首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An overview of chiral reagents that are used to assign the absolute configuration of particular classes of compounds using NMR spectroscopy is presented. The use of chiral derivatizing agents, chiral solvating agents, metal complexes, and liquid crystals is described. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
The hemicryptophane racemate (±)‐ M-1 , P-1 was optically resolved by semipreparative HPLC on Chiralpak IC column. The absolute configuration of each isolated enantiomer was established from the analysis of their electronic circular dichroism spectra. Enantiodifferentiation of the chiral cationic cage (±)‐ M-1 , P-1 was evidenced in solution using Δ‐TRISPHAT as chiral solvating agent, and the diastereomeric associations were observed in 1H and 31P NMR spectra. Chirality 24:1077–1081, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
2-Hexylamino-4-[(S)-1-(1-naphthyl)ethylamino]-6-L-valyl-L-valyl-L-valine isopropylester-1,3,5-triazine (1), a molecule characterized by two different chiral selectors, and 2-hexylamino-4,6-bis-L-valyl-L-valyl-L-valine isopropylester-1,3,5-triazine (2) and 2-ethoxy-4-hexylamino-6-[(S)-1-(1-naphthyl) ethylamino]-1,3,5-triazine (3), systems in which a single kind of chiral selector is present, have been prepared. The enantiodiscriminating ability in solution of the three compounds toward the N-3,5-dinitrobenzoyl derivatives of 1-phenylethylamine (4) or valine methylester (5) has been investigated by 1H nuclear magnetic resonance (NMR) spectroscopy: 1 shows an improved versatility, relative to 2 and 3, as a chiral solvating agent for NMR spectroscopy. On the basis of the indications obtained, the usefulness of 2-chloro-4-[(S)-1-(1-naphthyl)ethylamino]-6-L-val-L-val-L-valine isopropylester-1,3,5-triazine (1a), a direct precursor of 1, as chiral solvating agent for the determination by NMR of the enantiomeric compositions of derivatives of amines, amino alcohols, amino acids, and carboxyl acids bearing a 3,5-dinitrophenyl moiety, has been demonstrated. Chirality 9:113–121, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Wenzel TJ  Wilcox JD 《Chirality》2003,15(3):256-270
Recent advances in the development of chiral derivatizing and solvating agents that facilitate the determination of enantiomeric excess and absolute configuration are reviewed. These include metal-containing species, host-guest systems, donor-acceptor compounds, and liquid crystal discriminating agents. In the aggregate, these reagents can be used to analyze a wide range of compound classes.  相似文献   

5.
2,2,2-Trifluoro-1-(9-anthryl)ethanol (TFAE) has now been widely used as a powerful chiral solvating agent for NMR spectroscopy. In connection with the development of a new general synthesis of halogenoalkylalkanols, starting from the corresponding ketone or aldehyde, we synthesized some halogenoalkyl-1-(9-anthryl)methanol derivatives liable to work as chiral solvating agents. The racemic anthryl derivatives were preparatively resolved into their corresponding enantiomers by chromatography on triacetyl cellulose (CTA I) or on meta-methylbenzoyl cellulose beads as chiral stationary phases. Their effectiveness as chiral solvating agents was measured as the magnitude of the splitting induced in the 1H-NMR spectra of 1-phenylethylamine and of (1-phenylethyl)methyl ether in comparison with splitting caused by TFAE. While TFAE induced the largest splitting for 1-phenylethylamine, 2,2,3,3,3-pentafluoro-1-(9-anthryl)propanol 2 was more effective in the case of (1-phenylethyl)methyl ether, pointing out that depending on the substrate, other derivatives of the TFAE type can be very useful as chiral solvating agents.  相似文献   

6.
For the first time, a method for enantiomer resolution of the anticonvulsant Galodif (1‐((3‐chlorophenyl)(phenyl)methyl) urea) by chiral HPLC was developed, whereas the enantiomeric composition of 1‐((3‐chlorophenyl)(phenyl)methyl) amine—precursor in Galodif synthesis—cannot be resolved by this method. However, starting 1‐((3‐chlorophenyl)(phenyl)methyl) amine quantitatively forms diastereomeric N‐((3‐chlorophenyl)(phenyl)methyl)‐1‐camphorsulfonamides in reaction with chiral (1R)‐(+)‐ or (1S)‐(?)‐camphor‐10‐sulfonyl chlorides. The diastereomeric ratio of obtained camphorsulfonamides can be easily determined by NMR 1H and 13C spectroscopy. The DFT calculations of specific rotation of Galodif enantiomers showed good agreement with experimental data. The absolute configuration of enantiomers was proposed for the first time.  相似文献   

7.
A series of chiral cyclotriphosphazene compounds 2-9 in which the spiro 3-amino-1-propanoxy moiety provides the one centre of chirality have been synthesised and characterised by elemental analysis, MS, 1H and 31P NMR spectroscopies. The enantiomers of newly synthesised compounds have been analysed by the changes in the 31P NMR spectra on addition of a Chiral Solvating Agent (CSA), (S)-(+)-2,2,2-trifluoro-1-(9′-anthryl)ethanol. HPLC methods have been developed for the enantiomeric separations of chiral cyclotriphosphazenes containing one centre of chirality. It is found that chiral HPLC gave a good resolution of enantiomers of the racemic compounds 2-9 with resolution factors between 2.49 and 7.50 making them good candidates for enantiomeric separations and determination of absolute configuration.  相似文献   

8.
A novel methodology using a chiral molecular tool of MalphaNP acid (1), 2-methoxy-2-(1-naphthyl)propionic acid, useful for preparation of enantiopure secondary alcohols and determination of their absolute configurations by the (1)H NMR anisotropy method was developed; racemic MalphaNP acid (1) was enantioresolved with (-)-menthol, and the enantiopure MalphaNP acid (S)-(+)-(1) obtained was allowed to react with racemic alcohol, yielding a mixture of diastereomeric esters, which was clearly separated by HPLC on silica gel. By applying the sector rule of (1)H NMR anisotropy effect, the absolute configuration of the first-eluted MalphaNP ester was unambiguously determined. Solvolysis or reduction of the first-eluted MalphaNP esters yielded enantiopure alcohols.  相似文献   

9.
The application of (S)‐1,1′‐binaphthyl‐2,2′‐diol as NMR chiral solvating agent (CSA) for omeprazole, and three of its analogs (lanso‐, panto‐, and rabe‐prazole) was investigated. The formation of diastereomeric host–guest complexes in solution between the CSA and the racemic substrates produced sufficient NMR signal splitting for the determination of enantiomeric excesses by 1H‐ or 19F‐NMR spectroscopy. Using of hydrophobic deuterated solvents was mandatory for obtaining good enantiodiscrimination, thus suggesting the importance of intermolecular hydrogen bonds in the stabilization of the complexes. The method was applied to the fast quantification of the enantiomeric purity of in‐process samples of S‐omeprazole. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
In order to define an enantioselective nuclear magnetic resonance (NMR) method for the antiasthmatic drug montelukast, a series of nine easily available products were evaluated as NMR chiral solvating agents (CSAs): D‐dibenzoyltartaric acid, D‐ditoluoyltartaric acid, (+)‐camphorsulfonic acid, (S)‐BINOL, (S)‐3,3’‐diphenyl‐2,2’‐binaphthyl‐1,1’‐diol, (R)‐3,3'′‐di‐9‐anthracenyl‐1,1'′‐bi‐2‐naphthol, (R)‐3,3'′‐di‐9‐phenanthrenyl‐1,1'′‐bi‐2‐naphthol, Pirkle's alcohol, and (?)‐cinchonidine. It was proved that most of the studied agents constitute diastereomeric complexes with both drug enantiomers in CD2Cl2 or CDCl3 solutions, thus permitting the direct 1H NMR detection of the unwanted S‐enantiomer, even at levels of 0.75%. (?)‐Cinchonidine was found to be the more convenient CSA in terms of NMR enantiodiscrimination power and ease of experimental requirements. The final method was validated and applied to the fast monitoring of the optical purity of montelukast “in‐process” samples, circumventing the need for tedious and slower analytical procedures like enantioselective chromatography or capillary electrophoresis. In addition, a method for the enantiopurity control of the commercial drug (montelukast sodium salt) was also established using (S)‐BINOL as NMR CSA. Chirality 25: 780–786, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Assignment of absolute configuration to a recently developed chiral selector useful in the separation of the underivatized enantiomers of naproxen and other nonsteroidal anti-inflammatory drugs (NSAIDs) is described. Circular dichroism, 1H NMR, and X-ray diffraction have been used to confirm the original assignment which was based solely upon elution orders from HPLC chiral stationary phases. All of these techniques agree in the assignment of the (S,S) absolute configuration to the enantiomer of the chiral selector which associates preferentially with (S)-naproxen. © 1994 Wiley-Liss, Inc.  相似文献   

12.
Because of their unique 3D arrangement, naturally occurring Cinchona alkaloids and their synthetic derivatives have found wide‐ranging applications in chiral recognition. Recently, we determined the enantioselective properties of C‐9‐phosphate mixed triesters of quinine as versatile chiral solvating agents in nuclear magnetic resonance (NMR) spectroscopy. In the current study, we introduce new zwitterionic members of this class of molecules containing a negatively charged phosphate moiety (i.e., ethyl, n‐butyl and phenyl hydrogen quininyl phosphate). An efficient approach for synthesizing these compounds is elaborated, and full characterization, including conformational and autoaggregation phenomena studies, was performed. Therefore, their ability to induce NMR anisochrony of selected enantiomeric substrates (i.e., primarily N‐DNB‐protected amino acids and their methyl esters) was analyzed compared to uncharged diphenyl quininyl phosphate and its positively charged quaternary ammonium hydrochloride salt. In addition, 1H and 13C NMR experiments revealed their enantiodiscrimination potential toward novel analytes, such as secondary amines and nonprotected amino acids. Chirality 27:752–760, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
An improved method, which is highly reproducible, was developed for the enantioseparation of racemic O‐ethyl phenylphosphonothioic acid ( 1a ) with brucine by introducing seeding to a supersaturated solution of the diastereomeric salt mixture. The present method gave both diastereomeric salts in high yields with a diastereomeric ratio of >99.5:0.5 upon choosing the crystallization solvent (MeOH for the ( (R)-1a salt and MeOH/H2O for the ( (S)-1a salt). The enantiopure acid (R)-1a , (S)-1a showed a good chirality recognition ability for not only strong bases, such as amines and amino alcohols, but also weakly basic alcohols and was applicable as a solvating agent to the 1H NMR determination of the enantiomeric excess of chiral amines, amino alcohols, and alcohols, including aliphatic substrates. Chirality 26:614–619, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Kasai Y  Watanabe M  Harada N 《Chirality》2003,15(4):295-299
A convenient method for determining the absolute configuration of chiral secondary alcohols using the racemic NMR anisotropy reagent, (+/-)-2-methoxy-2-(1-naphthyl)propionic acid [(+/-)-M(alpha)NP acid], and an HPLC-CD detector was developed. The method was successfully applied to some chiral alcohols derived from (-)-alpha-santonin.  相似文献   

15.
Cationic trialkylammonium‐substituted α‐, β‐, and γ‐cyclodextrins containing trimethyl‐, triethyl‐, and tri‐n‐propylammonium substituent groups were synthesized and analyzed for utility as water‐soluble chiral nuclear magnetic resonance (NMR) solvating agents. Racemic and enantiomerically pure (3‐chloro‐2‐hydroxypropyl)trimethyl‐, triethyl‐, and tri‐n‐propyl ammonium chloride were synthesized from the corresponding trialkyl amine hydrochloride and either racemic or enantiomerically pure epichlorohydrin. The ammonium salts were then reacted with α‐, β‐, and γ‐cyclodextrins at basic pH to provide the corresponding randomly substituted cationic cyclodextrins. The 1H NMR spectra of a range of anionic, aromatic compounds was recorded with the cationic cyclodextrins. Cyclodextrins with a single stereochemistry at the hydroxy group on the (2‐hydroxypropyl)trialkylammonium chloride substituent were often but not always more effective than the corresponding cyclodextrin in which the C‐2 position was racemic. In several cases, the larger triethyl or tri‐n‐propyl derivatives were more effective than the corresponding trimethyl derivative at causing enantiomeric differentiation. None of the cyclodextrin derivatives were consistently the most effective for all of the anionic compounds studied. Chirality 28:299–305, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
Verkade's superbases, entrapped in the cavity of enantiopure hemicryptophane cages, have been synthesized with enantiomeric excess (ee) superior to 98%. Their absolute configuration has been determined by using electronic circular dichroism (ECD) spectroscopy. These enantiopure encaged superbases turned out to be efficient chiral derivatizing agents for chiral azides, underlining that the chirality of the cycloveratrylene (CTV) macrocycle induces different magnetic and chemical environments around the phosphazide functions.  相似文献   

17.
Five optically active urea derivatives ( 1 ‐ 5 ) were used as NMR solvating agents for analysis of the optical purity of different 2‐arylpropanoic acids commonly used as nonsteroidal anti‐inflammatory drugs. These novel chiral solvating agents were more efficient at discriminating the respective enantiomers of targets than the chiral solvating agents known so far, without the need to add a base for achieving the signal splitting. The advantages and limits of the use of these novel chiral solvating agents were studied.  相似文献   

18.
A simple one‐dimensional 13C NMR method is presented to discriminate between stereoisomers of organic compounds with more than one chiral center. By means of this method it is possible to discriminate between all eight stereoisomers of α‐tocopherol. To achieve this the chiral solvating agent (S)‐(+)‐1‐(9‐anthryl)‐2,2,2‐trifluoroethanol and the compound of interest were dissolved in high concentrations in chloroform‐d, and the nuclear magnetic resonance (NMR) spectrum was recorded at a low temperature. The individual stereoisomers of α‐tocopherol were assigned by spikes of the reference compounds. The method was also applied to six other representative examples. Chirality 27:850–855, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
Penciclovir is a potent antiherpesvirus agent which is highly selective due to its phosphorylation only in virus infected cells. Phosphorylation of one of the hydroxymethyl groups of penciclovir (PCV) creates a chiral centre leading to the possible formation of (R)- and (S)-enantiomers. The absolute configuration and stereospecificity of the PCV-phosphates produced in cells infected with herpes simplex viruses types 1 and 2 (HSV-1 and HSV-2), as well as by HSV-1-encoded thymidine kinase, were determined using isotopically chiral [4′-13C]PCV precursors and 13C NMR spectroscopy of the isolated metabolites. The absolute configuration of penciclovir-triphosphate (PCV-TP) produced in HSV-1-infected cells was shown to be S with an enantiomeric purity of greater than 95%. However, in contrast to HSV-1-infected cells in which none of the (R) enantiomer was detected, about 10% of (R)-PCV-TP was produced in HSV-2-infected cells. Phosphorylation of PCV by HSV-1-encoded thymidine kinase was found to give 75% (S)- and 25% (R)-PCV-monophosphate. The proportion of the (S)-isomer appears to be amplified in the subsequent phosphorylations leading to the triphosphate. © 1993 Wiley-Liss, Inc.  相似文献   

20.
The compound (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid was evaluated as a chiral nuclear magnetic resonance (NMR) solvating agent for a series of diamines and bicyclic β‐amino acids. The amine must be protonated for strong association with the crown ether. An advantage of (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid over many other crown ethers is that it undergoes a neutralization reaction with neutral amines to form the protonated species needed for binding. Twelve primary diamines in neutral and protonated forms were evaluated. Diamines with aryl and aliphatic groups were examined. Some are atropisomers with equivalent amine groups. Others have two nonequivalent amine groups. Association equilibria for these systems are complex, given the potential formation of 2:1, 1:1, and 1:2 crown‐amine complexes and given the various charged species in solution for mixtures of the crown ether with the neutral amine. The crown ether produced enantiomeric differentiation in the 1H NMR spectrum of one or more resonances for every diamine substrate. Also, a series of five bicyclic β‐amino acids were examined and (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid caused enantiomeric differentiation in the 1H NMR spectrum of three or more resonances of each compound. Chirality 27:708–715, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号