首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new chiral molecular tweezers, di‐(R,R)‐1‐[10‐(1‐hydroxy‐2,2,2‐trifluoroethyl)‐9‐anthryl]‐2,2,2‐trifluoroethyl phthalate (2), isophthalate (3) and terephthalate (4), were synthesized and their structure studied by NMR and molecular mechanics. Their effectiveness as chiral solvating agents for the determination of the enantiomeric purity of chiral compounds using NMR was demonstrated. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Mono‐ and bis‐alkaloid chiral auxiliaries with anthraquinone or phenanthryl cores were probed as chiral solvating agents (CSAs) for the enantiodiscrimination of chiral cyclic hemiesters. The dimeric anthraquinone derivative and the monomeric phenanthryl one showed remarkable efficiency in the nuclear magnetic resonance (NMR) differentiation of enantiomeric mixtures of hemiesters. An anthraquinone analogous with a single alkaloid unit was remarkably less effective. The conformational prevalence of the chiral auxiliaries were ascertained by NMR. Chirality 27:693–699, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
(18‐Crown‐6)‐2,3,11,12‐tetracarboxylic acid is a useful chiral NMR solvating agent for isoxazoline‐fused β‐amino acid derivatives. Isoxazoline substrates are analyzed as their hydrochloride salts in methanol‐d4. The crown ether and substrate associate through the formation of three hydrogen bonds between the protonated amine and crown ether oxygen atoms. Enantiomeric discrimination is observed for two or more resonances of every substrate. At least one of these resonances is free of overlap with other resonances in the spectrum and has large enough enantiomeric discrimination to enable the determination of enantiomeric purity. 2D COSY methods can be used to identify additional resonances that exhibit enantiomeric discrimination in the NMR spectrum. Chirality, 25:48‐53, 2013.© 2012 Wiley Periodicals, Inc.  相似文献   

4.
Cyclodextrins that are indiscriminately carboxymethylated at the 2‐, 3‐, and 6‐positions are used as chiral NMR solvating agents for cationic substrates with phenyl, naphthyl, pyridyl, indoline, and indole rings. Enantiodifferentiation with the α‐, β‐, and γ‐cyclodextrin derivatives is compared. The carboxymethylated derivatives are almost always more effective as chiral NMR solvating agents for cationic substrates than native cyclodextrins. The most effective carboxymethylated cyclodextrin varies for different substrates, and at times even different resonances of the substrate. Addition of paramagnetic praseodymium(III) or ytterbium(III) to mixtures of the carboxymethylated cyclodextrin and substrate often causes enhancements in enantiomeric discrimination and facilitates measurements of enantiomeric purity. The lanthanide ion bonds to the carboxymethyl groups and causes perturbations in the chemical shifts in the NMR spectra of substrate molecules in the cyclodextrin cavity. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
The compound (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid was evaluated as a chiral nuclear magnetic resonance (NMR) solvating agent for a series of diamines and bicyclic β‐amino acids. The amine must be protonated for strong association with the crown ether. An advantage of (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid over many other crown ethers is that it undergoes a neutralization reaction with neutral amines to form the protonated species needed for binding. Twelve primary diamines in neutral and protonated forms were evaluated. Diamines with aryl and aliphatic groups were examined. Some are atropisomers with equivalent amine groups. Others have two nonequivalent amine groups. Association equilibria for these systems are complex, given the potential formation of 2:1, 1:1, and 1:2 crown‐amine complexes and given the various charged species in solution for mixtures of the crown ether with the neutral amine. The crown ether produced enantiomeric differentiation in the 1H NMR spectrum of one or more resonances for every diamine substrate. Also, a series of five bicyclic β‐amino acids were examined and (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid caused enantiomeric differentiation in the 1H NMR spectrum of three or more resonances of each compound. Chirality 27:708–715, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
An overview of chiral reagents that are used to assign the absolute configuration of particular classes of compounds using NMR spectroscopy is presented. The use of chiral derivatizing agents, chiral solvating agents, metal complexes, and liquid crystals is described. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
2,2,2-Trifluoro-1-(9-anthryl)ethanol (TFAE) has now been widely used as a powerful chiral solvating agent for NMR spectroscopy. In connection with the development of a new general synthesis of halogenoalkylalkanols, starting from the corresponding ketone or aldehyde, we synthesized some halogenoalkyl-1-(9-anthryl)methanol derivatives liable to work as chiral solvating agents. The racemic anthryl derivatives were preparatively resolved into their corresponding enantiomers by chromatography on triacetyl cellulose (CTA I) or on meta-methylbenzoyl cellulose beads as chiral stationary phases. Their effectiveness as chiral solvating agents was measured as the magnitude of the splitting induced in the 1H-NMR spectra of 1-phenylethylamine and of (1-phenylethyl)methyl ether in comparison with splitting caused by TFAE. While TFAE induced the largest splitting for 1-phenylethylamine, 2,2,3,3,3-pentafluoro-1-(9-anthryl)propanol 2 was more effective in the case of (1-phenylethyl)methyl ether, pointing out that depending on the substrate, other derivatives of the TFAE type can be very useful as chiral solvating agents.  相似文献   

8.
A simple one‐dimensional 13C NMR method is presented to discriminate between stereoisomers of organic compounds with more than one chiral center. By means of this method it is possible to discriminate between all eight stereoisomers of α‐tocopherol. To achieve this the chiral solvating agent (S)‐(+)‐1‐(9‐anthryl)‐2,2,2‐trifluoroethanol and the compound of interest were dissolved in high concentrations in chloroform‐d, and the nuclear magnetic resonance (NMR) spectrum was recorded at a low temperature. The individual stereoisomers of α‐tocopherol were assigned by spikes of the reference compounds. The method was also applied to six other representative examples. Chirality 27:850–855, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
Here, we report the general strategies by which NMR spectroscopy can be used to determine the enantiopurity and absolute configuration of chalcogen containing secondary alcohols, including the evaluation of the use of chiral solvating and chiral derivatizing agents. The BINOL/DMAP ternary complex demonstrated a simple and fast protocol for determining enantiopurity. The drug Naproxen afforded a stable, nonhygroscopic, and readily available chiral derivatizing agent (CDA) for NMR chiral discrimination of chalcogen containing secondary alcohols. The chiral recognition by CDA and chiral solvating agent (CSA) was assessed using 1H, 77Se‐{1H}, and 125Te‐{1H} NMR spectroscopy. A simple model for the assignment of the absolute configuration from NMR data is presented.  相似文献   

10.
A series of chiral 1‐(β‐arylalkyl)‐1H‐1,2,4‐triazole derivatives has been designed as potential antifungal agents. The target triazoles have been synthesized by using a chiral auxiliary as a controlling reagent. All of the compounds were obtained with high ee values, reaching up to 99%. Preliminary bioassay results have revealed that most of the synthesized compounds display significantly higher fungicidal activities against the species Fusarium oxysporium, Rhizoctonia solani, Botrytis cinereapers, Gibberella zeae, Dothiorella gregaria, and Colletotrichum gossypii than the commercial agent triadimefon. Moreover, some of the enantiomers have been found to display significant differences in activity.  相似文献   

11.
Enantiopure 3((R)‐ and 3((S)‐1‐phenylethyl)‐4‐oxazoline‐2‐ones were evaluated as chiral building blocks for the divergent construction of heterocycles with stereogenic quaternary centers. The N‐(R)‐ or N‐(S)‐1‐phenylethyl group of these compounds proved to be an efficient chiral auxiliary for the asymmetric induction of the 4‐ and 5‐positions of the 4‐oxazolin‐2‐one ring through thermal and MW‐promoted nucleophilic conjugated addition to Michael acceptors and alkyl halides. The resulting adducts were transformed via a cascade process into fused six‐membered carbo‐ and heterocycles. The structure of the reaction products depended on the electrophiles and reaction conditions used. Alternative isomeric 4‐methylene‐2‐oxazolidinones served as chiral precursors for a versatile and divergent approach to highly substituted cyclic carbamates. DFT quantum calculations showed that the formation of bicyclic pyranyl compounds was generated by a diastereoselective concerted hetero‐Diels‐Alder cycloaddition.  相似文献   

12.
Engin ahin 《Chirality》2019,31(10):892-897
Optically active aromatic alcohols are valuable chiral building blocks of many natural products and chiral drugs. Lactobacillus paracasei BD87E6, which was isolated from a cereal‐based fermented beverage, was shown as a biocatalyst for the bioreduction of 1‐(benzofuran‐2‐yl) ethanone to (S)‐1‐(benzofuran‐2‐yl) ethanol with highly stereoselectivity. The bioreduction conditions were optimized using L. paracasei BD87E6 to obtain high enantiomeric excess (ee) and conversion. After optimization of the bioreduction conditions, it was shown that the bioreduction of 1‐(benzofuran‐2‐yl)ethanone was performed in mild reaction conditions. The asymmetric bioreduction of the 1‐(benzofuran‐2‐yl)ethanone had reached 92% yield with ee of higher than 99.9% at 6.73 g of substrate. Our study gave the first example for enantiopure production of (S)‐1‐(benzofuran‐2‐yl)ethanol by a biological green method. This process is also scalable and has potential in application. In this study, a basic and novel whole‐cell mediated biocatalytic method was performed for the enantiopure production of (S)‐1‐(benzofuran‐2‐yl)ethanol in the aqueous medium, which empowered the synthesis of a precious chiral intermediary process to be converted into a sophisticated molecule for drug production.  相似文献   

13.
This paper reports the enantioseparation of β‐hydroxy‐1,2,3‐triazole derivatives, which present a broad range of biological properties, by supercritical fluid chromatography (SFC) and high‐performance liquid chromatography techniques (HPLC). Polysaccharide‐based chiral columns (cellulose and amylose) were used to evaluate the separation in SFC and HPLC. Time of analyses, consumption of solvent, and parameter optimization were reduced using SFC technique. The columns based on cellulose chiral stationary phase using 2‐propanol and ethanol as modifiers showed the best results for the enantioresolution of the (±)‐β‐hydroxy‐1,2,3‐triazoles by SFC analyses. These techniques were applied to evaluate the selectivity of biocatalytic reduction of β‐keto‐1,2,3‐triazoles by marine‐derived fungus Penicillium citrinum CBMAI 1186 to obtain the (±)‐β‐hydroxy‐1,2,3‐triazoles.  相似文献   

14.
The two enantiomers of ethyl 3‐hydroxybutyrate are important intermediates for the synthesis of a great variety of valuable chiral drugs. The preparation of chiral drug intermediates through kinetic resolution reactions catalyzed by esterases/lipases has been demonstrated to be an efficient and environmentally friendly method. We previously functionally characterized microbial esterase PHE21 and used PHE21 as a biocatalyst to generate optically pure ethyl (S)‐3‐hydroxybutyrate. Herein, we also functionally characterized one novel salt‐tolerant microbial esterase WDEst17 from the genome of Dactylosporangium aurantiacum subsp. Hamdenensis NRRL 18085. Esterase WDEst17 was further developed as an efficient biocatalyst to generate (R)‐3‐hydroxybutyrate, an important chiral drug intermediate, with the enantiomeric excess being 99% and the conversion rate being 65.05%, respectively, after process optimization. Notably, the enantio‐selectivity of esterase WDEst17 was opposite than that of esterase PHE21. The identification of esterases WDEst17 and PHE21 through genome mining of microorganisms provides useful biocatalysts for the preparation of valuable chiral drug intermediates.  相似文献   

15.
Water‐soluble calix[4]resorcinarenes with proline, 3‐hydroxyproline, and 4‐hydroxyproline substituent groups are evaluated as chiral NMR solvating agents on a series of bicyclic aromatic compounds with naphthyl, indole, dihydroindole, and indane rings. The substrates interact with the calixresorcinarene through insertion of the aromatic ring into the cavity. Most of the substrates are analyzed as cationic species, although one anionic species is analyzed. All of the substrates exhibit enantiomeric discrimination in the 1H‐NMR spectrum with one or more of the calixresorcinarenes. In most cases, the hydroxyproline derivatives are more effective at causing enantiodifferentiation than the corresponding proline derivative. Presumably, the hydroxyl group on the proline moieties is involved in interactions with the substituent groups of the substrate that are important in creating chiral recognition. The enantiomeric discrimination in the 1H‐NMR spectrum is large enough for many resonances to permit the analysis of enantiomeric purity. Chirality 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
A superficially porous particle (SPP)‐based hydroxypropyl‐β‐cyclodextrin (HPBCD) chiral stationary phase (CSP) was produced and its chromatographic performance was compared to both 5 µm and 3 µm fully porous particle (FPP)‐based CSPs. The relative surface coverage of the HPBCD chiral selector on each particle was approximately equal, which resulted in equivalent enantiomeric selectivity (α) values on each phase when constant mobile phase conditions were used. Under such conditions, the SPP column resulted in greatly reduced analysis times and three times greater efficiencies compared to the FPP columns. When higher flow rates were used, efficiency gains per analysis times were five times greater for the SPP column compared to the FPP‐based columns. When the mobile phases were altered to give similar analysis times on each column, resolution values were doubled for the SPP column. Finally, the novel SPP based HPBCD column proved to be stable for 500 injections under high flow rate (4.5 mL/min) and high pressure (400 bar) conditions used for an ultrafast (~45 sec) enantiomeric separation. Chirality 27:788–794, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
In the recent years, hundreds of Novel Psychoactive Substances (NPS) have entered both the European and the global drug market. These drugs, which are mainly used for recreational matters, have caused serious social problems. Every year, the spectrum of these misused drugs is enlarged by new derivatives, which are produced by modifications of basic structures of already well‐known substances. Additionally, a lot of them possess a stereogenic center which leads to 2 enantiomeric forms. The fact that the pharmacological effects and potencies of the enantiomers of these chiral NPS may differ can be assumed from a broad spectrum of active pharmaceutical ingredients. For this reason, analytical method development regarding enantiomeric separation for these classes of substances is of great pharmaceutical and medical interest. The aim of this work was to create an easy‐to‐prepare chiral capillary electrophoresis method for the enantioseparation of NPS which contains a primary amino group by means of (+)‐18‐crown‐6‐tetracarboxylic acid as chiral selector. Novel Psychoactive Substances were purchased at various Internet stores or represent samples seized by Austrian police. The effects of selector concentration, the electrolyte composition, and the addition of organic modifiers to the background electrolyte on enantioseparation were investigated. Under optimized conditions, the use of 20‐mM (+)‐18‐crown‐6‐tetracarboxylic acid, 10‐mM Tris, and 30‐mM citric acid buffer at pH 2.10 turned out to be effective. Fifteen of 24 tested NPS were resolved in their enantiomers within 15 minutes. It was found that all NPS were traded as racemic mixtures.  相似文献   

18.
Cationic trialkylammonium‐substituted α‐, β‐, and γ‐cyclodextrins containing trimethyl‐, triethyl‐, and tri‐n‐propylammonium substituent groups were synthesized and analyzed for utility as water‐soluble chiral nuclear magnetic resonance (NMR) solvating agents. Racemic and enantiomerically pure (3‐chloro‐2‐hydroxypropyl)trimethyl‐, triethyl‐, and tri‐n‐propyl ammonium chloride were synthesized from the corresponding trialkyl amine hydrochloride and either racemic or enantiomerically pure epichlorohydrin. The ammonium salts were then reacted with α‐, β‐, and γ‐cyclodextrins at basic pH to provide the corresponding randomly substituted cationic cyclodextrins. The 1H NMR spectra of a range of anionic, aromatic compounds was recorded with the cationic cyclodextrins. Cyclodextrins with a single stereochemistry at the hydroxy group on the (2‐hydroxypropyl)trialkylammonium chloride substituent were often but not always more effective than the corresponding cyclodextrin in which the C‐2 position was racemic. In several cases, the larger triethyl or tri‐n‐propyl derivatives were more effective than the corresponding trimethyl derivative at causing enantiomeric differentiation. None of the cyclodextrin derivatives were consistently the most effective for all of the anionic compounds studied. Chirality 28:299–305, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
A series of novel alkyl substituted purines were synthesized. 6‐[4‐(4‐Propoxyphenyl)piperazin‐1‐yl]‐9H‐purine was used as the key starting material, which was synthesized via a multistep protocol and finally subjected for N‐alkylation with various alkyl halides with an aim to get prospective antimicrobial agents. The structures of the novel compounds were established by substantiating them through spectral techniques like 1H‐NMR, 13C‐NMR, FT‐IR and EI‐MS. They were explored for antitubercular activity against Mycobacterium tuberculosis H37RV. Furthermore, they were checked for their antimicrobial activity concerning bacterial and fungal strains. The title compounds exhibited considerable antimicrobial activity without any significant toxicity. In silico studies depicted their good binding profile against Mycobacterium tuberculosis enoyl reductase (InhA; PDB ID: 4TZK) and Candida albicans dihydrofolate reductase (PDB ID: 1AI9). The title compounds obeyed Lipinski's parameters and have exhibited good drug‐like properties.  相似文献   

20.
In this study, 11 nitrogen‐heterocyclic pesticides were stereoselectively separated on amylose‐tris‐(5‐chloro‐2‐methylphenylcarbamate) chiral stationary phase, using reversed‐phase high‐performance liquid chromatography with diode array detector and optical rotation detector at 426 nm. The effects of mobile phase composition and column temperature (5–40 °C) on separation were investigated. When acetonitrile and water were used as mobile phase, satisfactory separations were obtained on amylose‐tris‐(5‐chloro‐2‐methylphenylcarbamate) for four pesticides with elution orders of (+)/(?)‐simeconazole (1) , (?)/(+)‐nuarimol (3) , (?)/(+)‐carfentrazone‐ethyl (4) , and (?)/(+)/(?)/(+)‐bromuconazole (9) and part separations for three with elution orders of (?)/(+)‐famoxadone (6) , (+)/(?)‐fenbuconazole (10) , and (?)/(+)‐triapenthenol (11) . Only two chromatographic peaks on diode array detector were obtained for diclobutrazol (2) , cyproconazole (5) , etaconazole (7) , and metconazole (8) , although they should have four stereoisomers in theory because of presences of two chiral centers in molecules. The stereoisomeric optical signals of all pesticides did not reverse with temperature changes but would reverse with different solvent types for some pesticides. These results will be useful to prepare and analyze individual enantiomers of chiral pesticides. Chirality 24:1031–1036, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号