidence strongly suggested that the activation of interleukin‐27 Receptor α (IL‐27Rα) could modulate different inflammatory diseases. However, whether IL‐27Rα affects allotransplantation rejection is not fully understood. Here, we investigated the role of IL‐27Rα on allorejection both in vivo and in vitro. The skin allotransplantation mice models were established, and the dynamic IL‐27Rα/IL‐27 expression was detected, and IL‐27Rα+ spleen cells adoptive transfer was performed. STAT1/3/5 phosphorylation, proliferation and apoptosis were investigated in mixed lymphocyte reaction (MLR) with recombinant IL‐27 (rIL‐27) stimulation. Finally, IFN‐γ/ IL‐10 in graft/serum from model mice was detected. Results showed higher IL‐27Rα/IL‐27 expression in allografted group compared that syngrafted group on day 10 (top point of allorejection). IL‐27Rα+ spleen cells accelerated allograft rejection in vivo. rIL‐27 significantly promoted proliferation, inhibited apoptosis and increased STAT1/3/5 phosphorylation of alloreactive splenocytes, and these effects of rIL‐27 could be almost totally blocked by JAK/ STAT inhibitor and anti‐IL‐27 p28 Ab. Finally, higher IL‐27Rα+IFN‐γ+ cells and lower IL‐27Rα+IL‐10+ cells within allografts, and high IFN‐γ/low IL‐10 in serum of allorejecting mice were detected. In conclusion, these data suggested that IL‐27Rα+ cells apparently promoted allograft rejection through enhancing alloreactive proliferation, inhibiting apoptosis and up‐regulating IFN‐γ via enhancing STAT pathway. Blocking IL‐27 pathway may favour to prevent allorejection, and IL‐27Rα may be as a high selective molecule for targeting diagnosis and therapy for allotransplantation rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号