首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Smad7对Smad2、Smad3、Smad4核转位的抑制作用   总被引:3,自引:0,他引:3  
研究人永生化支气管上皮BEP2D细胞中,作为Smad蛋白家族的抑制分子,Smad7对TGF-β信号通路中Smad2、Smad3、Smad4核转位的抑制作用.培养BEP2D细胞,瞬时转染Smad7真核表达载体pCISmad7.neo,TGF-β刺激,提取细胞核蛋白及总蛋白,用Western blot方法比较瞬时转染Smad7基因前后细胞核中Smad2、Smad3、Smad4蛋白表达的差异.结果,Smad3在TGF-b作用下有明显的核转位;转染Smad7后Smad3、Smad4的核转位显受到抑制.表明在BEP2D细胞中,Smad7对TGF-β/Smads信号通路的拮抗作用主要通过抑制Smad3的活化、Smad3/Smad4异源复合物的形成及核转位,从而拮抗TGF-β对细胞的生长抑制效应.  相似文献   

2.
用酵母双杂交系统研究Smad3和Smad4的相互作用   总被引:3,自引:0,他引:3  
Sm ad3 和 Sm ad4 是将 T G F β的信号从细胞外传递到细胞核内的重要的信号传导蛋白. T G F β与其受体结合后,激活受体的磷酸激酶,使 Sm ad3 发生磷酸化,活化的 Sm ad3 与 Sm ad4 结合,形成异源复合物,进入到核中.然后 Sm ad4 以 D N A 结合蛋白的形式与特定的 D N A 结合,将 T G F β的信号传到核内.激活转录,诱导背中胚层的形成,抑制细胞的分化等.经研究利用酵母双杂交试验,鉴定了 Sm ad3 和 Sm ad4 相互作用的功能区域.构建 Sm ad3 和 Sm ad4 的 C 端、 N 端和中间连接区的突变体,将这些突变体克隆到 p G A D424 和 p G B T9 载体中,并转化到 H F7 C 酵母中.通过 Leu- / Trp- / His- S D 平板上菌落的形成,和 X- gal显色反应鉴定转化到酵母中的两个克隆质粒的相互作用.结果显示 Sm ad4 与 Sm ad3 异源相五作用时,主要是通过 Sm ad4 的中间连接区.在同源作用时, Sm ad3 是通过 C 端,而 Sm ad4 是通过中间连接区进行的.  相似文献   

3.
Transforming growth factor (TGF)‐β and activin, members of TGF‐β superfamily, are abundantly expressed in the endometrium and regulate decidualization of endometrial stroma. Smad2 and Smad3 are receptor‐regulated Smads (R‐Smads) that transduce extracellular TGF‐β/activin/Nodal signaling. In situ hybridization results showed that Smad3 was highly expressed in the decidual zone during the peri‐implantation period in mice. By using artificial decidualization, we found that Smad3 null mice showed partially compromised decidualization. We therefore hypothesized that Smad2 might compensate for the function of Smad3 during the process of decidualization. Smad2 was also highly expressed in the decidual zone and phosphorylated Smad2 was much more abundantly increased in the deciduoma of Smad3 null mice than for wild‐type (WT) mice. We further employed an in vitro uterine stromal cell decidualization model, and found that decidual prolactin‐related protein (dPRP) and cyclin D3, which are well‐known markers for decidual cells, were significantly down‐regulated in Smad3 null decidual cells, and were much more significantly reduced when the expression of Smad2 was simultaneously silenced by its siRNA (P < 0.05). However, the expression levels of dPRP and cyclin D3 remained the same when Smad2 was silenced in WT decidual cells. Collectively, these findings provide evidence for an important role of Smad3 in decidualization and suggest that Smad2 and Smad3 may have redundant roles in decidualization. J. Cell. Biochem. 113: 3266–3275, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
5.
6.
Members of the TGFβ superfamily are known to exert a myriad of physiologic and pathologic growth controlling influences on mammary development and oncogenesis. In epithelial cells, TGFβ signaling inhibits cell growth through cytostatic and pro-apoptotic activities but can also induce cancer cell EMT and, thus, has a dichotomous role in breast cancer biology. Mechanisms governing this switch are the subject of active investigation. Smad3 is a critical intracellular mediator of TGFβ signaling regulated through phosphorylation by the TGFβ receptor complex at the C terminus. Smad3 is also a substrate for several other kinases that phosphorylate additional sites within the Smad protein. This discovery has expanded the understanding of the significance and complexity of TGFβ signaling through Smads. This review highlights recent advances revealing the critical role of phospho-specific Smad3 in malignancy and illustrates the potential prognostic and therapeutic impact of Smad3 phospho-isoforms in breast cancer.  相似文献   

7.
Smad3 is an intracellular signaling molecule that mediates the signal from transforming growth factor-beta (TGF-beta) and activin receptors. In this study, we reveal hypomineralized enamel in mice with the targeted deletion of the Smad3 gene. The Smad3 (-/-) mice had chalky white incisor enamel, while the enamel of the wild-type or Smad3 (+/-) mice was yellow-brown. Histological analysis of the undecalcified sections showed that the enamel thickness of the maxillary incisors in the Smad3 (-/-) mice was similar to that of the wild-type and Smad3 (+/-) mice while that the enamel of the maxillary molars in Smad3 (-/-) mice was disrupted in places. Microcomputed tomography (microCT) analysis revealed that the mineralization of the maxillary incisors and mandibular molars in the Smad3 (-/-) mice showed significant reduction in the degree of mineralization when compared to that of the wild-type and Smad3 (+/-) mice. Scanning electron microscopic (SEM) analysis of the mandibular incisors revealed that the enamel surface of the Smad3 (-/-) mice was irregular and disrupted in places and showed images similar to decalcified mature enamel. The histological analysis of the decalcified sections showed that distinct morphological changes in the ameloblasts at the secretory and maturational stages were not observed between the Smad3 (-/-) and Smad3 (+/-) or wild-type mice, while the enamel matrix was observed in the decalcified sections of the mandibular molars in the Smad3 (-/-) mice. These results suggested that Smad3 was required for enamel biomineralization, and TGF-beta and activin signaling might be critical for its process.  相似文献   

8.
目的 探讨Smad3基因对剔除小鼠血清酶活性的影响。方法 采用荷兰半自动生化分析仪对 35日龄、70日龄、6月龄的三种不同基因型的小鼠的ALP、AST、ALT、CK、LDH L进行测定。结果 纯合型小鼠各项指标较野生型高 ,且表现出ALP随着年龄的增长而降低 ;AST、ALT、CK、LDH L随着年龄的增长而增高。结论 Smad3基因的剔除对小鼠的血清酶活性有一定的影响 ,为该小鼠的进一步研究提供基础。  相似文献   

9.
10.
11.
12.
Smad3基因剔除对小鼠造血功能的影响   总被引:1,自引:0,他引:1  
研究Smad3基因剔除对小鼠造血功能的影响。实验小鼠分为 5组 ,每组有Smad3基因剔除小鼠(Smad3 - - )和其同窝孪生的野生型小鼠 (Smad3 + + )各 1只。小鼠的造血功能用 14天形成的脾结节 (CFU S1 4 )、多系祖细胞 (CFU GEMM)、粒 单系祖细胞 (CFU GM)、红系祖细胞 (BFU E)测定及外周血象、骨髓象等实验血液学指标来确定。每组小鼠取尾血作白细胞、红细胞和血小板计数 ,涂片作白细胞分类计数。将一侧股骨的骨髓冲出 ,制成单细胞悬液 ,计数其中有核细胞数 ,测定CFU GM、BFU E、CFU GEMM值。将每只小鼠的 4× 10 4个骨髓有核细胞 ,经尾静脉注入 3只 8~ 10周经致死量射线照射的同系雌性小鼠体内 ,测定 14天的CFU S。取一部分胸骨、肝脏、脾脏固定做病理切片 ,其余胸骨冲出骨髓 ,涂片作分类计数。结果Smad3 - - 小鼠外周血白细胞和血小板计数明显高于Smad3 + + 小鼠 ,红细胞数无显著差异。外周血白细胞分类结果也表明粒细胞显著增高。骨髓有核细胞数无显著差异 ,CFU GM显著增高 ,BFU E无显著差异 ,CFU GEMM明显减少 ,CFU S显著减少。病理形态学观察发现骨髓增生极度活跃 ,以粒系为主 ,肝脾无显著差别。骨髓涂片分类表明粒系增多 ,粒系 :红系比例增高。因此得出结论Smad3基因剔除使小鼠造血干祖细胞数目  相似文献   

13.
Smad3基因剔除小鼠的繁殖与基因型鉴定   总被引:5,自引:1,他引:4  
目的为进一步深入研究Smad3基因在脊椎动物发育中的重要作用,对Smad3基因剔除小鼠进行保种和繁育研究.方法采用基因剔除杂合子小鼠进行保种,通过PCR和Southern杂交对杂合子小鼠交配所产生的后代进行基因型鉴定,纯合子小鼠和野生型小鼠用于表型分析,杂合子小鼠用于留种和繁殖生产.结果采用PCR方法对278只子代小鼠进行了基因型鉴定,83只为野生型,133只为杂合子,62只为纯合子.结论Smad3基因剔除突变能稳定遗传.采用杂合子小鼠保种,子代小鼠三种基因型比例符合孟德尔遗传定律.  相似文献   

14.
Transforming growth factor-beta (TGF-beta) is an important growth inhibitor of epithelial cells, and insensitivity to this cytokine results in uncontrolled cell proliferation and can contribute to tumorigenesis. Smad2 and Smad3 are direct mediators of TGF-beta signaling, however little is known about the selective activation of Smad2 versus Smad3. The Smad2 and Smad3 knockout mouse phenotypes and studies comparing Smad2 and Smad3 activation of TGF-beta target genes, suggest that Smad2 and Smad3 have distinct roles in TGF-beta signaling. The observation that TGF-beta inhibits proliferation of Smad3-null mammary gland epithelial cells, whereas Smad3 deficient fibroblasts are only partially growth inhibited, suggests that Smad3 has a different role in epithelial cells and fibroblasts. Herein, the current understanding of Smad2 and Smad3-mediated TGF-beta signaling and their relative roles are discussed, in addition to potential mechanisms for the selective activation of Smad2 versus Smad3. Since alterations in the TGF-beta signaling pathway play an important role in promoting tumorigenesis and cancer progression, methods for therapeutic targeting of the TGF-beta signaling pathway are being pursued. Determining how Smad2 or Smad3 differentially regulate the TGF-beta response may translate into developing more effective strategies for cancer therapy.  相似文献   

15.
16.
17.
Vascular endothelial senescence contributes to atherosclerosis and coronary artery disease (CAD), but the mechanisms are yet to be clarified. We identified that microRNA‐216a (miR‐216a) significantly increased in senescent endothelial cells. The replicative senescence model of human umbilical vein endothelial cells (HUVECs) was established to explore the role of miR‐216a in endothelial ageing and dysfunction. Luciferase assay indicated that Smad3 was a direct target of miR‐216a. Stable expression of miR‐216a induced a premature senescence‐like phenotype in HUVECs with an impairment in proliferation and migration and led to an increased adhesion to monocytes by inhibiting Smad3 expression and thereafter modulating the degradation of NF‐κB inhibitor alpha (IκBα) and activation of adhesion molecules. Conversely, inhibition of endogenous miR‐216a in senescent HUVECs rescued Smad3 and IκBα expression and inhibited monocytes attachment. Plasma miR‐216a was significantly higher in old CAD patients (>50 years) and associated with increased 31% risk for CAD (odds ratio 1.31, 95% confidence interval 1.03‐1.66; = .03) compared with the matched healthy controls (>50 years). Taken together, our data suggested that miR‐216a promotes endothelial senescence and inflammation as an endogenous inhibitor of Smad3/IκBα pathway, which might serve as a novel target for ageing‐related atherosclerotic diseases.  相似文献   

18.
The involvement of the TGF-beta family in cell growth of bone marrow-derived mast cells (BMMC) cultured with medium containing pokeweed mitogen-stimulated spleen cell-conditioned medium (PWM-SCM) was examined. Doubling time of BMMC from Smad3-null mice was longer than that from wild-type (WT) mice, and the differences tended to be larger with time of culture. Consistent with the results, uptake and reduction of [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] was lower in Smad3-deficient BMMC. Cell cycle analyses revealed no apparent differences between WT BMMC and Smad3-deficient BMMC, suggesting that longer doubling time in Smad3-deficient BMMC resulted from increased cell death. TGF-beta and activin A were supplied by PWM-SCM rather than by self-production by BMMC. Blocking the TGF-beta pathway by anti-TGF-beta neutralizing antibody or an inhibitor for the type I receptors for ligands including TGF-beta and activin, SB431542, inhibited MTS uptake and reduction in WT BMMC, whereas anti-activin A antibody and SB431542 tended to inhibit them in Smad3-deficient BMMC. The present results suggest that TGF-beta-induced and Smad3-mediated signaling is essential for maximal cell growth in mast cells, and that the activin pathway may be required for it when mast cell context is modulated by Smad3 depletion.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号