首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental changes that have occurred due to the use of fossil fuels have driven the search for alternative sources that have a lower environmental impact. First-generation biofuels were derived from crops such as sugar cane, corn and soybean, which contribute to water scarcity and deforestation. Second-generation biofuels originated from lignocellulose agriculture and forest residues, however these needed large areas of land that could be used for food production. Based on technology projections, the third generation of biofuels will be derived from microalgae. Microalgae are considered to be an alternative energy source without the drawbacks of the first- and second-generation biofuels. Depending upon the growing conditions, microalgae can produce biocompounds that are easily converted into biofuels. The biofuels from microalgae are an alternative that can keep the development of human activity in harmony with the environment. This study aimed to present the main biofuels that can be derived from microalgae.  相似文献   

2.
Across the energy sector, alternatives to fossil fuels are being developed, in response to the dual drivers of climate change and energy security. For transport, biofuels have the greatest potential to replace fossil fuels in the short‐to medium term. However, the ecological benefits of biofuels and the role that their deployment can play in mitigating climate change are being called into question. Life Cycle Assessment (LCA) is a widely used approach that enables the energy and greenhouse gas (GHG) balance of biofuel production to be calculated. Concerns have nevertheless been raised that published data show widely varying and sometimes contradictory results. This review describes a systematic review of GHG emissions and energy balance data from 44 LCA studies of first‐ and second‐generation biofuels. The information collated was used to identify the dominant sources of GHG emissions and energy requirements in biofuel production and the key sources of variability in published LCA data. Our analysis revealed three distinct sources of variation: (1) ‘real’ variability in parameters e.g. cultivation; (2) ‘methodological’ variability due to the implementation of the LCA method; and (3) ‘uncertainty’ due to parameters rarely included and poorly quantified. There is global interest in developing a sustainability assessment protocol for biofuels. Confidence in the results of such an assessment can only be assured if these areas of uncertainty and variability are addressed. A more defined methodology is necessary in order to allow effective and accurate comparison of results. It is also essential that areas of uncertainty such as impacts on soil carbon stocks and fluxes are included in LCA assessments, and that further research is conducted to enable a robust calculation of impacts under different land‐use change scenarios. Without the inclusion of these parameters, we cannot be certain that biofuels are really delivering GHG savings compared with fossil fuels.  相似文献   

3.
Bioenergy is expected to play an important role in the future energy mix as it can substitute fossil fuels and contribute to climate change mitigation. However, large‐scale bioenergy cultivation may put substantial pressure on land and water resources. While irrigated bioenergy production can reduce the pressure on land due to higher yields, associated irrigation water requirements may lead to degradation of freshwater ecosystems and to conflicts with other potential users. In this article, we investigate the trade‐offs between land and water requirements of large‐scale bioenergy production. To this end, we adopt an exogenous demand trajectory for bioenergy from dedicated energy crops, targeted at limiting greenhouse gas emissions in the energy sector to 1100 Gt carbon dioxide equivalent until 2095. We then use the spatially explicit global land‐ and water‐use allocation model MAgPIE to project the implications of this bioenergy target for global land and water resources. We find that producing 300 EJ yr?1 of bioenergy in 2095 from dedicated bioenergy crops is likely to double agricultural water withdrawals if no explicit water protection policies are implemented. Since current human water withdrawals are dominated by agriculture and already lead to ecosystem degradation and biodiversity loss, such a doubling will pose a severe threat to freshwater ecosystems. If irrigated bioenergy production is prohibited to prevent negative impacts of bioenergy cultivation on water resources, bioenergy land requirements for meeting a 300 EJ yr?1 bioenergy target increase substantially (+ 41%) – mainly at the expense of pasture areas and tropical forests. Thus, avoiding negative environmental impacts of large‐scale bioenergy production will require policies that balance associated water and land requirements.  相似文献   

4.
Sustainable alternatives to fossil fuels are urgently needed to avoid severe climate impacts and further environmental degradation. Microalgae are one of the most productive crops globally and do not need to compete for arable land or freshwater resources. Hence, they may become a promising, more sustainable cultivation alternative for the large‐scale production of biofuels provided that substantial reductions are achieved in their production costs. In this study, we identify the most suitable areas globally for siting microalgal farms for biodiesel production that maximize profitability and minimize direct competition with food production and direct impacts on biodiversity, based on a spatially explicit multiple‐criteria decision analysis. We further explore the relationships between microalgal production, agricultural value, and biodiversity, and propose several solutions for siting microalgal production farms, based on current and future targets in energy production using integer linear programming. If using seawater for microalgal cultivation, biodiesel production could reach 5.85 × 1011 L/year based on top suitable lands (i.e., between 13% and 16% of total transport energy demands in 2030) without directly competing with food production and areas of high biodiversity value. These areas are particularly abundant in the dry coasts of North and East Africa, the Middle East, and western South America. This is the first global analysis that incorporates economic and environmental feasibility for microalgal production sites. Our results can guide the selection of best locations for biofuel production using microalgae while minimizing conflicts with food production and biodiversity conservation.  相似文献   

5.
The use and production of biofuels has risen dramatically in recent yr. Bioethanol comprises 85% of total global biofuels production, with benefits including reduction of greenhouse gas emissions and promotion of energy independence and rural economic development. Ethanol is primarily made from corn grain in the USA and sugarcane juice in Brazil. However, ethanol production using current technologies will ultimately be limited by land availability, government policy, and alternative uses for these agricultural products. Biomass feedstocks are an enormous and renewable source of fermentable sugars that could potentially provide a significant proportion of transport fuels globally. A major technical challenge in making cellulosic ethanol economically viable is the need to lower the costs of the enzymes needed to convert biomass to fermentable sugars. The expression of cellulases and hemicellulases in crop plants and their integration with existing ethanol production systems are key technologies under development that will significantly improve the process economics of cellulosic ethanol production.  相似文献   

6.
7.
Methodology is developed for linking the urban metabolism (UM) to global environmental stresses on the carbon (C) cycle, nitrogen (N) cycle, and biodiversity loss. UM variables are systematically mapped to the drivers of carbon, nitrogen, and biodiversity impacts. Change in mean species abundance is used as metric of biodiversity loss, by adopting the dose‐response relationships from the GLOBIO model. The main biodiversity drivers related to UM included here are land‐use change (LUC) and atmospheric N deposition. The methodology is demonstrated by studying the nexus for Shanghai in 2006, based on energy and soybean consumption. Results for Shanghai show a strong nexus between C, N, and biodiversity impact due to electricity consumption and energy used in manufacturing industries and construction. Prioritization of the shift away from coal energy will therefore lead to lowering the urban growth impact on all three dimensions. Road transportation, domestic aviation, and the metal industry impact only the C footprint highly, whereas district energy impacts only biodiversity loss highly, showing a weak nexus. Among the global impacts of soybean consumption in Shanghai on biodiversity loss (due to LUC only), the highest impact occurs in Uruguay (0.52%) followed by Brazil (0.05%) and Argentina (0.02%). The local impact on biodiversity loss (i.e., within China) of soybean consumption in Shanghai is 1.03%. However, the methodology and results are limited due to the partial inclusion of drivers, a carbon footprint based on carbon dioxide emissions only, and limitations of biodiversity loss models. Potential to overcome methodological limitations is discussed.  相似文献   

8.
A potential strategy for tackling the negative environmental impact of conventional plastics is to produce them from renewable resources. However, such a strategy needs to be assessed quantitatively, by life cycle assessment (LCA) for example. This screening LCA is intended to identify key aspects that influence the environmental impact of sugarcane low‐density polyethylene (LDPE) and compare these results against fossil‐based LDPE. The study showed that the major contributors to the environmental impact of sugarcane LDPE are ethanol production, polymerization, and long‐distance sea transport. The comparison between sugarcane‐ and oil‐based plastics showed that the sugarcane alternative consumes more total energy, although the major share is renewable. Moreover, for their potential impacts on acidification, eutrophication, and photochemical ozone creation, no significant difference between the two materials exists. However, with regard to global warming potential (GWP), the contribution of land use change (LUC) is decisive. Although the range of LUC emissions is uncertain, in the worst case they more than double the GWP of sugarcane LDPE and make it comparable to that of fossil‐based LDPE. LUC emissions can thus be significant for sugarcane LDPE, although there is need for a consistent LUC assessment method. In addition, to investigate the influence of methodological choices, this study performed attributional and consequential assessments in parallel. No major differences in key contributors were found for these two assessment perspectives.  相似文献   

9.
GHG mitigation by bioenergy crops depends on crop type, management practices, and the input of residue carbon (C) to the soil. Perennial grasses may increase soil C compared to annual crops because of more extensive root systems, but it is less clear how much soil C is derived from above‐ vs. belowground inputs. The objective of this study was to synthesize the existing knowledge regarding soil C inputs from above‐ and belowground crop residues in regions cultivated with sugarcane, corn, and miscanthus, and to predict the impact of residue removal and tillage on soil C stocks. The literature review showed that aboveground inputs to soil C (to 1‐m depth) ranged from 70% to 81% for sugarcane and corn vs. 40% for miscanthus. Modeled aboveground C inputs (to 30 cm depth) ranged from 54% to 82% for sugarcane, but were 67% for miscanthus. Because 50% of observed miscanthus belowground biomass is below 30 cm depth, it may be necessary to increase the depth of modeled soil C dynamics to reconcile modeled belowground C inputs with measured. Modeled removal of aboveground corn residue (25–100%) resulted in C stock reduction in areas of corn–corn–soybean rotation under conventional tillage, while no‐till management lessoned this impact. In sugarcane, soil C stocks were reduced when total aboveground residue was removed at one site, while partial removal of sugarcane residue did not reduce soil C stocks in either area. This study suggests that aboveground crop residues were the main C‐residue source to the soil in the current bioethanol sector (corn and sugarcane) and the indiscriminate removal of crop residues to produce cellulosic biofuels can reduce soil C stocks and reduce the environmental benefits of bioenergy. Moreover, a switch to feedstocks such as miscanthus with more allocation to belowground C could increase soil C stocks at a much faster rate.  相似文献   

10.
The high oil dependence and the growth of energy use in the transport sector have increased the interest in alternative nonfossil fuels as a measure to mitigate climate change and improve energy security. More ambitious energy and environmental targets and larger use of nonfossil energy in the transport sector increase energy–transport interactions and system effects over sector boundaries. While the stationary energy sector (e.g., electricity and heat generation) and the transport sector earlier to large degree could be considered as separate systems with limited interaction, integrated analysis approaches and assessments of energy–transport interactions now grow in importance. In recent years, the scientific literature has presented an increasing number of global energy–economy future studies based on systems modelling treating the transport sector as an integral part of the overall energy system and/or economy. Many of these studies provide important insights regarding transport biofuels. To clarify similarities and differences in approaches and results, the present work reviews studies on transport biofuels in global energy–economy modelling and investigates what future role comprehensive global energy–economy modelling studies portray for transport biofuels in terms of their potential and competitiveness. The results vary widely between the studies, but the resulting transport biofuel market shares are mainly below 40% during the entire time periods analysed. Some of the reviewed studies show higher transport biofuel market shares in the medium (15–30 years) than in the long term (above 30 years), and, in the long‐term models, at the end of the modelling horizon, transport biofuels are often substituted by electric and hydrogen cars.  相似文献   

11.
In recent years, liquid biofuels for transport have benefited from significant political support due to their potential role in curbing climate change and reducing our dependence on fossil fuels. They may also participate to rural development by providing new markets for agricultural production. However, the growth of energy crops has raised concerns due to their high consumption of conventional fuels, fertilizers and pesticides, their impacts on ecosystems and their competition for arable land with food crops. Low-input species such as Jatropha curcas , a perennial, inedible crop well adapted to semiarid regions, has received much interest as a new alternative for biofuel production, minimizing adverse effects on the environment and food supply. Here, we used life-cycle assessment to quantify the benefits of J. curcas biofuel production in West Africa in terms of greenhouse gas emissions and fossil energy use, compared with fossil diesel fuel and other biofuels. Biodiesel from J. curcas has a much higher performance than current biofuels, relative to oil-derived diesel fuels. Under West Africa conditions, J. curcas biodiesel allows a 72% saving in greenhouse gas emissions compared with conventional diesel fuel, and its energy yield (the ratio of biodiesel energy output to fossil energy input) is 4.7. J. curcas production studied is eco-compatible for the impacts under consideration and fits into the context of sustainable development.  相似文献   

12.
Reliance on fossil fuels is causing unprecedented climate change and is accelerating environmental degradation and global biodiversity loss. Together, climate change and biodiversity loss, if not averted urgently, may inflict severe damage on ecosystem processes, functions and services that support the welfare of modern societies. Increasing renewable energy deployment and expanding the current protected area network represent key solutions to these challenges, but conflicts may arise over the use of limited land for energy production as opposed to biodiversity conservation. Here, we compare recently identified core areas for the expansion of the global protected area network with the renewable energy potential available from land‐based solar photovoltaic, wind energy and bioenergy (in the form of Miscanthus × giganteus). We show that these energy sources have very different biodiversity impacts and net energy contributions. The extent of risks and opportunities deriving from renewable energy development is highly dependent on the type of renewable source harvested, the restrictions imposed on energy harvest and the region considered, with Central America appearing at particularly high potential risk from renewable energy expansion. Without restrictions on power generation due to factors such as production and transport costs, we show that bioenergy production is a major potential threat to biodiversity, while the potential impact of wind and solar appears smaller than that of bioenergy. However, these differences become reduced when energy potential is restricted by external factors including local energy demand. Overall, we found that areas of opportunity for developing solar and wind energy with little harm to biodiversity could exist in several regions of the world, with the magnitude of potential impact being particularly dependent on restrictions imposed by local energy demand. The evidence provided here helps guide sustainable development of renewable energy and contributes to the targeting of global efforts in climate mitigation and biodiversity conservation.  相似文献   

13.
A reason for much pessimism about the environmental benefits of today's biofuels, essentially corn and sugarcane ethanol, is the so‐called indirect land‐use change (ILUC) emissions associated with expanding biofuel production. While there exist several simulation‐based estimates of indirect emissions, the empirical basis underlying key input parameters to such simulations is not beyond doubt, while empirical verification of indirect emissions is hard. Regardless, regulators have adopted global warming intensity ratings for biofuels based on those simulations and in some case are holding regulated firms accountable for (some forms of) leakage. Suffice to say that both the estimates of and the approach to regulating leakage are controversial. The objective of this study is therefore to review a wider economic in order to identify a broader set of policy options for mitigating emissions leakage. We find that controlling leakage by affixing responsibility to regulated firms lacks support in the broader literature, which emphasizes alternative approaches.  相似文献   

14.
Bioethanol production from sugarcane is discussed as an alternative energy source to reduce dependencies of regional economies on fossil fuels. Even though bioethanol production from sugarcane is considered to be a beneficial and cost‐effective greenhouse gas (GHG) mitigation strategy, it is still a matter of controversy due to insufficient information on the total GHG balance of this system. Aside from the necessity to account for the impact of land use change (LUC), soil N2O emissions during sugarcane production and emissions of GHG due to preharvest burning may significantly impact the GHG balance. Based on a thorough literature review, we show that direct N2O emissions from sugarcane fields due to nitrogen (N) fertilization result in an emission factor of 3.87±1.16% which is much higher than suggested by IPCC (1%). N2O emissions from N fertilization accounted for 40% of the total GHG emissions from ethanol–sugarcane production, with an additional 17% from trash burning. If LUC‐related GHG emissions are considered, the total GHG balance turns negative mainly due to vegetation carbon losses. Our study also shows that major gaps in knowledge still exist about GHG sources related to agricultural management during sugarcane production, e.g. effects of irrigation, vinasse and filter cake application. Therefore, more studies are needed to assess if bioethanol from sugarcane is a viable option to reduce energy‐related GHG emissions.  相似文献   

15.
Due to the rapid rate of worldwide consumption of nonrenewable fossil fuels, production of biofuels from cellulosic sources is receiving increased research emphasis. Here, we review the feasibility to produce lignocellulosic biomass on marginal lands that are not well-suited for conventional crop production. Large areas of these marginal lands are located in the central prairies of North America once dominated by tallgrass species. In this article, we review the existing literature, current work, and potential of two native species of the tallgrass prairie, prairie cordgrass (Spartina pectinata), and little bluestem (Schizachyrium scoparium) as candidates for commercial production of biofuel. Based on the existing literature, we discuss the need to accelerate research in the areas of agronomy, breeding, genetics, and potential pathogens. Cropping systems based on maintaining biodiversity across landscapes are essential for a sustainable production and to mitigate impact of pathogens and pests.  相似文献   

16.
Bioenergy crops are often classified (and subsequently regulated) according to species that have been evaluated as environmentally beneficial or detrimental, but in practice, management decisions rather than species per se can determine the overall environmental impact of a bioenergy production system. Here, we review the greenhouse gas balance and ‘management swing potential’ of seven different bioenergy cropping systems in temperate and tropical regions. Prior land use, harvesting techniques, harvest timing, and fertilization are among the key management considerations that can swing the greenhouse gas balance of bioenergy from positive to negative or the reverse. Although the management swing potential is substantial for many cropping systems, there are some species (e.g., soybean) that have such low bioenergy yield potentials that the environmental impact is unlikely to be reversed by management. High‐yielding bioenergy crops (e.g., corn, sugarcane, Miscanthus, and fast‐growing tree species), however, can be managed for environmental benefits or losses, suggesting that the bioenergy sector would be better informed by incorporating management‐based evaluations into classifications of bioenergy feedstocks.  相似文献   

17.
The aviation industry accounts for more than 2% of global CO2 emissions. Biojet fuel is expected to make an essential contribution to the decarbonization of the aviation sector. Brazil is seen as a key player in developing sustainable aviation biofuels owing to its long‐standing experience with biofuels. Nevertheless, a clear understanding of what policies may be conducive to the emergence of a biojet fuel supply chain is lacking. We extended a spatially explicit agent‐based model to explore the emergence of a biojet fuel supply chain from the existing sugarcane–ethanol supply chain. The model accounts for new policies (feed‐in tariff and capital investment subsidy) and new considerations into the decision making about production and investment in processing capacity. We found that in a tax‐free gasoline regime, a feed‐in tariff above 3 R$/L stimulates the production of biojet fuel. At higher levels of gasoline taxation (i.e., 2.46 R$/L), however, any feed‐in tariff is insufficient to ensure the production of biojet fuel. Thus, at these levels of gasoline taxation, it is needed to introduce regulations on the production of biojet fuel to ensure its production. Given the current debate about the future direction of the biofuel policy in Brazil, we recommend further research into the effect of market mechanisms based on greenhouse gas emissions on the emergence of a Brazilian biojet fuel supply chain.  相似文献   

18.
Environmental concerns and depletion of fossil fuels along with government policies have led to the search for alternative fuels from various renewable and sustainable feedstocks. This review provides a critical overview of the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, WCO, and CTO and their recent trends toward potential biofuel production. Plant oils with a high energy content are primarily composed of triglycerides (generally >?95%), accompanied by diglycerides, monoglycerides, and free fatty acids. The heat content of plant oils is close to 90% for diesel fuels. The oxygen content is the most important difference in chemical composition between fossil oils and plant oils. Triglycerides can even be used directly in diesel engines. However, their high viscosity, low volatility, and poor cold flow properties can lead to engine problems. These problems require that plant oils need to be upgraded if they are to be used as a fuel in conventional diesel engines. Biodiesel, biooil, and renewable diesel are the three major biofuels obtained from plant oils. The main constraint associated with the production of biodiesel is the cost and sustainability of the feedstock. The renewable diesel obtained from crude tall oil is more sustainable than biofuels obtained from other feedstocks. The fuel properties of renewable diesel are similar to those of fossil fuels with reduced greenhouse gas emissions. In this review, the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, and tall oil, are presented. Both their major and minor components are discussed. Their compositions and fuel properties are compared to both fossil fuels and biofuels.  相似文献   

19.
This Opinion highlights several successful cases of biofuel technologies recently described by the IEA Bioenergy Intertask Report on Lessons Learned. The report discussed the potential of biofuels to contribute to a significant market supply, thus replacing fossil fuels and mitigating global warming, and it underscores the challenges in expanding biofuel production and replicating successful models between countries and regions. Based on the lessons learned from conventional, established technologies, the authors analyzed policies, feedstocks, products, technologies, economics, environmental concerns, social aspects, scalability, and ease of implementation and replication in different countries or regions. There are blending mandates in place around the world to foster the use of biofuels. Dependence on the availability and price fluctuations of crop feedstocks may limit biofuel production in certain circumstances. Legal restrictions on using food crops as feedstocks present obstacles to scaling up production. Temporary constraints related to feedstock costs and availability, as evidenced by changes and postponements of biofuel blending mandates in various countries (particularly during the COVID-19 pandemic) also pose challenges. Technological hurdles exist for advanced biofuels that implicate premium pricing. Still, 2G ethanol from sugarcane meets very strict feedstock requirements with a carbon footprint so low that only electric vehicles charged in Norway could have life-cycle GHG emissions at the same level as a 2G ethanol-fueled combustion engine car. The authors evaluate whether and how much electrification could contribute to advance the decarbonization efforts in different countries. Drawing from these observations, the authors express their viewpoints to assist researchers and policymakers in the energy sector in formulating viable approaches to combat the climate crisis.  相似文献   

20.
Biodiesel from microalgae beats bioethanol   总被引:27,自引:0,他引:27  
Renewable biofuels are needed to displace petroleum-derived transport fuels, which contribute to global warming and are of limited availability. Biodiesel and bioethanol are the two potential renewable fuels that have attracted the most attention. As demonstrated here, biodiesel and bioethanol produced from agricultural crops using existing methods cannot sustainably replace fossil-based transport fuels, but there is an alternative. Biodiesel from microalgae seems to be the only renewable biofuel that has the potential to completely displace petroleum-derived transport fuels without adversely affecting supply of food and other crop products. Most productive oil crops, such as oil palm, do not come close to microalgae in being able to sustainably provide the necessary amounts of biodiesel. Similarly, bioethanol from sugarcane is no match for microalgal biodiesel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号