首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 560 毫秒
1.
Many beetle species use proline and carbohydrates in a varying ratio to power flight. The degree of contribution of either fuel varies widely between species. In contrast, dung beetle species investigated, thus far, do not have any carbohydrate reserves and rely completely on proline to power energy-costly activities such as flight and, probably, walking and ball-rolling. While the fruit beetle, Pachnoda sinuata, uses proline and carbohydrates equally during flight, proline is solely oxidised during endothermic pre-flight warm-up, as well as during flight after prolonged starvation. Thus, proline seems to be the essential fuel for activity in beetles, even in flightless ones and in those that use proline in combination with carbohydrates; the latter can be completely substituted by proline in certain circumstances. It is apparent from the rapid decline of energy substrates in flight muscles and haemolymph after the onset of flight that mobilisation of stored fuels of the fat body is necessary for prolonged flight periods. This task is performed by AKH-type neuropeptides. In beetles, like in other insects, these peptides mobilise glycogen via activation of glycogen phosphorylase. They also stimulate proline synthesis from alanine and acetyl-CoA in the fat body. Acetyl-CoA is derived from the beta-oxidation of fatty acids and we propose that the neuropeptides activate triacylglycerol lipase.  相似文献   

2.
1 Although mountain pine beetle Dendroctonus ponderosae Hopkins are able to utilize most available Pinus spp. as hosts, successful colonization and reproduction in other hosts within the Pinaceae is rare.
2 We observed successful reproduction of mountain pine beetle and emergence of new generation adults from interior hybrid spruce Picea engelmannii × glauca and compared a number of parameters related to colonization and reproductive success in spruce with nearby lodgepole pine Pinus contorta infested by mountain pine beetle.
3 The results obtained indicate that reduced competition in spruce allowed mountain pine beetle parents that survived the colonization process to produce more offspring per pair than in more heavily-infested nearby pine.
4 We also conducted an experiment in which 20 spruce and 20 lodgepole pines were baited with the aggregation pheromone of mountain pine beetle. Nineteen pines (95%) and eight spruce (40%) were attacked by mountain pine beetle, with eight (40%) and three (15%) mass-attacked, respectively.
5 Successful attacks on nonhost trees during extreme epidemics may be one mechanism by which host shifts and subsequent speciation events have occurred in Dendroctonus spp. bark beetles.  相似文献   

3.
4.
Aim The spatial extent of western Canada’s current epidemic of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae), is increasing. The roles of the various dispersal processes acting as drivers of range expansion are poorly understood for most species. The aim of this paper is to characterize the movement patterns of the mountain pine beetle in areas where range expansion is occurring, in order to describe the fine‐scale spatial dynamics of processes associated with mountain pine beetle range expansion. Location Three regions of Canada’s Rocky Mountains: Kicking Horse Pass, Yellowhead Pass and Pine Pass. Methods Data on locations of mountain pine beetle‐attacked trees of predominantly lodgepole pine (Pinus contorta var. latifolia) were obtained from annual fixed‐wing aircraft surveys of forest health and helicopter‐based GPS surveys of mountain pine beetle‐damaged areas in British Columbia and Alberta. The annual (1999–2005) spatial extents of outbreak ranges were delineated from these data. Spatial analysis was conducted using the spatial–temporal analysis of moving polygons (STAMP), a recently developed pattern‐based approach. Results We found that distant dispersal patterns (spot infestations) were most often associated with marginal increases in the areal size of mountain pine beetle range polygons. When the mountain pine beetle range size increased rapidly relative to the years examined, local dispersal patterns (adjacent infestation) were more common. In Pine Pass, long‐range dispersal (> 2 km) markedly extended the north‐east border of the mountain pine beetle range. In Yellowhead Pass and Kicking Horse Pass, the extension of the range occurred incrementally via ground‐based spread. Main conclusions Dispersal of mountain pine beetle varies with geography as well as with host and beetle population dynamics. Although colonization is mediated by habitat connectivity, during periods of low overall habitat expansion, dispersal to new distant locations is common, whereas during periods of rapid invasion, locally connected spread is the dominant mode of dispersal. The propensity for long‐range transport to establish new beetle populations, and thus to be considered a driver of range expansion, is likely to be determined by regional weather patterns, and influenced by local topography. We conclude that STAMP appears to be a useful approach for examining changes in biogeograpical ranges, with the potential to reveal both fine‐ and large‐scale patterns.  相似文献   

5.
The purpose of this study was to determine whether mountain pine beetles utilizing different host species were differentiated for either morphological or protein variation. Genetic differentiation among host species has been reported for the southern pine beetle, the Douglas-fir beetle, the jeffrey pine beetle, and the mountain pine beetle. However, in these studies, the host trees were sampled at separate sites, and hence geographic variation and variation due to host tree were confounded. The mountain pine beetle occasionally utilizes three host trees (ponderosa pine, lodgepole pine, and limber pine) at single sites in Colorado. Five polymorphic enzyme loci and six morphological characters were used to describe beetles resident in different hosts. Differentiation within a site among host trees was detected at two of five polymorphic proteins, and for both size and morphological shape. The magnitude of genetic differentiation among hosts within a site was approximately equivalent to the magnitude of differentiation among sites. These data suggest that the species of host tree may be an important biotic factor associated with the genetic structure of bark beetle communities. The results are discussed in terms of their potential role in the process of speciation by host race formation.  相似文献   

6.
The pine wood nematode (Bursaphelenchus xylophilus), which causes the symptoms of pine wilt disease, is recognized worldwide as a major forest pest. It was introduced into Portugal in 1999. It is transmitted between trees almost exclusively by longhorn beetles of the genus Monochamus, including, in particular, M. galloprovincialis (Coleoptera: Cerambycidae) in maritime pine forests. Accurate estimates of the flight capacity of this insect vector are required if we are to understand and predict the spread of pine wilt disease in Europe. Using computer‐linked flight mills, we evaluated the distance flown, the flight probability and speed of M. galloprovincialis throughout adulthood and investigated the effects of age, sex and body weight on these flight performances, which are proxies for dispersal capacity. The within‐population variability of flight performance in M. galloprovincialis was high, with a mean distance of 16 km flown over the lifetime of the beetle. Age and body weight had a significant positive effect on flight capacity, but there was no difference in performance between males and females. These findings have important implications for managing the spread of the pine wood nematode in European forests.  相似文献   

7.
The influence of flight and flight duration on 13 blood parameters was studied in homing pigeons which returned after 2–22 h of flight from release sites 113–620 km away. The haematocrit value decreased from 54.4% in controls to 51.0% in the flown birds. A lowered haematocrit overproportionately improves blood flow. The plasma concentrations of glucose and l(+)-lactate did not differ between experimental and control birds. This is compatible with the idea that carbohydrates are utilized as fuel mainly in the initial phase of flight. Plasma free fatty acid levels were significantly increased during flight and triglyceride concentrations gradually decreased with progressive flight duration. These findings support the view that lipids are the main energy source during flight. Plasma uric acid concentrations were increased two- to fourfold in flown birds. Urea levels gradually rose with flight duration to 400% of controls. Plasma protein concentration was lowered in flown pigeons. These results hint to an increased protein degradation during flight. Na+, K+, Ca2+, and Mg2+ levels in the plasma of the flown pigeons were not significantly different from control values. This finding together with the urea/uric acid ratio indicates that no severe dehydration occurred in our pigeons during free-range flight.Abbreviations FA fatty acids - FFA free fatty acids  相似文献   

8.
9.
Bark beetle epidemics result in tree mortality across millions of hectares in North America. However, few studies have quantified impacts on carbon (C) cycling. In this study, we quantified the immediate response and subsequent trajectories of stand‐level aboveground tree C stocks and fluxes using field measurements and modeling for a location in central Idaho, USA that experienced an outbreak of mountain pine beetle (Dendroctonus ponderosae Hopkins). We measured tree characteristics in lodgepole pine (Pinus contorta) plots spanning a range of structure and mortality conditions. We then initialized the forest vegetation simulator, an individual tree‐based model, with these measurements and simulated the response of aboveground production of C fluxes as well as trajectories of C stocks and fluxes in the coming decades. Mountain pine beetles killed up to 52% of the trees within plots, with more larger trees killed. C stocks in lodgepole pine were reduced by 31–83% following the outbreak, and plot‐level C fluxes decreased 28–73%. Modeled C stocks increased nearly continuously following the infestation, recovering to preoutbreak levels in 25 years or less. Simulated aboveground tree C fluxes increased following the immediate postoutbreak decrease, then subsequently declined. Substantial variability of C stocks and fluxes among plots resulted from the number and size of killed and surviving trees. Our study illustrates that bark beetle epidemics alter forest C cycling unlike stand‐replacement wildfires or clear‐cut harvests, due in part to incomplete mortality coupled with the preference by beetles for larger trees. The dependency of postoutbreak C stocks and fluxes on stand structure suggests that C budget models and studies in areas experiencing mountain pine beetle disturbances need to include size distribution of trees for the most accurate results.  相似文献   

10.
The metabolism of lipids and carbohydrates related to flight activity in Panstrongylus megistus was investigated. Insects were subjected to different times of flight under laboratory conditions and changes in total lipids, lipophorin density and carbohydrates were followed in the hemolymph. Lipids and glycogen were also assayed in fat body and flight muscle. In resting insects, hemolymph lipids averaged 3.4 mg/ml and significantly increased after 45 min of flight (8.8 mg/ml, P < 0.001). High-density lipophorin was the sole lipoprotein observed in resting animals. A second fraction with lower density corresponding to low-density lipophorin appeared in insects subjected to flight. Particles from both fractions showed significant differences in diacylglycerol content and size. In resting insects, carbohydrate levels averaged 0.52 mg/ml. They sharply declined more than twofold after 15 min of flight, being undetectable in hemolymph of insects flown for 45 min. Lipid and glycogen from fat body and flight muscle decreased significantly after 45 min of flight. Taken together, the results indicate that P. megistus uses carbohydrates during the initiation of the flight after which, switching fuel for flight from carbohydrates to lipids.  相似文献   

11.
Carnivorous animals are known to balance their consumption of lipid and protein, and recent studies indicate that some mammalian carnivores also regulate their intake of carbohydrate. We investigated macronutrient balancing and lipid restoration following hibernation in the ground beetle Anchomenus dorsalis, hypothesizing that carbohydrates might be important energy sources upon hibernation when predator lipid stores are exhausted and prey are equally lean. We recorded the consumption of lipid, protein, and carbohydrate over nine days following hibernation, as the beetles foraged to refill their lipid stores. Each beetle was given the opportunity to regulate consumption from two semi-artificial foods differing in the proportion of two of the three macronutrients, while the third macronutrient was kept constant. When analyzing consumption of the three macronutrients on an energetic basis, it became apparent that the beetles regulated lipid and carbohydrate energy interchangeably and balanced the combined energy intake from the two macronutrients against protein intake. Restoration of lipid stores was independent of the availability of any specific macronutrient. However, the energetic consumption required to refill lipid stores was higher when a low proportion of lipids was ingested, suggesting that lipids were readily converted into lipid stores while there were energetic costs associated with converting carbohydrate and protein into stored lipids. Our experiment demonstrates that carbohydrates are consumed and regulated as a non-protein energy source by A. dorsalis despite an expectedly low occurrence of carbohydrates in their natural diet. Perhaps carbohydrates are in fact an overlooked supplementary energy source in the diet of carnivorous arthropods.  相似文献   

12.
Abstract 1 Synthetic blends of bole and foliage volatiles of four sympatric species of conifers were released from pheromone‐baited multiple‐funnel traps to determine if three species of tree‐killing bark beetles (Coleoptera: Scolytidae): (i) exhibited primary attraction to volatiles of their hosts and (ii) discriminated among volatiles of four sympatric species of host and nonhost conifers. 2 Bole and foliage volatiles from Douglas‐fir, Pseudotsuga menziesii (Mirb.) Franco, increased the attraction of coastal and interior Douglas‐fir beetles, Dendroctonus pseudotsugae Hopkins, to pheromone‐baited traps. Primary attraction to bole volatiles was observed in interior D. pseudotsugae. Beetles were significantly less attracted to the pheromone bait when it was combined with volatiles of lodgepole pine, Pinus contorta var. latifolia Engelm. or interior fir, Abies lasiocarpa × bifolia. 3 The monoterpene myrcene synergized attraction of mountain pine beetles, Dendroctonus ponderosae Hopkins, to their aggregation pheromones, but there was no evidence of primary attraction to host volatiles or discrimination among volatiles from the four conifers. 4 There was significant primary attraction of the spruce beetle, Dendroctonus rufipennis Kirby, to bole and foliage volatiles of interior spruce, Picea engelmannii × glauca, but beetles did not discriminate among volatiles of four sympatric conifers when they were combined with pheromone baits. 5 Our results indicate that host volatiles act as kairomones to aid pioneer Douglas‐fir beetles and spruce beetles in host location by primary attraction, and that their role as synergists to aggregation pheromones is significant. For the mountain pine beetle, we conclude that random landing and close range acceptance or rejection of potential hosts would occur in the absence of aggregation pheromones emanating from a tree under attack.  相似文献   

13.
In a recent study, we reported a previously undescribed behavior in which a bark beetle exuded oral secretions containing bacteria that have antifungal properties, and hence defend their galleries against pervasive antagonistic Hyphomycete fungi. Actinobacteria, a group known for their antibiotic properties, were the most effective against fungi that invade the spruce beetle galleries. In the present study, we describe the isolation and identification of microorganisms from oral secretions of three bark beetles (Coleoptera: Curculionidae: Scolytinae): the spruce beetle, Dendroctonus rufipennis Kirby, the mountain pine beetle, Dendroctonus ponderosae Hopkins, and the pine engraver, Ips pini Say. Bacteria isolated from these three species span the major bacterial classes α-, β-, and γ-Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, except for D. ponderosae , which yielded no α-proteobacteria or Bacteroidetes isolates. Spruce beetles and pine engraver beetles had similar numbers of α-proteobacteria isolates, but pine engravers yielded twice as many Bacteroidetes isolates as spruce beetles. In contrast, mountain pine beetles yielded more isolates in the β- and γ-proteobacteria than spruce beetles and pine engravers. The highest percentage of Actinobacteria was obtained from spruce beetles, followed by pine engravers and mountain pine beetles. All of the fungal isolates obtained from the three beetle species were Ascomycetes. The greatest fungal diversity was obtained in spruce beetles, which had nine species, followed by pine engravers with five, and mountain pine beetles with one.  相似文献   

14.
The pattern of metabolic changes during tethered flight with lift-generation was investigated in two South African species of long-horned beetles (family: Cerambycidae), namely Phryneta spinator and Ceroplesis thunbergi. Energy substrates were measured in haemolymph and flight muscles at rest, after a flight period of 1 min at an ambient temperature of 25-29 degrees C, and 1 h thereafter. Flight diminished the levels of proline and carbohydrates in the haemolymph and proline and glycogen in the flight muscles of both species, and caused an increase in the levels of alanine in both compartments. The concentration of lipids in the haemolymph, however, was not changed upon flight in either species. The resting period of 1 h following a 1 min flight episode, was sufficient to reverse the metabolic situation in haemolymph and flight muscles to pre-flight levels in both species. Purification of an extract of the corpora cardiaca from the two beetle species on RP-HPLC, resulted in the isolation and subsequently in the identification (by mass spectrometry, Edman degradation and RP-HPLC) of an octapeptide of the AKH/RPCH family, denoted Pea-CAH-I (pGlu-Val-Asn-Phe-Ser-Pro-Asn-Trpamide), present in each species. It was demonstrated that low doses of Pea-CAH-I elicited increases in the concentration of proline, as well as carbohydrates, in the haemolymph of both species. The levels of lipids, however, remained unchanged upon injection of this peptide. It is concluded that, upon stimulation by flight, the peptide Pea-CAH-I is released from the corpus cardiacum of a cerambycid beetle and is responsible for the regulation of the major flight substrates, proline and carbohydrates, of these beetles.  相似文献   

15.
BackgroundMountain pine beetles, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), are native to western North America, but have recently begun to expand their range across the Canadian Rocky Mountains. The requirement for larvae to withstand extremely cold winter temperatures and potentially toxic host secondary metabolites in the midst of their ongoing development makes this a critical period of their lives.ResultsWe have uncovered global protein profiles for overwintering mountain pine beetle larvae. We have also quantitatively compared the proteomes for overwintering larvae sampled during autumn cooling and spring warming using iTRAQ methods. We identified 1507 unique proteins across all samples. In total, 33 proteins exhibited differential expression (FDR < 0.05) when compared between larvae before and after a cold snap in the autumn; and 473 proteins exhibited differential expression in the spring when measured before and after a steady incline in mean daily temperature. Eighteen proteins showed significant changes in both autumn and spring samples.ConclusionsThese first proteomic data for mountain pine beetle larvae show evidence of the involvement of trehalose, 2-deoxyglucose, and antioxidant enzymes in overwintering physiology; confirm and expand upon previous work implicating glycerol in cold tolerance in this insect; and provide new, detailed information on developmental processes in beetles. These results and associated data will be an invaluable resource for future targeted research on cold tolerance mechanisms in the mountain pine beetle and developmental biology in coleopterans.  相似文献   

16.
In the low nutrient environment of conifer bark, subcortical beetles often carry symbiotic fungi that concentrate nutrients in host tissues. Although bark beetles are known to benefit from these symbioses, whether this is because they survive better in nutrient-rich phloem is unknown. After manipulating phloem nutrition by fertilizing lodgepole pine trees (Pinus contorta Douglas var. latifolia), we found bolts from fertilized trees to contain more living individuals, and especially more pupae and teneral adults than bolts from unfertilized trees at our southern site. At our northern site, we found that a larger proportion of mountain pine beetle (Dendroctonus ponderosae Hopkins) larvae built pupal chambers in bolts from fertilized trees than in bolts from unfertilized trees. The symbiotic fungi of the mountain pine beetle also responded to fertilization. Two mutualistic fungi of bark beetles, Grosmannia clavigera (Rob.-Jeffr. & R. W. Davidson) Zipfel, Z. W. de Beer, & M. J. Wingf. and Leptographium longiclavatum Lee, S., J. J. Kim, & C. Breuil, doubled the nitrogen concentrations near the point of infection in the phloem of fertilized trees. These fungi were less capable of concentrating nitrogen in unfertilized trees. Thus, the fungal symbionts of mountain pine beetle enhance phloem nutrition and likely mediate the beneficial effects of fertilization on the survival and development of mountain pine beetle larvae.  相似文献   

17.
The tree-killing mountain pine beetle (Dendroctonus ponderosae Hopkins) is an important disturbance agent of western North American forests and recent outbreaks have affected tens of millions of hectares of trees. Most western North American pines (Pinus spp.) are hosts and are successfully attacked by mountain pine beetles whereas a handful of pine species are not suitable hosts and are rarely attacked. How pioneering females locate host trees is not well understood, with prevailing theory involving random landings and/or visual cues. Here we show that female mountain pine beetles orient toward volatile organic compounds (VOCs) from host limber pine (Pinus flexilis James) and away from VOCs of non-host Great Basin bristlecone pine (Pinus longaeva Bailey) in a Y-tube olfactometer. When presented with VOCs of both trees, females overwhelmingly choose limber pine over Great Basin bristlecone pine. Analysis of VOCs collected from co-occurring limber and Great Basin bristlecone pine trees revealed only a few quantitative differences. Noticeable differences included the monoterpenes 3-carene and D-limonene which were produced in greater amounts by host limber pine. We found no evidence that 3-carene is important for beetles when selecting trees, it was not attractive alone and its addition to Great Basin bristlecone pine VOCs did not alter female selection. However, addition of D-limonene to Great Basin bristlecone pine VOCs disrupted the ability of beetles to distinguish between tree species. When presented alone, D-limonene did not affect behavior, suggesting that the response is mediated by multiple compounds. A better understanding of host selection by mountain pine beetles could improve strategies for managing this important forest insect. Moreover, elucidating how Great Basin bristlecone pine escapes attack by mountain pine beetles could provide insight into mechanisms underlying the incredible longevity of this tree species.  相似文献   

18.
Aim To understand how the biophysical environment influences patterns of infection by non‐native blister rust (caused by Cronartium ribicola) and mortality caused by native mountain pine beetles (Dendroctonus ponderosae) in whitebark pine (Pinus albicaulis) communities, to determine how these disturbances interact, and to gain insight into how climate change may influence these patterns in the future. Location High‐elevation forests in south‐west Montana, central Idaho, eastern and western Oregon, USA. Methods Stand inventory and dendroecological methods were used to assess stand structure and composition and to reconstruct forest history at sixty 0.1‐ha plots. Patterns of blister rust infection and mountain pine beetle‐caused mortality in whitebark pine trees were examined using nonparametric Kruskal–Wallis ANOVA, Mann–Whitney U‐tests, and Kolmogorov–Smirnov two‐sample tests. Stepwise regression was used to build models of blister rust infection and mountain pine beetle‐related mortality rates based on a suite of biophysical site variables. Results Occurrence of blister rust infections was significantly different among the mountain ranges, with a general gradient of decreasing blister rust occurrence from east to west. Evidence of mountain pine beetle‐caused mortality was identified on 83% of all dead whitebark pine trees and was relatively homogenous across the study area. Blister rust infected trees of all ages and sizes uniformly, while mountain pine beetles infested older, larger trees at all sites. Stepwise regressions explained 64% and 58% of the variance in blister rust infection and beetle‐caused mortality, respectively, indicating that these processes are strongly influenced by the biophysical environment. More open stand structures produced by beetle outbreaks may increase the exposure of surviving whitebark pine trees to blister rust infection. Main conclusions Variability in the patterns of blister rust infection and mountain pine beetle‐caused mortality elucidated the fundamental dynamics of these disturbance agents and suggests that the effects of climate change will be complex in whitebark pine communities and vary across the species’ range. Interactions between blister rust and beetle outbreaks may accelerate declines or facilitate the rise of rust resistance in whitebark pine depending on forest conditions at the time of the outbreak.  相似文献   

19.
The response of the forest cockchafer, Melolontha hippocastani F. (Coleoptera, Scarabaeidae), towards volatiles emitted by different host plants and conspecifics was tested in field experiments during the flight period at dusk. Funnel traps containing artificially damaged leaves from the host plants Carpinus betulus L. and Quercus rubra L., as well as from the non‐host plant Prunus serotina Ehrh. caught significantly more beetles than empty control traps. On the other hand, traps baited with undamaged leaves from Q. rubra did not catch significantly more beetles than empty controls. Leaves from C. betulus damaged by beetle feeding did not attract more beetles than artificially damaged leaves. By use of gas chromatography coupled with electroantennographic detection (GC‐EAD) electrophysiological responses of males and females were shown for 18 typical plant volatiles. A synthetic mixture of selected typical green plant volatiles was also highly attractive in the field. A total of 9982 beetles was caught during the field experiments, among them only 33 females. This suggests that attraction to damaged foliage during flight period at dusk is male‐specific. Field experiments testing the attractiveness of female M. hippocastani towards conspecific males by employing caged beetles and beetle extracts indicated that males of M. hippocastani use a female‐derived sex pheromone for mate location. On wired cages containing either unmated feeding females, or unmated females without access to foliage, or feeding males in combination with extracts from unmated females, significantly more males landed during the flight period than on comparable control cages containing feeding males or male extracts. A possible scenario of mate location in M. hippocastani involving feeding‐induced plant volatiles and a female‐derived sex pheromone is discussed.  相似文献   

20.
Specimens of the fruit beetle Pachnoda sinuata were starved for up to 30 days. The weight of the beetles declined consistently throughout the starvation period. Concentrations of carbohydrates and alanine in flight muscles, fat body and haemolymph decreased rapidly after onset of starvation, while the concentration of proline remained high. Whereas the lipid concentrations in the haemolymph did not change significantly upon starvation, the lipid content in flight muscles and fat body decreased significantly.Beetles that had been starved for 14 days responded to injection of Mem-CC, the endogenous neuropeptide from its corpora cardiaca, with hyperprolinaemia and a decrease in the alanine level, but no such effect was monitored after prolonged starvation of 28 days. Regardless of the period of starvation, Mem-CC injection could not cause hypertrehalosaemia or hyperlipaemia, although carbohydrates were increased in fed beetles after injection.Flight ability of beetles that had been starved for 15 or 30 days was apparently not impaired. During such periods, beetles used proline exclusively as fuel for flight as evidenced by the increase in the level of alanine in the haemolymph and decrease of the level of proline; the concentrations of carbohydrates and lipids remained unchanged.Activities of malic enzyme and alanine aminotransferase (enzymes involved in transamination in proline metabolism), glyceraldehyde-3-phosphate dehydrogenase (enzyme of glycolysis), 3-hydroxyacyl-CoA dehydrogenase (enzyme of beta-oxidation of fatty acids) and of malate dehydrogenase (enzyme of Krebs cycle) were measured in fat body and flight muscles. In flight muscle tissue the maximum activity of NAD(+)-dependent malic enzyme increased, while that of glyceraldehyde-3-phosphate dehydrogenase decreased during starvation, and malate dehydrogenase, 3-hydroxyacyl-CoA dehydrogenase and alanine aminotransferase were unchanged. In fat body tissue, activities of NADP(+)-dependent malic enzyme and 3-hydroxyacyl-CoA dehydrogenase increased during food deprivation and activities of glyceraldehyde-3-phosphate dehydrogenase, malate dehydrogenase and alanine aminotransferase remained unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号