首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro somatic embryogenesis and regeneration of somatic embryos to whole plants through micropropagules was successfully demonstrated from pigmented uniseriate filamentous callus of Kappaphycus alvarezii (Doty) Doty in axenic cultures. More than 80% of the explants cultured on 1.5% (w/v) agar‐solidified Provasoli enriched seawater (PES) medium showed callus development. The callus induction rate was consistently higher for laboratory‐adapted plants. The excised callus grew well in subcultures and maintained its growth for prolonged periods if transferred to fresh medium in regular intervals. Some subcultured calli (<10%) did undergo transformation and produced densely pigmented spherical or oval‐shaped micropropagules (1–5 mm in diameter) that subsequently developed into young plantlets in liquid PES medium. The micropropagule production was further improved through somatic embryogenesis by a novel method of culturing thin slices of pigmented callus with naphthaleneacetic acid (NAA) or a mixture of NAA and 6‐benzylaminopurine. Transfer of embryogenic callus along with tiny somatic embryos to liquid medium and swirling on orbital shaker facilitated rapid growth and morphogenesis of somatic embryos into micropropagules that grew into whole plants in subsequent cultivation in the sea. The daily growth rate of one tissue cultured plant was monitored for seven generations in field and found to be as high as 1.5–1.8 times over farmed plants. The prolific somatic embryogenesis together with high germination potential of somatic embryos observed in this study offers a promising tool for rapid and mass clonal production of seed stock of Kappaphycus for commercial farming.  相似文献   

2.
The typical morphology of Monostroma oxyspermum (Kütz.) Doty is lost in axenic culture. In synthetic media of the ASP type, it grows as a colony-like mass composed of round cells with numerous rhizoids. Such a mass is a fragile structure which falls apart upon shaking, or slight touch, into small cell-groups and single cells or cells with a long rhizoid. Only temporary saccate or monostromatic fronds appear and reach 1–2 mm in length when grown in enriched seawater media, but disintegrate and become a colony-like mass. The typical morphology is easily restored by adding at specific intervals filtrates of bacterial cultures and supernatant medium from axenic brown and red algal cultures to the basal medium (ASP7), or by reinfecting the Monostroma with an appropriate bacterial flora. Furthermore, the typical morphology in also maintained by bialgal cultures between Monostroma and other axenic strains of various species of seaweeds except the species belonging to the Chlorophyceae. Monostroma thus appears to utilize some substances released by most species of brown and red algae for its typical growth. Active substances released by bacteria, brown and red algae have not yet been identified and purified. However, it is demonstrated that in axenic cultures many species of seaweeds produce active extracellular substances which play an important role in growth and Morphogenesis of other species of seaweeds.  相似文献   

3.
The tissue culture of phycocolloid yielding seaweeds included preparation of axenic explants, callus induction, subculture of excised callus and regeneration of plantlets from pigmented callus in the laboratory. Treatment of algal material with 0.1–0.5% detergent for 10 min and 1–2% betadine for 1–5 min and 3–5% antibiotic treatment for 48–72 h successively enabled viable axenic explants to be obtained as high as 60% for Gracilaria corticata, Sargassum tenerrimum and Turbinaria conoides and 10% for Hypnea musciformis. Callus induction was more conspicuous in T. conoides than in the other three species investigated. Of the irradiances investigated, 30 μmol photons m−2 s−1 produced calluses in as many as 40% explants in G. corticata and T. conoides and 10% in H. musciformis and S. tenerrimum. The explants cultured at 5 and 70 μmol photons m−2 s−1 did not produce any callus in all the species studied except for H. musciformis in which 10% explants developed callus at 5 μmol photons m−2 s−1. Most of the species investigated showed uniseriate filamentous Type of growths and buds from cut ends and from all over the surface of explants. Nevertheless, T. conoides had three Types of callus developments, namely (1) uniseriate filamentous Type of outgrowths from the centre of the cut end of explant, (2) bubbly Type of callus and (3) club-shaped callus clumps. The subculture of T. conoides callus embedded in 0.4% agar produced two Types of filamentous growth, namely filiform (with elongated cells) and moniliform filaments (with round cells) in the 2 months period after inoculation. Further, friable callus with loose cells was also found associated with excised callus. The moniliform filaments showed prolific growth of micro-colonies resembling to somatic embryo-like growth which, in liquid cultures, differentiated and developed into propagules with deformed shoots and distinct rhizoids. The shoots of these propagules remained stunted with abnormal leaf stalks without forming triangular shaped leaves as the parental plant and rhizoids had prolific growth in the laboratory cultures. The excised callus of G. corticata continued to grow when transferred to liquid cultures and showed differentiation of new shoots within 10 days. The shoots grew to a maximum length of 5–6 cm in the 2 months period in aerated cultures in the laboratory. Dedicated to the memory of Late Dr. Rangarajan.  相似文献   

4.
Unialgal cultures of the flagellate algae Cyanophora paradoxa, Haematococcus lacustris, Monomastix sp., Scherffelia dubia and Spermatozopsis similis which contained bacteria were sorted by flow cytometry to obtain axenic clonal cultures. The variables used for fluorescence-activated cell sorting (FACS) were chlorophyll autofluorescence, forward scatter and side scatter of the laser beam. To produce clonal cultures, a single cell was sorted into each culture flask. Depending on the species, about 20–30% of the sorted cultures grew successfully and at least 20% of these were axenic even if the numerical ratio betweeen bacteria and algae in the original cultures was as high as 300:1. FACS represents an effective and rapid method for the preparation of clonal and axenic cultures of microalgae.  相似文献   

5.
The effects of auxins and cytokinin on callus formation, growth and regeneration of Gracilaria tenuistipitata Chang et Xia and G. perplexa Byrne et Zuccarello (Gracilariales, Rhodophyta) are reported. Plant growth regulators (PGR) in concentrations ranging from 0.1 to 100.0 μmol of indole‐3‐acetic acid, 2,4‐dichlorophenoxyacetic acid (2,4‐D), and kinetin (K) were added to the ASP 12‐NTA solid medium (0.7% agar), and apical and intercalary segments (5 mm long) were inoculated as initial explants. K stimulated growth rates of intercalary segments of G. tenuistipitata in a linear relation, and 2,4‐D (1.0 μmol) and K (10.0 μmol) stimulated growth rates of apical and intercalary segments of G. perplexa, respectively. The simultaneous formation of apical, basal, and intermediate calluses is reported for the first time in axenic tissue cultures of red algae. With intercalary segments of G. tenuistipitata, basal callus induction rates were higher than those of apical and intermediate calluses in the majority of treatments, and auxins had stimulatory effects on the formation of all callus types. In apical segments of G. perplexa, intermediate callus formation was stimulated only by treatment with 1.0 μmol of K, while apical callus formation was stimulated by indole‐3‐acetic acid (1.0–10.0 μmol), 2,4‐D (10.0–100.0 μmol), or K (0.1 μmol). Intercalary segments of G. perplexa developed only intermediate calluses, and the majority of treatments with PGR stimulated higher rates than those presented by apical segments. Potential for regeneration (development of adventitious plantlets originated from callus cells) was higher in apical calluses than in basal and intermediate calluses developed in intercalary segments of G. tenuistipitata. Moreover, auxins and cytokinin were essential to the induction of regeneration in intermediate calluses, while specific concentrations stimulated regeneration from basal and apical calluses. Plant regeneration in G. perplexa was observed only after transferring calluses from solid to liquid medium, and the majority of treatments with PGR had stimulatory effects. Regenerating plants of G. perplexa developed tetrasporangia, and released tetraspores giving rise to adult gametophytes. Our results indicate that auxins and cytokinin have a regulatory role in the growth and morphogenesis in G. tenuistipitata and G. perplexa, and diversity of responses presented by both species is related to specific developmental systems.  相似文献   

6.
Pure (axenic) strains of an intercellular endophyte identified as Chlorochytrium lemnae Cohn (= Chlorosphaeropsis lemnae Moewus) were isolated from infected duckweed (Lemna spp.). Pure cultures of the host were also obtained. Both grew well in mineral media, requiring no organic growth factors. In suitably dilute media, the algae could be induced to infect dead leaves of several different Lemna clones. Since its cells divide vegetatively by the formation of common cross walls (“desmoschisis”), Chlorochytrium lemnae should be transferred from the Chlorococcales to the Chaetophorales. The taxonomic status of other algae identified as Chlorochytrium—some of them demonstrated to be stages in the life-cycle of filamentous algae—should be re-evaluated.  相似文献   

7.
Field observations of changes in the populations of aquatic weeds and phytoplankton have confirmed that aquatic weeds have antagonistic activity toward phytoplankton. Nutritional studies in the laboratory indicate that cultures of the aquatic weeds, Myriophyllum sp., Ceratophyllum sp., and duckweed (Lemma minor L.); liquid cultures of barley (Hordeum vulgare L., Dickson variety); and cultures of the filamentous green algae, Cladophora sp. and Pithophora oedogonium (Mont.) Withrock, will remain relatively free of epiphytes or competing phytoplankton if the cultures are nitrogen-limited. Field observations of Cladophora sp. have confirmed that the growth of epiphytes on the Cladophora is related to conditions of surplus available nitrogen compounds. It is proposed that this antagonistic activity may be due to a “nitrogen sink” effect in which the aquatic weeds or filamentous green algae prevent the growth of contaminating algae by competition for the limited nitrogen compounds available. However, the presence of bacteria-sized organisms which have selective toxicity to certain algae indicates that perhaps multiple factors exist. Discussed are the ecological implications of associations of certain algae with bacteria that have selective toxicities for other species of algae under certain environmental conditions such as nitrogen-limited growth.  相似文献   

8.
以转GFP-FABD2和GFP-MBD基因的拟南芥为材料,研究了GFP-FABD2和GFP-MBD这两种细胞骨架标记蛋白对拟南芥愈伤组织诱导、悬浮细胞培养及应激响应能力的影响.结果表明:(1)GFP-MBD标记蛋白延长愈伤的出愈时间,改变愈伤形态,使转基因拟南芥种子的出愈量减少为野生型的59%、悬浮细胞的长短轴比缩小为1.20±0.21、第7天细胞活力下降为0.66±0.09,影响细胞的生长曲线.(2)GFP-FABD标记蛋白虽对愈伤生长影响不大,但却使悬浮细胞的长短轴比显著增加为2.49±1.18、第7天细胞的活力下降为0.87±0.06,造成悬浮细胞生长曲线的改变.(3)通过调整培养条件的激素水平,以上两种细胞骨架标记蛋白对悬浮细胞生长的影响可以得到修复.(4)检测优化条件下培养的GFP-FABD2或GFP-MBD悬浮细胞对温度、渗透压、机械应力等环境改变的应激响应能力,结果未发现与野生型有明显区别.  相似文献   

9.
A simple, rapid and reproducible procedure for the identification of extracellular cucumber (Cucumis sativus L.) α‐galactosidase is described using callus cultures of seedlings from the tested plant, hairy roots of 2‐day‐old seedlings of cucumber germinating on agar plates as well as cell suspension cultures derived from callus cultures. For the determination of the intracellular and extracellular activities of α‐galactosidase, 6‐bromo‐2‐naphthyl‐αD‐galactopyranoside and p‐nitrophenyl‐αD‐galactopyranoside, respectively, were used as synthetic substrates. The extracellular α‐galactosidase activity was identified by evaluating the dye‐zones in agar medium. The enzyme from cucumber callus cultures and seedling roots, cultivated on agar plates supplemented with 6‐bromo‐2‐naphthyl‐αD‐galactopyranoside, hydrolyzed this substrate releasing 6‐bromo‐2‐naphthol. By simultaneous coupling with hexazonium p‐rosaniline the corresponding azodye was formed. Thus, the extracellular enzyme was detected by the presence of reddish‐brown zones on the agar plates around the plant material. The parallel extracellular and intracellular activities were determined in cell suspension cultures derived from callus cultures. The results show a 44.6% intracellular and 55.4% extracellular distribution of α‐galactosidase activity. The described agar plate method enables a rapid, simple and specific detection of plant producers of extracellular α‐galactosidase.  相似文献   

10.
The prospect of using constructed communities of microalgae in algal cultivation was confirmed in this study. Three different algal communities, constructed of diatoms (Diatom), green algae (Green), and cyanobacteria (Cyano), each mixed with a natural community of microalgae were cultivated in batch and semi‐continuous mode and fed CO2 or cement flue gas (12–15% CO2). Diatom had the highest growth rate but Green had the highest yield. Changes in the community composition occurred throughout the experiment. Green algae were the most competitive group, while filamentous cyanobacteria were outcompeted. Euglenoids, recruited from scarce species in the natural community became a large part of the biomass in semi‐steady state in all communities. High temporal and yield stability were demonstrated in all communities during semi‐steady state. Valuable products (lipids, proteins, and carbohydrates) comprised 61.5 ± 5% of ash‐free biomass and were similar for the three communities with lipids ranging 14–26% of dry mass (DM), proteins (15–28% DM) and carbohydrates (9–23% DM). Our results indicate that culture functions (stability, biomass quality) were maintained while dynamic changes occurred in community composition. We propose that a multispecies community approach can aid sustainability in microalgal cultivation, through complementary use of resources and higher culture stability.  相似文献   

11.
Vegetative cell division in diatoms often results in a decreased cell size of one of the daughter cells, which during long‐term cultivation may lead to a gradual decrease of the mean cell size of the culture. To restore the initial cell size, sexual reproduction is required, however, in many diatom cultures sexual reproduction does not occur. Such diatom cultures may lose their viability once the average size of the cells falls below a critical size. Cell size reduction therefore seriously restrains the long‐term stability of many diatom cultures. In order to study the bacterial influence on the size diminution process, we observed cell morphology and size distribution of the diatoms Achnanthidium minutissimum, Cymbella affiniformis and Nitzschia palea for more than two years in bacteria‐free conditions (axenic cultures) and in cultures that contain bacteria (xenic cultures). We found considerable morphological aberrations of frustule microstructures in A. minutissimum and C. affiniformis when cultivated under axenic conditions compared to the xenic cultures. These variations comprise significant cell length reduction, simplification and rounding of the frustule contour and deformation of the siliceous cell walls, features that are normally found in older cultures shortly before they die off. In contrast, the xenic cultures were well preserved and showed less cell length diminution. Our results show that bacteria may have a fundamental influence on the stability of long‐term cultures of diatoms.  相似文献   

12.
The perennial rhizomatous grass, Miscanthus×giganteus is an ideal biomass crop due to its rapid vegetative growth and high biomass yield potential. As a naturally occurring sterile hybrid, M. ×giganteus must be propagated vegetatively by mechanically divided rhizomes or from micropropagated plantlets. Plant regeneration through somatic embryogenesis is a viable approach to achieve large‐scale production of plantlets in tissue culture. Effect of the callus types, ages and culture methods on the regeneration competence was studied to improve regeneration efficiency and shorten the period of tissue culture in M. ×giganteus. Shoot‐forming calli having a yellow or white compact callus with light‐green shoot‐like structures showed the highest regeneration frequency. Percentage of shoot‐forming callus induction from immature inflorescence explants was 41% on callus induction medium containing 13.6 μM 2,4‐d and 0.44 μM benzyladenine (BA). The use of a regeneration medium containing 1.3 μM NAA and 22 μM BA was effective at shortening the incubation period required for plantlet regeneration, with 69% of total regenerated plantlets obtained within 1 month of incubation on regeneration medium. Embryogenic‐like callus morphotype could maintain regeneration competency for up to 1 year as suspension cultures. Field grown regenerated plants showed normal phenotypic development with DNA content and plant heights comparable to rhizome propagated plants. Winter survival rates of the regenerated plants planted in 2006 and 2007 at the University of Illinois South Farm, Urbana‐Champaign, Illinois, were 78% and 56%, respectively.  相似文献   

13.
When tomato (Lycopersicon esculentum Mill.) callus or cell cultures were placed on media containing ribose as the sole carbon source, the tissues turned dark brown and ceased growth. However, after approximately 60 days bright green tissue able to grow on ribose emerged from 3 % of the brown necrotic callus tissue pieces plated. The selected tissue was highly organized, consisting of leafy primordia and associated meristematic tissues, sustained growth on ribose, and demonstrated the capacity to regenerate whole plants for at least 3 years. Cultures able to grow on ribose could not be selected from liquid suspension cultured tomato cells or from callus which had been mechanically macerated into cell aggregates containing less than approximately 100 cells. Plants regenerated from ribose adapted cultures were abnormal, having shortened internodes and thicker greener leaves. Regenerated plants were both male and female sterile.Abbreviations BAP N6-benzylaminopurine - CFM callusforming medium - IAA indole acetic acid - SDM shoot determination medium - RCM ribose containing medium  相似文献   

14.
The aim of this study was to test three flat plate photobioreactor configurations for growth of Chlorella vulgaris under non‐axenic conditions and to characterize and quantify associated bacterial communities. The photobioreactor cultivations were conducted using tap water‐based media to introduce background bacterial population. Growth of algae was monitored over time with three independent methods. Additionally, the quantity and quality of eukaryotes and bacteria were analysed using culture‐independent molecular tools based on denaturing gradient gel electrophoresis (PCR‐DGGE) and quantitative polymerase chain reaction (QPCR). Static mixers used in the flat plate photobioreactors did not generally enhance the growth at the low light intensities used. The maximum biomass concentration and maximum specific growth rate were 1.0 g l?1 and 2.0 day?1 respectively. Bacterial growth as determined by QPCR was associated with the growth of C. vulgaris. Based on PCR‐DGGE, bacteria in the cultures mainly originated from the tap water. Bacterial community profiles were diverse but reproducible in all flat plate cultures. Most prominent bacteria in the C. vulgaris cultures belonged to the class Alphaproteobacteria and especially to the genus Sphingomonas. Analysis of the diversity of non‐photosynthetic microorganisms in algal mass cultures can provide useful information on the public health aspects and unravel community interactions.  相似文献   

15.
The genus Fibrobacter contains cellulolytic bacteria originally isolated from the rumen. Culture‐independent investigations have since identified Fibrobacter populations in the gastrointestinal tracts of numerous hindgut‐fermenting herbivores, but their physiology is poorly characterized due to few representative axenic cultures. To test the hypothesis that novel Fibrobacter diversity exists in hindgut fermenters, we performed culturing and 16S rRNA gene amplicon sequencing on samples collected from phylogenetically diverse herbivorous hosts. Using a unique approach for recovering axenic Fibrobacter cultures, we isolated 45 novel strains from 11 different hosts. Full‐length 16S rRNA gene sequencing of these isolates identified nine discrete phylotypes (cutoff = 0.03%) among them, including several that were only isolated from hindgut‐fermenting hosts, and four previously unrepresented by axenic cultures. Our phylogenetic analysis indicated that six of the phylotypes are more closely related to previously described subspecies of Fibrobacter succinogenes, while the remaining three were more closely related to F. intestinalis. Culture‐independent bacterial community profiling confirmed that most isolates were representative of numerically dominant phylotypes in their respective samples and strengthened the association of certain phylotypes with either ruminants or hindgut‐fermenters. Despite considerable phylogenetic diversity observed among the Fibrobacter strains isolated here, phenotypic characterization suggests a conserved specialization for growth on cellulose.  相似文献   

16.
We demonstrated a comprehensive approach for development of axenic cultures of microalgae from environmental samples. A combination of ultrasonication, fluorescence‐activated cell sorting (FACS), and micropicking was used to isolate axenic cultures of Chlorella vulgaris Beyerinck (Beijerinck) and Chlorella sorokiniana Shihira & R.W. Krauss from swine wastewater, and Scenedesmus sp. YC001 from an open pond. Ultrasonication dispersed microorganisms attached to microalgae and reduced the bacterial population by 70%, and when followed by cell sorting yielded 99.5% pure microalgal strains. The strains were rendered axenic by the novel method of micropicking and were tested for purity in both solid and liquid media under different trophic states. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene confirmed the absence of unculturable bacteria, whereas fluorescence microscopy and scanning electron microscopy (SEM) further confirmed the axenicity. This is the most comprehensive approach developed to date for obtaining axenic microalgal strains without the use of antibiotics and repetitive subculturing.  相似文献   

17.
Müller  Dieter G. 《Hydrobiologia》1996,326(1):21-28
Ectocarpus-like marine brown algae are frequently parasitized by polyhedric DNA viruses. Infected hosts have been studied in unialgal and axenic cultures, and the present state of knowledge is summarized in regard to stage-specific virus expression, discharge and survival time of virus particles, infection mechanism, association with host's nuclear genome, passage of the virus genome through mitosis and meiosis of the host, suppression of symptoms and spontaneous recovery of infected plants, host specificity and intergeneric transmission, vitality of infected plants, pandemic occurrence of virus infections, molecular data on Ectocarpus and Feldmannia viruses, and algal DNA-viruses as potential vectors for gene transfer. A scheme for the nomenclature of brown algal viruses is proposed.  相似文献   

18.
A molecular phylogenetic analysis of the little‐studied filamentous brown alga Discosporangium mesarthrocarpum (Meneghini) Hauck using rbcL and partial 18S rDNA sequences revealed that the species forms a monophyletic clade with Choristocarpus tenellus (Kütz.) Zanardini that is sister to all other brown algae. Although D. mesarthrocarpum has unique disk‐shaped plurilocular reproductive organs, D. mesarthrocarpum and C. tenellus share the following basic morphological features, which are considered to be plesiomorphic characters in the brown algae: (1) apical (and diffuse) growth; (2) uniseriate, subdichotomously branched filaments; (3) multiple chloroplasts per cell without pyrenoids; and (4) lack of heterotrichy and of phaeophycean hairs. The rbcL DNA sequence of an Australian D. mesarthrocarpum specimen showed considerable deviation from Mediterranean and Macaronesian specimens. Therefore, the presence of a second species in the genus is suggested; however, the taxonomic treatment of this putative species is not pursued in the present report. Regarding the higher‐ranking systematic position of D. mesarthrocarpum, reinstatement of Discosporangiaceae and Discosporangiales is proposed, and the inclusion of Choristocarpaceae in the order is also suggested. Under short‐day and long‐day culture conditions at 15°C–25°C, Mediterranean D. mesarthrocarpum exhibited a direct type of life history, with a succession of uniseriate filamentous thalli bearing characteristic disk‐shaped plurilocular zoidangia, but thalli did not survive at 10°C and below.  相似文献   

19.
Axenic cultures of Trentepohlia species are necessary for the study of growth and hysiological characters of the algae. We describe the use of a Sherman micromanipulator to isolate filaments from samples of T. aurea and T. odorata collected from their natural habitats. These filaments were then used as inocula for the establishment of axenic cultures. In the case of T. aurea, further treatment with lactic acid was necessary.  相似文献   

20.
Several red algae in axenic culture decline in artificial seawater after a period of cultivation. Nemalion helminthoides rapidly loses its brown-red colour and grows with longer and thinner threads. Extracts of contaminated red algae, or nutrient medium in which they have grown, as well as fresh seawater from the Fucus-Ascophyllum zone, enhance growth and restore the pigmentation of the cells. Addition of 40 mg Bacto-Casamino acids per litre of nutrient medium had the same effect. After fractional precipitation with ethyl alcohol and separation on a Sephadex column the activity was localised to a peptide fraction. Results from chromatography point to effects from a low molecular weight substance active alone or coupled to a peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号