首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To maximize the productivity of ribitol, which is an important starting material for the production of one expensive rare sugar, L-ribose, the effects of culture medium and agitation speed on cell growth as well as on the productivity of ribitol were thoroughly investigated in a 7 L fermentor. The maximum volumetric productivity, 0.322 g/L/h of ribitol, were obtained at an initial glucose concentration of 200 g/L in a batch culture. Based on the optimum glucose concentration, the ribitol yield conversed from glucose was up to 0.193 g/g when 1% yeast extract was used as a nitrogen source. When the agitation speed was maintained at 200 rpm, the ribitol concentration of 38.60 g/L was collected after 120 h of cultivation time. Additionally, the scheme of two-phase agitation and glucose infusion was employed. To begin, in the first 24 h of fermentation, a high agitation rate at 350 rpm and the initial glucose concentration of 50 g/L were applied, and the biomass concentration of 25.50 g/L was achieved at 36 h of incubation; whereas this value was observed until 60 h in the former batch fermentation methods. Then, in the second phase, with the agitation speed reduced to 150 rpm and the infusion amount of glucose controlled at 150 g/L, the yield of ribitol reached to 65.00 g/L in two-phase agitation fermentation and was 1.68 fold of that obtained in one-stage batch fermentation. To our knowledge, this study first demonstrates its significant effectiveness in improving ribitol production with the application of Trichosporonoides oedocephalis ATCC 16958.  相似文献   

2.
The aim of this study was to improve l ‐lactic acid production of Lactobacillus thermophilus SRZ50. For this purpose, high efficient heavy‐ion mutagenesis technique was performed using SRZ50 as the original strain. To enhance the screening efficiency for high yield l ‐lactic acid producers, a scale‐down from shake flask to microtiter plate was developed. The results showed that 24‐well U‐bottom MTPs could well alternate shake flasks for L. thermophilus cultivation as a scale‐down tool due to its a very good comparability to the shake flasks. Based on this microtiter plate screening method, two high l ‐lactic acid productivity mutants, A59 and A69, were successfully screened out, which presented, respectively, 15.8 and 16.2% higher productivities than that of the original strain. Based on fed‐batch fermentation, the A69 mutant can accumulate 114.2 g/L l ‐lactic acid at 96 h. Hence, the proposed traditional microbial breeding method with efficient high‐throughput screening assay was proved to be an appropriate strategy to obtain lactic acid‐overproducing strain.  相似文献   

3.

Aims

To increase the l ‐isoleucine production in Corynebacterium glutamicum by overexpressing the global regulator Lrp and the two‐component export system BrnFE.

Methods and Results

The brnFE operon and the lrp gene were cloned into the shuttle vector pDXW‐8 individually or in combination. The constructed plasmids were transformed into an l ‐isoleucine‐producing strain C. glutamicum JHI3‐156, and the l ‐isoleucine production in these different strains was analysed and compared. More l ‐isoleucine was produced when only Lrp was expressed than when only BrnFE was expressed. Significant increase in l ‐isoleucine production was observed when Lrp and BrnFE were expressed in combination. Compared to the control strain, l ‐isoleucine production in JHI3‐156/pDXW‐8‐lrpbrnFE increased 63% in flask cultivation, and the specific yield of l ‐isoleucine increased 72% in fed‐batch fermentation.

Conclusions

Both Lrp and BrnFE are important to enhance the l ‐isoleucine production in C. glutamicum.

Significance and Impact of the Study

The results provide useful information to enhance l ‐isoleucine or other branched‐chain amino acid production in C. glutamicum.  相似文献   

4.
The effect of agitation speeds on the performance of producing pyruvate by a multi-vitamin auxotrophic yeast, Torulopsis glabrata, was investigated in batch fermentation. High pyruvate yield on glucose (0.797 g g(-1)) was achieved under high agitation speed (700 rpm), but the glucose consumption rate was rather low (1.14 g l(-1) h(-1)). Glucose consumption was enhanced under low agitation speed (500 rpm), but the pyruvate yield on glucose decreased to 0.483 g g(-1). Glycerol production was observed under low agitation speed and decreased with increasing agitation speed. Based on process analysis and carbon flux distribution calculation, a two-stage oxygen supply control strategy was proposed, in which the agitation speed was controlled at 700 rpm in the first 16 h and then switched to 500 rpm. This was experimentally proven to be successful. Relatively high concentration of pyruvate (69.4 g l(-1)), high pyruvate yield on glucose (0.636 g g(-1)), and high glucose consumption rate (1.95 g l(-1)h(-1)) were achieved by applying this strategy. The productivity (1.24 g l(-1) h(-1)) was improved by 36%, 23% and 31%, respectively, compared with fermentations in which agitation speeds were kept constant at 700 rpm, 600 rpm, and 500 rpm. Experimental results indicate that the difference between the performances for producing pyruvate under a favorable state of oxygen supply (dissolved oxygen concentration >50%) was caused by the different regeneration pathways of NADH generated from glycolysis.  相似文献   

5.
4‐Hydroxyisoleucine, a promising drug, has mainly been applied in the clinical treatment of type 2 diabetes in the pharmaceutical industry. l ‐Isoleucine hydroxylase specifically converts l‐ Ile to 4‐hydroxyisoleucine. However, due to its poor thermostability, the industrial production of 4‐hydroxyisoleucine has been largely restricted. In the present study, the disulfide bond in l ‐isoleucine hydroxylase protein was rationally designed to improve its thermostability to facilitate industrial application. The half‐life of variant T181C was 4.03 h at 50°C, 10.27‐fold the half‐life of wild type (0.39 h). The specific enzyme activity of mutant T181C was 2.42 ± 0.08 U/mg, which was 3.56‐fold the specific enzyme activity of wild type 0.68 ± 0.06 U/mg. In addition, molecular dynamics simulation was performed to determine the reason for the improvement of thermostability. Based on five repeated batches of whole‐cell biotransformation, Bacillus subtilis 168/pMA5‐idoT181C recombinant strain produced a cumulative yield of 856.91 mM (126.11 g/L) 4‐hydroxyisoleucine, which is the highest level of productivity reported based on a microbial process. The results could facilitate industrial scale production of 4‐hydroxyisoleucine. Rational design of disulfide bond improved l ‐isoleucine hydroxylase thermostability and may be suitable for protein engineering of other hydroxylases.  相似文献   

6.
Aims: To characterize of a thermostable recombinant α‐l ‐arabinofuranosidase from Caldicellulosiruptor saccharolyticus for the hydrolysis of arabino‐oligosaccharides to l ‐arabinose. Methods and Results: A recombinant α‐l ‐arabinofuranosidase from C. saccharolyticus was purified by heat treatment and Hi‐Trap anion exchange chromatography with a specific activity of 28·2 U mg?1. The native enzyme was a 58‐kDa octamer with a molecular mass of 460 kDa, as measured by gel filtration. The catalytic residues and consensus sequences of the glycoside hydrolase 51 family of α‐l ‐arabinofuranosidases were completely conserved in α‐l ‐arabinofuranosidase from C. saccharolyticus. The maximum enzyme activity was observed at pH 5·5 and 80°C with a half‐life of 49 h at 75°C. Among aryl‐glycoside substrates, the enzyme displayed activity only for p‐nitrophenyl‐α‐l ‐arabinofuranoside [maximum kcat/Km of 220 m(mol l?1)?1 s?1] and p‐nitrophenyl‐α‐l ‐arabinopyranoside. This substrate specificity differs from those of other α‐l ‐arabinofuranosidases. In a 1 mmol l?1 solution of each sugar, arabino‐oligosaccharides with 2–5 monomer units were completely hydrolysed to l ‐arabinose within 13 h in the presence of 30 U ml?1 of enzyme at 75°C. Conclusions: The novel substrate specificity and hydrolytic properties for arabino‐oligosaccharides of α‐l ‐arabinofuranosidase from C. saccharolyticus demonstrate the potential in the commercial production of l ‐arabinose in concert with endoarabinanase and/or xylanase. Significance and Impact of the Study: The findings of this work contribute to the knowledge of hydrolytic properties for arabino‐oligosaccharides performed by thermostable α‐l ‐arabinofuranosidase.  相似文献   

7.
Three different dissolved oxygen (DO) control approaches were proposed to improve hyaluronic acid (HA) production: a three-stage agitation speed control approach, a two-stage DO control approach, and an oxygen vector perfluorodecalin (PFC) applied approach. In the three-stage agitation speed control approach, agitation speed was 200 rpm during 0–8 h, 400 rpm during 8–12 h, and 600 rpm during 12–20 h. In the two-stage DO control strategy, DO was controlled at above 10% during 0–8 h and at 5% during 8–20 h. In the PFC applied approach, PFC (3% v/v) was added at 8 h. HA production reached 5.5 g/L in the three-stage agitation speed control culture model, and 6.3 g/L in two-stage DO control culture model, and 6.6 g/L in the PFC applied culture model. Compared with the other two DO control approaches, the PFC applied approach had a lower shear stress and thus a higher HA production was achieved.  相似文献   

8.
Dissolved oxygen is one of the most important bioprocess parameters that could affect cell growth and product formation, and it is easy to control by changing agitation speed. In this work, the effects of agitation speed on the performance of riboflavin production by recombinant Bacillus subtilis RF1 was investigated in fed-batch fermentation. The lower agitation speed (600 rpm) was beneficial for cell growth and riboflavin biosynthesis in the initial phase of fermentation process. While, during the later phase, higher agitation speed (900 rpm) was favor for cell growth and riboflavin biosynthesis. Thus, a two-stage agitation speed control strategy was proposed based on kinetic analysis, in which the agitation speed was controlled at 600 rpm in the first 26 h and then switched to 900 rpm to maintain high μ for cell growth and high q p for riboflavin production during the entire fermentation process. However, it was observed that a sharp increase of agitation speed resulted in an adverse effect on cell growth and riboflavin synthesis within a short time. To avoid this phenomenon, a multi-stage agitation speed control strategy was set up based on the two-stage control strategy, the maximum concentration of riboflavin reached 9.4 g l?1 in 48 h with the yield of 0.051 g g?1 by applying this strategy, which were 20.5 and 21.4 % over the best results controlled by constant agitation speeds.  相似文献   

9.
Aims: The objective of this study is to optimize the levels of carbon and nitrogen sources of the medium in shake flask experiments and evaluate the effect of pH and dissolved oxygen (DO) on the production of l ‐asparaginase from a newly isolated Serratia marcescens SK‐07 in a batch bioreactor. Methods and Results: Central composite rotatable design (CCRD) was applied to optimize the levels of carbon and nitrogen sources of the medium in shake flask experiments. The optimal levels of l ‐asparagine, glucose, yeast extract and peptone were found to be 4·93, 3·81, 3·65 and 1·47 g l?1, respectively, and maximal l ‐asparaginase production of 25·02 U mg?1 was obtained under these conditions. Among the carbon sources tested, l ‐asparagine was identified to be the most favourable carbon source for enhanced production of l ‐asparaginase. The maximum l ‐asparaginase production of 29·89 U mg?1 was achieved in a batch bioreactor at initial pH of 6·5 (uncontrolled) and DO level of 40% in the culture. Conclusions: We have isolated, screened and identified the potential micro‐organism, S. marcescens, for the production of l ‐asparaginase. An overall 5·55‐fold increase in the production was achieved under optimal levels of carbon and nitrogen sources, DO level and at initial pH of 6·5 (uncontrolled). Significance and Impact of the Study: The experiments illustrate the importance of statistical method for optimization of carbon and nitrogen sources and study the effect of physical process parameters on the production of l ‐asparaginase in shake flask and bioreactor, respectively. This study would be helpful for bioprocess development of bacterial l ‐asparaginase production.  相似文献   

10.
Bioconjugation protocols have been recently used to improve the therapeutic properties of the anti‐leukemic enzyme L ‐asparaginase. In this study, we study the variation of reaction factors, such as mass ratio, pH value, reaction temperature and time, and the concentration of cross‐linker, in the modification reaction of L ‐asparaginase with silk fibroins. The optimum reaction parameters were obtained as follows: pH 7.0, mass ratio of silk fibroin to L ‐asparaginase 5:1, reaction time 8 h, and temperature 4°C. The rate of ε‐amino group modification was 57.88% and the recovery of modified L ‐asparaginase was 66.58% under these reaction conditions. We isolated and purified the silk‐L ‐asparaginase conjugates with two consecutive chromatography steps: anion‐exchange (XK 16×20, Q Sepharose FF) and gel filtration (Tricorn 10×600, Sephcryl S‐300 HR) chromatography. Finally, the stabilities of the enzymes were investigated. The results showed that modified L ‐asparaginase had a higher thermostability and higher resistance to trypsin digestion.  相似文献   

11.
Aims: The purpose of this study was to characterize the α‐l ‐rhamnosidase of Pichia guilliermondii NPCC1053 indigenous wine strain from North‐Patagonian region. Methods and Results: The optimization of yeast culture conditions was carried out and the effects of oenological parameters on α‐l ‐rhamnosidase activity were evaluated. Additionally, the effect of direct contact with must and wine on α‐l ‐rhamnosidase activity was assayed. This strain showed an intracellular inducible α‐l ‐rhamnosidase activity. This enzyme was active at pH, glucose and SO2 concentrations usually found at the beginning of the fermentation as well as retained high levels of activity after 24 h of incubation in must. Furthermore, P. guilliermondiiα‐l ‐rhamnosidase was able to release monoterpenols and alcohols from grape glycosidic extracts. Conclusions: The α‐l ‐rhamnosidase belonging to P. guilliermondii indigenous wine yeast strain showed mainly an intracellular location and evidenced interesting oenological characteristics. Significance and Impact of the Study: This study contributes to the knowledge of α‐l ‐rhamnosidases from yeast origin because at present, there are few reports about this enzymatic activity in these micro‐organisms. In addition, this work is relevant to the regional wine industry considering that this enzyme could be used in the production of more aromatic young wines.  相似文献   

12.
Twenty crystal structures of the complexes of l ‐asparaginase with l ‐Asn, l ‐Asp, and succinic acid that are currently available in the Protein Data Bank, as well as 11 additional structures determined in the course of this project, were analyzed in order to establish the level of conservation of the geometric parameters describing interactions between the substrates and the active site of the enzymes. We found that such stereochemical relationships are highly conserved, regardless of the organism from which the enzyme was isolated, specific crystallization conditions, or the nature of the ligands. Analysis of the geometry of the interactions, including Bürgi–Dunitz and Flippin–Lodge angles, indicated that Thr12 (Escherichia coli asparaginase II numbering) is optimally placed to be the primary nucleophile in the most likely scenario utilizing a double‐displacement mechanism, whereas catalysis through a single‐displacement mechanism appears to be the least likely.  相似文献   

13.
In this study, corn starch was used as the substrate for cell growth and trehalose accumulation by Saccharomycopsis fibuligera A11. Effect of different aeration rates, agitation speeds, and concentrations of corn starch on direct conversion of corn starch to trehalose by S. fibuligera A11 were examined using a Biostat B2 2-l fermentor. We found that the optimal conditions for direct conversion of corn starch to trehalose by this yeast strain were that agitation speed was 200 rpm, aeration rate was 4.0 l/min, concentration of corn starch was 2.0% (w/v), initial pH was 5.5, fermentation temperature was 30°C. Under these conditions, over 22.9 g of trehalose per 100 g of cell dry weight was accumulated in the yeast cells, cell mass was 15.2 g/l of the fermentation medium, 0.12% (w/v) of reducing sugar, and 0.21% (w/v) of total sugar were left in the fermented medium within 48 h of the fermentation. It was found that trehalose in the yeast cells could be efficiently extracted by the hot distilled water (80°C). After isolation and purification, the crystal trehalose was obtained from the extract of the cells.  相似文献   

14.
Batch fermentative production of welan gum by Alcaligenes sp. CGMCC2428 was investigated under various oxygen supply conditions using regulating agitation speed. Based on a three kinetic parameters analysis that includes specific cell growth rate (μ), specific glucose consumption rate (q s), and specific welan formation rate (q p), a two-stage agitation speed control strategy was proposed to achieve high concentration, high yield, and high viscosity of welan. During the first 22 h, the agitation speed in 7.5 L fermenter was controlled at 800 rpm to maintain high μ for cell growth. The agitation was then reduced step-wise to 600 rpm to maintain a changing profile with stable dissolved oxygen levels and obtain high qp for high welan accumulation. Finally, the maximum concentration of welan was reached at 26.3 ± 0.89 g L−1 with a yield of 0.53 ± 0.003 g g−1 and the welan gum viscosity of 3.05 ± 0.10 Pa s, which increased by an average of 15.4, 15.2, and 20.1% over the best results controlled by constant agitation speeds.  相似文献   

15.
《Process Biochemistry》2014,49(4):660-667
This study investigated the novel use of scouring pad cubes as a support matrix for immobilization of fungal cell to enhance the pectinase production. Nylon scouring pad cubes were used for immobilized Aspergillus niger HFD5A-1 cells for pectinase production in flask submerge fermentation system. The enzyme activity of immobilized cell in scouring pad cubes gave higher activity compared to free cells. Various physical parameters for culture condition were studied to evaluate its effects on pectinase production. The maximum enzyme activity obtained was 11.05 U/mL on the 6th day of cultivation after using the optimized parameters of 6 scouring pad cubes, 1 × 107 spores/mL of inoculum size, agitation speed of 150 rpm and incubated at 30 °C. The use of nylon scouring pad cubes gave an increment of about 335.0% of pectinase production (11.05 U/mL) compared to free cells (2.54 U/mL). The results therefore show scouring pad cubes could be a favorable carrier to immobilize the fungal cells for higher enzyme production in submerged fermentation.  相似文献   

16.
The growth kinetics of Streptomyces noursei NRRL 5126 was investigated under different aeration and agitation combinations in a 5.0 l stirred tank fermenter. Poly-epsilon-lysine biosynthesis, cell mass formation, and glycerol utilization rates were affected markedly by both aeration and agitation. An agitation speed of 300 rpm and aeration rate at 2.0 vvm supported better yields of 1,622.81 mg/l with highest specific productivity of 15 mg/l.h. Fermentation kinetics performed under different aeration and agitation conditions showed poly- epsilon-lysine fermentation to be a growth-associated production. A constant DO at 40% in the growth phase and 20% in the production phase increased the poly-epsilon-lysine yield as well as cell mass to their maximum values of 1,992.35 mg/l and 20.73 g/l, respectively. The oxygen transfer rate (OTR), oxygen utilization rate (OUR), and specific oxygen uptake rates (qO2) in the fermentation broth increased in the growth phase and remained unchanged in the stationary phase.  相似文献   

17.

Background

Alkaline amylase has significant potential for applications in the textile, paper and detergent industries, however, low yield of which cannot meet the requirement of industrial application. In this work, a novel ARTP mutagenesis-screening method and fermentation optimization strategies were used to significantly improve the expression level of recombinant alkaline amylase in B. subtilis 168.

Results

The activity of alkaline amylase in mutant B. subtilis 168 mut-16# strain was 1.34-fold greater than that in the wild-type, and the highest specific production rate was improved from 1.31 U/(mg·h) in the wild-type strain to 1.57 U/(mg·h) in the mutant strain. Meanwhile, the growth of B. subtilis was significantly enhanced by ARTP mutagenesis. When the agitation speed was 550 rpm, the highest activity of recombinant alkaline amylase was 1.16- and 1.25-fold of the activities at 450 and 650 rpm, respectively. When the concentration of soluble starch and soy peptone in the initial fermentation medium was doubled, alkaline amylase activity was increased 1.29-fold. Feeding hydrolyzed starch and soy peptone mixture or glucose significantly improved cell growth, but inhibited the alkaline amylase production in B. subtilis 168 mut-16#. The highest alkaline amylase activity by feeding hydrolyzed starch reached 591.4 U/mL, which was 1.51-fold the activity by feeding hydrolyzed starch and soy peptone mixture. Single pulse feeding-based batch feeding at 10 h favored the production of alkaline amylase in B. subtilis 168 mut-16#.

Conclusion

The results indicated that this novel ARTP mutagenesis-screening method could significantly improve the yield of recombinant proteins in B. subtilis. Meanwhile, fermentation optimization strategies efficiently promoted expression of recombinant alkaline amylase in B. subtilis 168 mut-16#. These findings have great potential for facilitating the industrial-scale production of alkaline amylase and other enzymes, using B. subtilis cultures as microbial cell factories.
  相似文献   

18.
Monacolin K (MK) is a naturally occurring hypocholesterolemic agent that specifically inhibits HMG‐CoA reductase. As a natural source of MK, Monascus‐fermented products are of special interest; however, some Monascus strains could produce citrinin, which is a nephrotoxin, as a contaminant in Monascus‐derived products. A Monascus pilosus strain (MS‐1) that produces high amounts of MK, but no citrinin, was screened in previous investigations. Herein, liquid‐state fermentation parameters of the MS‐1 strain were optimized using statistical methods to maximize the MK yield with potato juice as a basic medium. The maximum MK yield (326.74 μg/mL) was predicted with 50 mL of medium in a 250‐mL conical flask containing 30 g/L sucrose, 38.75 g/L soybean flour, 0.00105 mol/L Mg2+ at pH 5.48, and 8% v/v seed inoculum precultured for 42 h at 30°C, incubated at 30°C for 3 days, followed by further incubation for 11 days at 24.7°C. The verified MK yield was 390.68 μg/mL and the MK yield increased to 565.64 μg/mL after 21 days of fermentation. No citrinin was detected in MS‐1‐fermented products. The results suggest that citrinin‐free MK can be obtained from natural medium through liquid‐state fermentation in an economical way. This method will be of practical value to the industrial production of MK.  相似文献   

19.
Lipase-catalyzed transesterification of soybean oil and methanol for biodiesel production in tert-amyl alcohol was investigated. The effects of different organic medium, molar ratio of substrate, reaction temperature, agitation speed, lipase dosage and water content on the total conversion were systematically analyzed. Under the optimal conditions identified (6 mL tert-amyl alcohol, three molar ratio of methanol to oil, 2% Novozym 435 lipase based on the soybean oil weight, temperature 40°C, 2% water content based on soybean oil weight, 150 rpm and 15 h), the highest biodiesel conversion yield of 97% was obtained. With tert-amyl alcohol as the reaction medium, the negative effects caused by excessive molar ratio of methanol to oil and the by-product glycerol could be reduced. Furthermore, there was no evident loss in the lipase activity even after being repeatedly used for more than 150 runs.  相似文献   

20.
在摇瓶和5 L发酵罐中研究了溶氧 (DO) 对Blakeslea trispora分批发酵生产β-胡萝卜素的影响,总结了5 L发酵罐中β-胡萝卜素发酵过程中溶氧的变化规律.结果表明,当500 mL摇瓶装液量为50 mL,转速为240 r/min条件下发酵生产β-胡萝卜素产量最大,达到3.416 g/L; 5 L发酵罐中,在搅拌转速为1 000 r/min,通气量为1.5 vvm的条件下,β-胡萝卜素的产量可达到3.712 g/L,略高于摇瓶,这可能是由于5 L发酵罐中的气液传递和混合状况好于摇瓶,促进了产物的合成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号