首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Chirality》2017,29(10):603-609
d ‐ and l ‐Tryptophan (Trp) and d ‐ and l ‐kynurenine (KYN) were derivatized with a chiral reagent, (S )‐4‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐7‐(N,N‐dimethylaminosulfonyl)‐2,1,3‐benzoxadiazole (DBD‐PyNCS), and were separated enantiomerically by high‐performance liquid chromatography (HPLC) equipped with a triazole‐bonded column (Cosmosil HILIC) using tandem mass spectrometric (MS/MS) detection. Effects of column temperature, salt (HCO2NH4) concentration, and pH of the mobile phase in the enantiomeric separation, followed by MS detection of (S )‐DBD‐PyNCS‐d ,l ‐Trp and ‐d ,l ‐KYN, were investigated. The mobile phase consisting of CH3CN/10 mM ammonium formate in H2O (pH 5.0) (90/10) with a column temperature of 50–60 °C gave satisfactory resolution (R s) and mass‐spectrometric detection. The enantiomeric separation of d ,l ‐Trp and d ,l ‐KYN produced R s values of 2.22 and 2.13, and separation factors (α) of 1.08 and 1.08, for the Trp and KYN enantiomers, respectively. The proposed LC–MS/MS method provided excellent detection sensitivity of both enantiomers of Trp and KYN (5.1–19 nM).  相似文献   

2.
《Chirality》2017,29(9):500-511
A direct fluorometric high‐performance liquid chromatography (HPLC) method was developed and validated for the analysis of ibuprofen enantiomers in mouse plasma (100 μl) and tissues (brain, liver, kidneys) using liquid–liquid extraction and 4‐tertbutylphenoxyacetic acid as an internal standard. Separation of enantiomers was accomplished in a Chiracel OJ‐H chiral column based on cellulose tris(4‐methylbenzoate) coated on 5 μm silica‐gel, 250 x 4.6 mm at 22 °C with a mobile phase composed of n‐hexane, 2‐propanol, and trifluoroacetic acid that were delivered in gradient elution at a flow rate of 1 ml min−1. A fluorometric detector was set at: λexcit. = 220 nm and λemis. = 290 nm. Method validation included the evaluation of the selectivity, linearity, lower limit of quantification (LLOQ), within‐run and between‐run precision and accuracy. The LLOQ for the two enantiomers was 0.125 μg ml−1 in plasma, 0.09 μg g−1 in brain, and 0.25 μg g−1 in for liver and kidney homogenates. The calibration curves showed good linearity in the ranges of each enantiomers: from 0.125 to 35 μg ml−1 for plasma, 0.09–1.44 μg g−1 for brain, and 0.25–20 μg g−1 for liver and kidney homogenates. The method was successfully applied to a pharmacokinetic study of ibuprofen enantiomers in mice treated i.v. with 10 mg kg−1 of racemate.  相似文献   

3.
Oxcarbazepine is a second‐generation antiepileptic drug indicated as monotherapy or adjunctive therapy in the treatment of partial seizures or generalized tonic–clonic seizures in adults and children. It undergoes rapid presystemic reduction with formation of the active metabolite 10‐hydroxycarbazepine (MHD), which has a chiral center at position 10, with the enantiomers (S)‐(+)‐ and R‐(?)‐MHD showing similar antiepileptic effects. This study presents the development and validation of a method of sequential analysis of oxcarbazepine and MHD enantiomers in plasma using liquid chromatography with tandem mass spectrometry (LC‐MS/MS). Aliquots of 100 μL of plasma were extracted with a mixture of methyl tert‐butyl ether: dichloromethane (2:1). The separation of oxcarbazepine and the MHD enantiomers was obtained on a chiral phase Chiralcel OD‐H column, using a mixture of hexane:ethanol:isopropanol (80:15:5, v/v/v) as mobile phase at a flow rate of 1.3 mL/min with a split ratio of 1:5, and quantification was performed by LC‐MS/MS. The limit of quantification was 12.5 ng oxcarbazepine and 31.25 ng of each MHD enantiomer/mL of plasma. The method was applied in the study of kinetic disposition of oxcarbazepine and the MHD enantiomers in the steady state after oral administration of 300 mg/12 h oxcarbazepine in a healthy volunteer. The maximum plasma concentration of oxcarbazepine was 1.2 µg/mL at 0.75 h. The kinetic disposition of MHD is enantioselective, with a higher proportion of the S‐(+)‐MHD enantiomer compared to R‐(?)‐MHD and an AUC0‐12 S‐(+)/R‐(?) ratio of 5.44. Chirality 25:897–903, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Chiral high‐performance liquid chromatography (HPLC) separation and modeling of four stereomers of DL‐leucine‐tryptophan DL‐dipeptide on AmyCoat‐RP column are described. The mobile phase applied was ammonium acetate (10 mM)‐methanol‐acetonitrile (50:5:45, v/v). The flow rate of the mobile phases was 0.8 mL/min with UV detection at 230 nm. The values of retention factors for LL‐, DD‐, DL‐, and LD‐ stereomers were 2.25, 3.60, 5.00, and 6.50, respectively. The values of separation and resolution factors were 1.60, 1.39, and 1.30 and 7.76, 8.05, and 7.19. The limits of detection and quantitation were ranging from 1.0–2.3 and 5.6–14.0 μg/mL. The simulation studies established the elution orders and the mechanism of chiral recognition. It was seen that π–π connections and hydrogen bondings were the main forces for enantiomeric resolution. The reported chiral HPLC method may be applied for the enantiomeric separation of DL‐leucine‐DL‐tryptophan in unknown matrices. Chirality 28:642–648, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
Work from this paper details a novel walk‐up open‐access (OA) approach to enable chiral analytical method development and preparative separation of enantiomers in early discovery chemistry using supercritical fluid chromatography (SFC). We have demonstrated the success of this OA approach using immobilized chiral stationary phases (CSPs). After screening a diverse set of racemic drug candidates, we have concluded that a simplified OA chiral SFC platform can successfully purify approximately 60% of the analysed racemates. This streamlined OA workflow enables medicinal chemists with limited expertise in chiral method development to successfully and rapidly purify enantiomers for their projects using Waters UPC2 and Prep100‐SFC instrumentation.  相似文献   

6.
Economic and enantioselective synchronous fluorescence spectroscopy and high‐performance thin‐layer chromatography methods have been developed and validated as per ICH guidelines for the separation of zopiclone enantiomers using L‐(+)‐tartaric acid as a chiral selector, followed by determination of the chiral‐switching eszopiclone. Synchronous fluorescence spectroscopy was successfully applied for chiral recognition of R & S enantiomers of zopiclone at  = 110 nm based on creating of diastereomeric complexes with 0.06M tartaric acid in an aqueous medium containing 0.2M disodium hydrogen orthophosphate. Synchronous fluorescence intensities of eszopiclone were recorded at 296 nm in concentration range 0.2‐ to 4‐μg/mL eszopiclone. High‐performance thin‐layer chromatography method depends on resolution of zopiclone enantiomers on achiral HPTLC silica‐gel plates using acetonitrile:methanol:water (8:2:0.25, v/v/v) containing L‐(+)‐tartaric acid as a chiral mobile‐phase additive followed by densitometric measurements at 304 nm in concentration range of 1 to 10 μg/band of eszopiclone. The effect of chiral‐selector concentration, pH, and temperature on the resolution have been studied and optimized for the proposed methods. The cited procedures were successfully applied to determine eszopiclone in commercial tablets of pure and racemic forms. Enantiomeric excess was evaluated using optical purity test and integrated peak area to describe the enantiomeric ratio. Thermodynamics of chromatographic separation, enthalpy, and entropy were evaluated using the Van't Hoff equation. The proposed methods were found to be selective for identification and determination of the eutomer in drug substances and products.  相似文献   

7.
Novel enantiopure 1,2,4‐trizole‐3‐thiones containing a benzensulfonamide moiety were synthesized via multistep reaction sequence starting with D‐phenylalanine methyl ester and L‐phenylalanine ethyl ester as a source of chirality. The chemical structures of all compounds were characterized by elemental analysis, UV, IR, 1H NMR, 13C NMR, 2D NMR (HETCOR), and mass spectral data. All compounds were tested in vitro antiviral activity against a broad variety of DNA and RNA viruses and in vitro cytostatic activity against murine leukemia (L1210), human T‐lymphocyte (CEM) and human cervix carcinoma (HeLa) cell lines. Although enantiopure 1,2,4‐triazole‐3‐thione analogs in (R) configuration emerged as promising anti‐influenza A H1N1 subtype in Madin Darby canine kidney cell cultures (MDCK), their enantiomers exhibited no activity. Especially compounds 18a , 21a , 22a , 23a , and 24a (EC50: 6.5, 6.1, 2.4, 1.6, 1.7 μM, respectively) had excellent activity against influenza A H1N1 subtype compared to the reference drug ribavirin (EC50: 8.0 μM). Several compounds have been found to inhibit proliferation of L1210, CEM and HeLa cell cultures with IC50 in the 12–53 μM range. Compound 5a and 27a in (R) configuration were the most active compounds (IC50: 12–22 μM for 5a and IC50: 19–23 μM for 27a ). Chirality 28:495–513, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Four new 13,14‐seco‐withanolides, minisecolides A – D ( 1  –  4 ), together with three known analogues 5  –  7 , were isolated from the whole plants of Physalis minima. The structures of new compounds were determined on the basis of spectroscopic analysis, including 1H‐, 13C‐NMR, 2D‐NMR (HMBC, HSQC, ROESY), and HR‐ESI‐MS. Evaluation of all isolates for their inhibitory effects on nitric oxide (NO) production was conducted on lipopolysaccaride‐activated RAW264.7 macrophages. Compounds 2 , 3 , 5 , and 6 showed inhibitory activities, especially for compound 5 with IC50 value of 3.87 μm .  相似文献   

9.
The enantiomeric purity of escitalopram oxalate ESC and its “in‐process impurities,” namely, ESC‐N‐oxide, ESC‐citadiol, and R(?)‐enantiomer were studied in drug substance and products using high‐performance liquid chromatography (HPLC)‐UV (Method I), synchronous fluorescence spectroscopy (SFS) (Method IIA), and first derivative SFS (Method IIB). Method I describes as an isocratic HPLC‐UV for the direct resolution and determination of enantiomeric purity of ESC and its “in‐process impurities.” The proposed method involved the use of αl‐acid glycoprotein (AGP) chiral stationary phase. The regression plots revealed good linear relationships of concentration range of 0.25 to 100 and 0.25 to 10 μg mL?1 for ESC and its impurities. The limits of detection and quantifications for ESC were 0.075 and 0.235 μg mL?1, respectively. Method II involves the significant enhancement of the fluorescence intensities of ESC and its impurities through inclusion complexes formation with hydroxyl propyl‐β‐cyclodextrin as a chiral selector in Micliavain buffer. Method IIA describes SFS technique for assay of ESC at 225 nm in presence of its impurities: R(?)‐enantiomer, citadiol, and N‐oxide at ?λ of 100 nm. This method was extended to (Method IIB) to apply first derivative SFS for the simultaneous determination of ESC at 236 nm and its impurities: the R(?)‐enantiomer, citadiol, and N‐oxide at 308, 275, and 280 nm, respectively. Linearity ranges were found to be 0.01 to 1.0 μg mL?1 for ESC and its impurities with lower detection and quantification limits of 0.033/0.011 and 0.038/0.013 μg mL?1 for SFS and first derivative synchronous fluorescence spectra (FDSFS), respectively. The methods were used to investigate the enantiomeric purity of escitalopram.  相似文献   

10.
Chiral stationary phases are conveniently used for enantiomeric separation of drugs by liquid chromatography. Consumption of large volumes of hazardous solvents is considered as a common challenge for the sustainability of this technique. To this end, a columnar chromatography has been adopted using 50‐mm‐length stationary phases. The study comprised five Phenomenex Lux cellulose‐ and amylose‐based columns for the separation of guaifenesin (GUA) enantiomers. In addition, an experimental design was used to optimize the gradient profile for the separation of racemic GUA and ambroxol HCl (AMB) binary mixture. The chromatographic method was achieved using Lux Cellulose‐1 (50 × 4.6 mm) as a chiral stationary phase and ethanol/water as a mobile phase with linear gradient elution of 20% to 70% ethanol in 6 minutes at a flow rate of 1.0 mL min?1 and UV detection at 270 nm. Linearity ranges were found to be 50 to 1000 μg mL?1 and 15 to 450 μg mL?1 for each GUA enantiomer and AMB, respectively. Environmental, health and safety tool was used to assess and compare greenness of the proposed and reported methods. Short column indeed reduces the environmental impact by decreasing waste by about 60% and utilizing only 1‐mL ethanol in the mobile phase. The proposed method is a safer alternative for the simultaneous determination of drugs in their combined pharmaceutical formulation. The method has been validated and compared favorably with a reported one.  相似文献   

11.
Sample preparation remains a bottleneck in the rapid and reliable quantification of gibberellins (GAs) for obtaining an insight into the physiological processes mediated by GAs. The challenges arise from not only the extremely low content of GAs in complex plant matrices, but the poor detectability of GAs by mass spectrometry (MS) in negative ion mode. In an effort to solve these urgent difficulties, we present a spatial‐resolved analysis method to investigate the distribution of GAs in tiny plant tissues based on a simplified one‐pot sample preparation approach coupled with ultrahigh‐performance liquid chromatography‐tandem MS. By integrating extraction and derivatization into one step, target GAs were effectively extracted from plant materials and simultaneously reacted with N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide, the sample preparation time was largely shortened, the probability of sample loss was minimized and the detection sensitivity of MS was also greatly improved compared with underivatized GAs. Under optimal conditions, the method was validated from the quantification linearity, limits of detection and limits of quantification in the presence of plant matrices, recoveries, and precision. With the proposed method, 15 endogenous GAs were detected and, among these, 11 GAs could be quantified in 0.50 mg fresh weight (FW) wheat shoot samples, and five GAs were quantified in only 0.15 mg FW developing seed samples of Arabidopsis thaliana. The distribution patterns of GAs along both the non‐13‐hydroxylation pathway and the early 13‐hydroxylation pathway in a single shoot of germinating wheat, rice and maize seeds were finally profiled with a spatial resolution down to approximately 1 mm2.  相似文献   

12.
Monacolin K (MK) is a naturally occurring hypocholesterolemic agent that specifically inhibits HMG‐CoA reductase. As a natural source of MK, Monascus‐fermented products are of special interest; however, some Monascus strains could produce citrinin, which is a nephrotoxin, as a contaminant in Monascus‐derived products. A Monascus pilosus strain (MS‐1) that produces high amounts of MK, but no citrinin, was screened in previous investigations. Herein, liquid‐state fermentation parameters of the MS‐1 strain were optimized using statistical methods to maximize the MK yield with potato juice as a basic medium. The maximum MK yield (326.74 μg/mL) was predicted with 50 mL of medium in a 250‐mL conical flask containing 30 g/L sucrose, 38.75 g/L soybean flour, 0.00105 mol/L Mg2+ at pH 5.48, and 8% v/v seed inoculum precultured for 42 h at 30°C, incubated at 30°C for 3 days, followed by further incubation for 11 days at 24.7°C. The verified MK yield was 390.68 μg/mL and the MK yield increased to 565.64 μg/mL after 21 days of fermentation. No citrinin was detected in MS‐1‐fermented products. The results suggest that citrinin‐free MK can be obtained from natural medium through liquid‐state fermentation in an economical way. This method will be of practical value to the industrial production of MK.  相似文献   

13.
The present work firstly described the enantioseparation and determination of flumequine enantiomers in milk, yogurt, chicken, beef, egg, and honey samples by chiral liquid chromatography‐tandem mass spectrometry. The enantioseparation was performed under reversed‐phase conditions on a Chiralpak IC column at 20°C. The effects of chiral stationary phase, mobile phase components, and column temperature on the separation of flumequine enantiomers have been studied in detail. Target compounds were extracted from six different matrices with individual extraction procedure followed by cleanup using Cleanert C18 solid phase extraction cartridge. Good linearity (R2>0.9913) was obtained over the concentration range of 0.125 to 12.5 ng g‐1 for each enantiomer in matrix‐matched standard calibration curves. The limits of detection and limits of quantification of two flumequine enantiomers were 0.015‐0.024 and 0.045‐0.063 ng g‐1, respectively. The average recoveries of the targeted compounds varied from 82.3 to 110.5%, with relative standard deviation less than 11.7%. The method was successfully applied to the determination of flumequine enantiomers in multiple food matrices, providing a reliable method for evaluating the potential risk in animal productions.  相似文献   

14.
The enantiomeric resolution of DL‐alanine‐DL‐tryptophan dipeptide is described on amylose stationary phase. The eluent used was CH3OH─CH3COONH4 (10mM)─CH3CN (50: 40, 10) at 0.8‐mL/min flow, 230‐nm detection, 25‐minute run time, and 25°C ± 1°C temperature. The chiral phase was amylose [AmyCoat RP (15 cm × 0.46 cm × 5 micron)]. The magnitudes of the retention factors (k) were 2.71, 3.52, 5.11, and 7.75. The magnitudes of separation factor (α) were 1.19, 1.57, and 1.51 while the resolution factors (Rs) were 3.25, 14.84, and 15.76. The limits of detection and quantitation were of 2.5 to 5.4 and 12.8 to 27.5 μg/mL. The enantiomeric resolution is controlled by hydrogen, hydrophobic, π‐π, steric, etc interactions. The elution order of the enantiomer was supported by the modeling data. The described method is fast, reproducible, precise, and selective, which can be used successfully for evaluating the enantiomers of the reported dipeptide.  相似文献   

15.
A new highly sensitive high‐performance liquid chromatographic method with fluorescence detection (HPLC–FLD) in zero‐order emission mode was developed for the first time for the simultaneous determination of piroxicam (PRX) and norfloxacin (NRF) in biological fluids. The fluorescence detector wavelengths were set at 278 nm for excitation and zero‐order mode for emission. The zero‐order emission mode produced greater sensitivity for the measurement of both drugs than a fixed emission wavelength (446 nm). The new developed method was validated according to International Conference of Harmonization (ICH) guidelines. Linearity was found to be over concentration ranges 0.001–20 μg/ml and 0.00003–0.035 μg/ml for PRX and NRF, respectively. The limits of detection were 4.87 × 10?4 and 1.32 × 10?5 μg/ml for PRX and NRF, and the limits of quantitation were 1.47 × 10?3 and 4.01 × 10?5 μg/ml, respectively. The current fluorescence method was found to be more sensitive than most commonly used analytical methods and was successfully applied for simultaneous determination of PRX and NRF in biological fluids (serum and urine) with recoveries ranging from 91.67% to 100.36% for PRX and from 96.00% to 101.43% for NRF.  相似文献   

16.
In this study the analysis and confirmation of flumequine enantiomers in rat plasma by ultra‐fast liquid chromatography coupled with electron spray ionization mass spectrometry (using propranolol as an internal standard [IS]) was developed and validated. Plasma samples were prepared by liquid–liquid extraction using methyl tert‐butyl ether as the extraction solvent. Direct resolution of the R‐ and S‐isomers was performed on a CHIRALCEL OJ‐RH column (4.6 × 150 mm, 5 μm) using acetonitrile / 0.1% formic acid / 1 mM ammonium acetate as the mobile phase. Detection was operated by electron spray ionization in the selected ion monitoring and positive ion mode. The target ions at m/z 262.1 and m/z 260.1 were selected for the quantification of the enantiomers and IS, respectively. The linear range was 0.5–500 ng/mL. The precisions (coefficient of variation, CV%) and recoveries were 1.43–8.68 and 94.24–106.76%, respectively. The lowest quantitation limit for both enantiomers is 0.5 ng/mL, which is sensitive enough to be applied to sample analysis in other related studies.  相似文献   

17.
The contamination of drug residues, including chiral ones, is not acceptable in earth's ecosystem. The dynamicity of enantiomers of thalidomide and its derivatives (3‐methyl thalidomide, 3‐ethyl thalidomide, and 3‐butyl thalidomide) was ascertained at supramolecular level in water‐sediment system using solid phase extraction (SPE) and stereoselective HPLC. Enantiomeric separation of these drugs was carried out on Ceramosphere RU‐2 (25 cm × 0.46 cm, particle size 50 μm) chiral column using pure ethanol (1.0 ml/min) as eluent at 230 nm detection. Retention times, capacity, separation, and resolution factors of the enantiomers of these drugs were in the range of 20.0–36.0, 2.08–3.93, 1.35–1.57, and 1.0–2.0 min, respectively. Percentage recoveries of the enantiomers in SPE were in the range of 90.0 to 95.0 in water‐sediment system. Langmuir and Freundlich model were best fitted for dynamic equilibrium concentrations at different experimental parameters. Thalidomide and its derivatives follow first‐order kinetics at dynamic equilibrium. The rate constants of chiral interconversions were 0.390 and 0.385 days?1 for S‐ and R‐enantiomers, respectively. The uptake of thalidomide by sediment is quite good and of endothermic nature indicating good self‐purification capacity of the nature for such toxic species. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Accelerated solvent extraction (ASE) and solid‐phase extraction (SPE) conditions were optimized by a high‐performance liquid chromatography‐fluorescence detector (HPLC‐FLD) method for the detection of piperazine in chicken tissues and pork. Piperazine residues were determined by precolumn derivatization with trimethylamine and dansyl chloride. Samples were extracted with 2% formic acid in acetonitrile using an ASE apparatus and purified using a Strata‐X‐C SPE column. The monosubstituted product of the reaction of piperazine with dansyl chloride was 1‐dansyl piperazine (1‐DNS‐piperazine). Chromatographic separations were performed on an Athena C18 column (250 × 4.6 mm, id: 5 μm) with gradient elution using ultrapure water and acetonitrile (5:95, V/V) as the mobile phase. The calibration curves showed good linearity over a concentration range of LOQ‐200.0 μg/kg with a coefficient of determination (R2) ≥ .9992. The recoveries and relative standard deviations (RSD values) ranged from 78.49% to 97.56% and 1.19% to 5.32%, respectively, across the limit of quantification (LOQ) and 0.5, 1, and 2.0 times the maximum residue limit (MRL; μg/kg). The limits of detection (LODs) and LOQs were 0.96 to 1.85 μg/kg and 3.20 to 5.50 μg/kg, respectively. The method was successfully applied for the validation of animal products in the laboratory.  相似文献   

19.
The present paper describes the development and validation of a simple and sensitive micelle‐enhanced high‐throughput fluorometric method for the determination of niclosamide (NIC) in 96‐microwell plates. The proposed method is based on the reduction of the nitro group of niclosamide to an amino group using Zn/HCl to give a highly fluorescent derivative that was developed simultaneously and measured at λem 444 nm after excitation at λex 275 nm. Tween‐80 and carboxymethylcellulose (CMC) have been used as fluorescence enhancers and greatly enhanced the fluorescence by factors of 100–150%. The different experimental conditions affecting the fluorescence reaction were carefully investigated and optimized. The proposed method showed good linearity (r2≥ 0.9997) over the concentration ranges of 1–5 and 0.5–5 μg/ml with lower detection limits of 0.01 and 0.008 μg/ml and lower quantification limits of 0.04 and 0.03 μg/ml on using Tween‐80 and or CMC, respectively. The developed high‐throughput method was successfully applied for the determination of niclosamide in both tablets and spiked plasma. The capability of the method for measuring microvolume samples made it convenient for handling a very large number of samples simultaneously. In addition, it is considered an environmentally friendly method with lower consumption of chemicals and solvents.  相似文献   

20.
Zeying He  Yi Peng  Lu Wang  Ming Luo  Xiaowei Liu 《Chirality》2015,27(12):958-964
In this research, 10 chiral pesticides in fruits and vegetables were simultaneously determined using chiral liquid chromatography triple quadrupole‐linear ion trap hybrid mass spectrometry (LC‐QqLIT). The QuEChERS method was applied for sample preparation, and an enhanced product ion (EPI) scan was used to acquire tandem mass spectrometry (MS/MS) spectra for the library search. Parameters including limit of detection (LOD), limit of quantification (LOQ), linearity, relative standard deviation (RSD), and matrix effects were evaluated in five representative matrices (strawberry, leek, cowpea, tomato, and eggplant). Good linearity with coefficient of determination (r2) ≥0.997 was obtained for all 20 enantiomers in these five matrices over the range from 1.0 to 250 µg L‐1. All the recoveries at 5 and 50 µg kg‐1 (n = 5) ranged between 70% and 120% with RSD below 20%, indicating satisfactory precision. The LOQ for the enantiomers ranged between 0.05 and 1 µg kg‐1. Based on the proposed method, 135 commonly consumed fruits and vegetables taken from markets in Guizhou province, China, were analyzed. Enantioselective degradation for the selected chiral pesticides was observed in most of the positive samples. Chirality 27:958–964, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号