首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sophorolipids (SLs) are biosurfactants with widespread applications. The yield and purity of SLs are two important factors to be considered during their commercial large‐scale production. Notably, SL accumulation causes an increase in viscosity, decrease in dissolved oxygen and product inhibition in the fermentation medium. This inhibits the further production and purification of SLs. This describes the development of a novel integrated system for SL production using Candida albicans O‐13‐1. Semicontinuous fermentation was performed using a novel bioreactor with dual ventilation pipes and dual sieve‐plates (DVDSB). SLs were separated and recovered using a newly designed two‐stage separation system. After SL recovery, the fermentation broth containing residual glucose and oleic acid was recycled back into the bioreactor. This novel approach considerably alleviated the problem of product inhibition and accelerated the rate of substrate utilization. Production of SLs achieved was 477 g l?1, while their productivity was 1.59 g l?1 h?1. Purity of SLs improved by 23.3%, from 60% to 74%, using DVDSB with the separation system. The conversion rate of carbon source increased from 0.5 g g?1 (in the batch fermentation) to 0.6 g g?1. These results indicated that the integrated system could improve the efficiency of production and purity of SLs.  相似文献   

2.
Aims: To study the cellular growth and morphology of Yarrowia lipolytica W29 and its lipase and protease production under increased air pressures. Methods and Results: Batch cultures of the yeast were conducted in a pressurized bioreactor at 4 and 8 bar of air pressure and the cellular behaviour was compared with cultures at atmospheric pressure. No inhibition of cellular growth was observed by the increase of pressure. Moreover, the improvement of the oxygen transfer rate (OTR) from the gas to the culture medium by pressurization enhanced the extracellular lipase activity from 96·6 U l?1 at 1 bar to 533·5 U l?1 at 8 bar. The extracellular protease activity was reduced by the air pressure increase, thereby eliciting further lipase productivity. Cell morphology was slightly affected by pressure, particularly at 8 bar, where cells kept the predominant oval form but decreased in size. Conclusions: OTR improvement by total air pressure rise up to 8 bar in a bioreactor can be applied to the enhancement of lipase production by Y. lipolytica. Significance and Impact of the Study: Hyperbaric bioreactors can be successfully applied for yeast cells cultivation, particularly in high‐density cultures used for enzymes production, preventing oxygen limitation and consequently increasing overall productivity.  相似文献   

3.
Carbon materials have been reported to facilitate direct interspecies electron transfer (DIET) between bacteria and methanogens improving methane production in anaerobic processes. In this work, the effect of increasing concentrations of carbon nanotubes (CNT) on the activity of pure cultures of methanogens and on typical fatty acid‐degrading syntrophic methanogenic coculture was evaluated. CNT affected methane production by methanogenic cultures, although acceleration was higher for hydrogenotrophic methanogens than for acetoclastic methanogens or syntrophic coculture. Interestingly, the initial methane production rate (IMPR) by Methanobacterium formicicum cultures increased 17 times with 5 g·L?1 CNT. Butyrate conversion to methane by Syntrophomonas wolfei and Methanospirillum hungatei was enhanced (~1.5 times) in the presence of CNT (5 g·L?1), but indications of DIET were not obtained. Increasing CNT concentrations resulted in more negative redox potentials in the anaerobic microcosms. Remarkably, without a reducing agent but in the presence of CNT, the IMPR was higher than in incubations with reducing agent. No growth was observed without reducing agent and without CNT. This finding is important to re‐frame discussions and re‐interpret data on the role of conductive materials as mediators of DIET in anaerobic communities. It also opens new challenges to improve methane production in engineered methanogenic processes.  相似文献   

4.
Low aqueous solubility of the gases for autotrophic fermentations (e.g., hydrogen gas) results in low productivities in bioreactors. A frequently suggested approach to overcome mass transfer limitation is to increase the solubility of the limiting gas in the reaction medium by increasing the partial pressure in the gas phase. An increased inlet hydrogen partial pressure of up to 2.1 bar (total pressure of 3.5 bar) was applied for the autotrophic conversion of hydrogen and carbon dioxide with Acetobacterium woodii in a batch-operated stirred-tank bioreactor with continuous gas supply. Compared to the autotrophic batch process with an inlet hydrogen partial pressure of 0.4 bar (total pressure of 1.0 bar) the final acetate concentration after 3.1 days was reduced to 50 % (29.2 g L?1 compared to 59.3 g L?1), but the final formate concentration was increased by a factor of 18 (7.3 g L?1 compared to 0.4 g L?1). Applying recombinant A. woodii strains overexpressing either genes for enzymes in the methyl branch of the Wood–Ljungdahl pathway or the genes phosphotransacetylase and acetate kinase at an inlet hydrogen partial pressure of 1.4 bar reduced the final formate concentration by up to 40 % and increased the final dry cell mass and acetate concentrations compared to the wild type strain. Solely the overexpression of the two genes for ATP regeneration at the end of the Wood–Ljungdahl pathway resulted in an initial switch off of formate production at increased hydrogen partial pressure until the maximum of the hydrogen uptake rate was reached.  相似文献   

5.
Two bacterial strains used for industrial production of 2‐keto‐L‐gulonic acid (2‐KLG), Ketogulonigenium vulgare 2 and Bacillus thuringiensis 1514, were loaded onto the spacecraft Shenzhou VII and exposed to space conditions for 68 h in an attempt to increase their fermentation productivities of 2‐KLG. An optimal combination of mutants B. thuringiensis 320 and K. vulgare 2194 (KB2194‐320) was identified by systematically screening the pH and 2‐KLG production of 16 000 colonies. Compared with the coculture of parent strains, the conversion rate of L‐sorbose to 2‐KLG by KB2194‐320 in shake flask fermentation was increased significantly from 82·7% to 95·0%. Furthermore, a conversion rate of 94·5% and 2‐KLG productivity of 1·88 g l?1 h?1 were achieved with KB2194‐320 in industrial‐scale fermentation (260 m3 fermentor). An observed increase in cell number of K2194 (increased by 47·8%) during the exponential phase and decrease in 2‐KLG reductase activity (decreased by 46·0%) were assumed to explain the enhanced 2‐KLG production. The results suggested that the mutants KB2194‐320 could be ideal substitutes for the currently employed strains in the 2‐KLG fermentation process and demonstrated the feasibility of using spaceflight to breed high‐yielding 2‐KLG‐producing strains for vitamin C production.

Significance and Impact of the Study

KB2194‐320, a combination of two bacterial strains bred by spaceflight mutation, exhibited significantly improved 2‐KLG productivity and hence could potentially increase the efficiency and reduce the cost of vitamin C production by the two‐step fermentation process. In addition, a new pH indicator method was applied for rational screening of K2, which dramatically improved the efficiency of screening.  相似文献   

6.
The substitution of natural gas by renewable biomethane is an interesting option to reduce global carbon footprint. Syngas fermentation has potential in this context, as a diverse range of low‐biodegradable materials that can be used. In this study, anaerobic sludge acclimatized to syngas in a multi‐orifice baffled bioreactor (MOBB) was used to start enrichments with CO. The main goals were to identify the key players in CO conversion and evaluate potential interspecies metabolic interactions conferring robustness to the process. Anaerobic sludge incubated with 0.7 × 105 Pa CO produced methane and acetate. When the antibiotics vancomycin and/or erythromycin were added, no methane was produced, indicating that direct methanogenesis from CO did not occur. Acetobacterium and Sporomusa were the predominant bacterial species in CO‐converting enrichments, together with methanogens from the genera Methanobacterium and Methanospirillum. Subsequently, a highly enriched culture mainly composed of a Sporomusa sp. was obtained that could convert up to 1.7 × 105 Pa CO to hydrogen and acetate. These results attest the role of Sporomusa species in the enrichment as primary CO utilizers and show their importance for methane production as conveyers of hydrogen to methanogens present in the culture.  相似文献   

7.
Co‐cultures for simultaneous production of ethanol and xylitol were studied under different operation bioreactor modes using Candida tropicalis IEC5‐ITV and Saccharomyces cerevisiae ITV01‐RD in a simulated medium of sugarcane bagasse hydrolyzates. Xylitol and ethanol tolerance by S. cerevisiae and C. tropicalis, respectively, was evaluated. The results showed that C. tropicalis was sensitive to ethanol concentrations up to 30 g/L, while xylitol had no effect on S. cerevisiae viability and metabolism. The best condition found for simultaneous culture was S. cerevisiae co‐culture and C. tropicalis sequential cultivation at 24 h. Under these conditions, productivity and yield for ethanol were QEtOH = 0.72 g L?1 h?1 and YEtOH/s = 0.37 g/g, and for xylitol, QXylOH = 0.10 g L?1 h?1 and YXylOH/S = 0.31 g/g, respectively; using fed‐batch culture, the results were QEtOH = 0.87 g L?1 h?1 and YEtOH/s = 0.44 g L?1 h?1, and QEtOH = 0.27 g L?1 h?1 and YEtOH/s = 0.57 g/g, respectively. Maximum volumetric productivity in continuous multistep cultures of ethanol and xylitol was at dilution rates of 0.131 and 0.074 h?1, respectively. Continuous multistep production, QEtOH increased up to 50% more than in fed‐batch culture, even though xylitol yield remained unchanged.  相似文献   

8.
Aims: The feasibility of the continuous production of a valuable bioplastic raw material, namely 1,3‐propanediol (1,3‐PDO) from biodiesel by‐product glycerol, using immobilized cells was investigated. In addition, the effect of hydraulic retention time (HRT) was also analysed. Methods and Results: Ceramic balls and ceramic rings were used for the immobilization of a locally isolated strain; Klebsiella pneumoniae (GenBank no. 27F HM063413 ). HRT of 1 h is the best one in terms of volumetric production rate (g 1,3‐PDO l?1 h?1). The results indicated that ceramic‐based cell immobilization achieved a 2‐fold higher production rate (10 g 1,3‐PDO l?1 h?1) in comparison with suspended cell system (4·9 g 1,3‐PDO l?1 h?1). Conclusions: Continuous cultures with immobilized cells revealed that 1,3‐PDO production was more effective and more stable than suspended culture systems. Furthermore, cell immobilization had also obvious benefits especially for resistance of the production for extreme conditions (high organic loading rates, cell washouts). The results were important for understanding the significance of continuous immobilization process among other well‐known 1,3‐PDO fermentation processes. Significance and Impact of the Study: This work is a promising process for further studies, as the immobilized micro‐organism was able to reach high volumetric production rates at short HRT, it has an important role in tolerating and converting glycerol during fermentation. Therefore, HRT is a very significant operational parameter (P value <0·05) directly affecting the bioreactor performance and production rate.  相似文献   

9.
Agmatine is a kind of important biogenic amine. The chemical synthesis route is not a desirable choice for industrial production of agmatine. To date, there are no reports on the fermentative production of agmatine by microorganism. In this study, the base Escherichia coli strain AUX4 (JM109 ?speC ?speF ?speB ?argR) capable of excreting agmatine into the culture medium was first constructed by sequential deletions of the speC and speF genes encoding the ornithine decarboxylase isoenzymes, the speB gene encoding agmatine ureohydrolase and the regulation gene argR responsible for the negative control of the arg regulon. The speA gene encoding arginine decarboxylase harboured by the pKK223‐3 plasmid was overexpressed in AUX4, resulting in the engineered strain AUX5. The batch and fed‐batch fermentations of the AUX5 strain were conducted in a 3‐L bioreactor, and the results showed that the AUX5 strain was able to produce 1.13 g agmatine L?1 with the yield of 0.11 g agmatine g?1 glucose in the batch fermentation and the fed‐batch fermentation of AUX5 allowed the production of 15.32 g agmatine L?1 with the productivity of 0.48 g agmatine L?1 h?1, demonstrating the potential of E. coli as an industrial producer of agmatine.  相似文献   

10.
The hybridoma 192 was used to produce a monoclonal antibody (MAb) against 17‐hydroxyprogesterone (17‐OHP), for possible use in screening for congenital adrenal hyperplasia (CAH). The factors influencing the MAb production were screened and optimized in a 2 L stirred bioreactor. The production was then scaled up to a 20 L bioreactor. All of the screened factors (aeration rate, stirring speed, dissolved oxygen concentration, pH, and temperature) were found to significantly affect production. Optimization using the response surface methodology identified the following optimal production conditions: 36.8°C, pH 7.4, stirring speed of 100 rpm, 30% dissolved oxygen concentration, and an aeration rate of 0.09 vvm. Under these conditions, the maximum viable cell density achieved was 1.34 ± 0.21 × 106 cells mL?1 and the specific growth rate was 0.036 ± 0.004 h?1. The maximum MAb titer was 11.94 ± 4.81 μg mL?1 with an average specific MAb production rate of 0.273 ± 0.135 pg cell?1 h?1. A constant impeller tip speed criterion was used for the scale‐up. The specific growth rate (0.040 h?1) and the maximum viable cell density (1.89 × 106 cells mL?1) at the larger scale were better than the values achieved at the small scale, but the MAb titer in the 20 L bioreactor was 18% lower than in the smaller bioreactor. A change in the culture environment from the static conditions of a T‐flask to the stirred bioreactor culture did not affect the specificity of the MAb toward its antigen (17‐OHP) and did not compromise the structural integrity of the MAb. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

11.
The synthesis and secretion of the industrial relevant compatible solutes ectoine and hydroxyectoine using the halophile bacterium Chromohalobacter salexigens were studied and optimized. For this purpose, a cascade of two continuously operated bioreactors was used. In the first bioreactor, cells were grown under constant hyperosmotic conditions and thermal stress driving the cells to accumulate large amounts of ectoines. To enhance the overall productivity, high cell densities up to 61 g L?1 were achieved using a cross‐flow ultrafiltration connected to the first bioreactor. In the coupled second bioreactor the concentrated cell broth was subjected to an osmotic and thermal down‐shock by addition of fresh distilled water. Under these conditions, the cells are forced to secrete the accumulated intracellular ectoines into the medium to avoid bursting. The cultivation conditions in the first bioreactor were optimized with respect to growth temperature and medium salinity to reach the highest synthesis (productivity); the second bioreactor was optimized using a multi‐objective approach to attain maximal ectoine secretion with simultaneous minimization of cell death and product dilution caused by the osmotic and thermal down‐shock. Depending on the cultivation conditions, intracellular ectoine and hydroxyectoine contents up to 540 and 400 mg per g cell dry weight, respectively, were attained. With a maximum specific growth rate of 0.3 h?1 in defined medium, productivities of approximately 2.1 g L?1 h?1 secreted ectoines in continuous operation were reached. Biotechnol. Bioeng. 2010;107: 124–133. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
In this study, a compressed oxygen gas supply was connected to a sealed aerated stirred tank reactor (COS-SSTR) bio-system, leading to a high-oxygen pressure bioreactor used to improve the bio-transformative performance in the production of 1,3-dihydroxyacetone (DHA) from glycerol using Gluconobacter oxydans NL71. A concentration of 301.2 ± 8.2 g L?1 DHA was obtained from glycerol after 32 h of fed-batch fermentation in the COS-SSTR system. The volumetric productivity for this process was 9.41 ± 0.23 g L?1 h?1, which is presently the highest obtained level of glycerol bioconversion into DHA. These results show that the application of this bioreactor would enable microbial production of DHA from glycerol at the industrial scale.  相似文献   

13.
Enabling xylose catabolism is challenging, especially for unconventional yeasts and previously engineered background strains. In this study, the efficacy of a yeast mating approach with Yarrowia lipolytica that can combine a previously engineering and evolved xylose phenotype with a metabolite overproduction phenotype is demonstrated. Specifically, several engineered Y. lipolytica strains that produce α‐linolenic acid (ALA), riboflavin, and triacetic acid lactone (TAL) with an engineered and adapted xylose‐utilizing strain to obtain three diploid strains that rapidly produce these molecules directly from xylose are mated. Titers of 0.52 g L?1 ALA, 96.6 mg L?1 riboflavin, and 2.9 g L?1 TAL, are obtained from xylose in flask cultures and 1.42 g L?1 production of ALA is obtained using bioreactor condition. This total production level is generally on par or higher than the parental strain cultivated on glucose, although specific productivities decreased as a result of improved overall cell growth by the diploid strains. In the case of ALA, this lipid content reached similar levels to that of flaxseed oil. This result showcases the first study using strain mating in Y. lipolytica for producing biomolecules from xylose, and thus demonstrates the utility of this approach as a routine tool for metabolic engineering.  相似文献   

14.
High methanol and acetate concentrations (up to 12 and 14 g l−1, respectively) were found in water samples collected at different objects of the North Stavropol underground gas storage facility (UGSF), and significant seasonal variations in the content of these compounds were revealed. The dominant anaerobic microorganisms isolated from these samples during the study belonged to acetogens, methanogens, and sulfate reducers. The results of 16S rRNA gene sequencing and analysis of the physiological properties showed that the isolates were close to the species of Eubacterium limosum, Sporomusa sphaeroides, Methanosarcina barkeri, Methanobacterium formicicum, and Desulfovibrio desulfuricans. The isolated organisms, except for Methanobacterium formicicum, were capable of methylotrophic growth. All strains were characterized by resistance to high methanol concentrations (up to 40–50 g l−1). Their other energy substrate was hydrogen. The combination of the growth characteristics of these strains (pH, temperature, and salinity ranges) was shown to correspond to the ecological situation observed in the UGSF. The results of investigation of the isolated strains suggest that organic acids (acetate, butyrate) found in high concentrations in the initial samples are metabolic products of the revealed acetogens. Based on the established biological peculiarities of the isolated strains of methanogens, acetogens, and sulfate-reducing bacteria, these microorganisms may be considered as the main agents of anaerobic transformation of methanol and some other organic and inorganic compounds in UGSFs.  相似文献   

15.
A closed gas loop bioprocess was developed to improve fungal biotransformation of monoterpenes. By circulating monoterpene-saturated process gas, the evaporative loss of the volatile precursor from the medium during the biotransformation was avoided. Penicillium solitum, isolated from kiwi, turned out to be highly tolerant towards monoterpenes and to convert α-pinene to a range of products including verbenone, a valuable aroma compound. The gas loop was mandatory to reproduce the production of 35 mg L−1 verbenone obtained in shake flasks and also in the bioreactor. Penicillium digitatum DSM 62840 regioselectively converted (+)-limonene to the aroma compound α-terpineol, but shake flask cultures revealed a pronounced growth inhibition when initial concentrations exceeded 1.9 mM. In the bioreactor, toxic effects on P. digitatum during biotransformation were alleviated by starting a sequential feeding of non-toxic limonene portions after a preceding growth phase. Closing the precursor-saturated gas loop during the biotransformation allowed for an additional replenishment of limonene via the gas phase. The gas loop system led to a maximum α-terpineol concentration of 1,009 mg L−1 and an average productivity of 8–9 mg L−1 h−1 which represents a doubling of the respective values previously reported. Furthermore, a molar conversion yield of up to 63% was achieved. M. Pescheck and M. A. Mirata have contributed equally to this work.  相似文献   

16.
The success of bioprocess implementation relies on the ability to achieve high volumetric productivities and requires working with high‐cell‐density cultivations. Elevated atmospheric pressure might constitute a promising tool for enhancing the oxygen transfer rate (OTR), the major growth‐limiting factor for such cultivations. However, elevated pressure and its effects on the cellular environment also represent a potential source of stress for bacteria and may have negative effects on product formation. In order to determine whether elevated pressure can be applied for enhancing productivity in the case of medium‐chain‐length polyhydroxyalkanoate (mcl‐PHA) production by Pseudomonas putida KT2440, the impact of a pressure of 7 bar on the cell physiology was assessed. It was established that cell growth was not inhibited by this pressure if dissolved oxygen tension (DOT) and dissolved carbon dioxide tension (DCT) were kept below ~30 and ~90 mg L?1, respectively. Remarkably, a little increase of mcl‐PHA volumetric productivity was observed under elevated pressure. Furthermore, the effect of DCT, which can reach substantial levels during high‐cell‐density processes run under elevated pressure, was investigated on cell physiology. A negative effect on product formation could be dismissed since no significant reduction of mcl‐PHA content occurred up to a DCT of ~540 mg L?1. However, specific growth rate exhibited a significant decrease, indicating that successful high‐cell‐density processes under elevated pressure would be restricted to chemostats with low dilution rates and fed‐batches with a small growth rate imposed during the final part. This study revealed that elevated pressure is an adequate and efficient way to enhance OTR and mcl‐PHA productivity. We estimate that the oxygen provided to the culture broth under elevated pressure would be sufficient to triple mcl‐PHA productivity in our chemostat system from 3.4 (at 1 bar) to 11 g L?1 h?1 (at 3.2 bar). Biotechnol. Bioeng. 2012; 109:451–461. © 2011 Wiley Periodicals, Inc.  相似文献   

17.
Pyruvate decarboxylase (PDC) is responsible for the decarboxylation of pyruvate, producing acetaldehyde and carbon dioxide and is of high interest for industrial applications. PDC is a very powerful tool in the enzymatic synthesis of chiral amines by combining it with transaminases when alanine is used as amine donor. However, one of the main drawback that hampers its use in biocatalysis is its production and the downstream processing on scale. In this paper, a production process of PDC from Zymobacter palmae has been developed. The enzyme has been cloned and overexpressed in Escherichia coli. It is presented, for the first time, the evaluation of the production of recombinant PDC in a bench‐scale bioreactor, applying a substrate‐limiting fed‐batch strategy which led to a volumetric productivity and a final PDC specific activity of 6942 U L?1h?1 and 3677 U gDCW?1 (dry cell weight). Finally, PDC was purified in fast protein liquid chromatography equipment by ion exchange chromatography. The developed purification process resulted in 100% purification yield and a purification factor of 3.8.  相似文献   

18.
Corynebacterium glutamicum is well known as an important industrial amino acid producer. For a few years, its ability to produce organic acids, under micro‐aerobic or anaerobic conditions was demonstrated. This study is focused on the identification of the culture parameters influencing the organic acids production and, in particular, the succinate production, by this bacterium. Corynebacterium glutamicum 2262, used throughout this study, was a wild‐type strain, which was not genetically designed for the production of succinate. The oxygenation level and the residual glucose concentration appeared as two critical parameters for the organic acids production. The maximal succinate concentration (4.9 g L?1) corresponded to the lower kLa value of 5 h?1. Above 5 h?1, a transient accumulation of the succinate was observed. Interestingly, the stop in the succinate production was concomitant with a lower threshold glucose concentration of 9 g L?1. Taking into account this threshold, a fed‐batch culture was performed to optimize the succinate production with C. glutamicum 2262. The results showed that this wild‐type strain was able to produce 93.6 g L?1 of succinate, which is one of the highest concentration reported in the literature.  相似文献   

19.
Batch and continuous production of high fructose syrup from Jerusalem artichoke tubers has been studied using yeast cells immobilized in open pore gelatin matrix. In a batch reactor, the hydrolysis was 93% (d-fructose/d-glucose = 90/10) and 42 mg d-fructose per ml was produced from the artichoke tuber extract by immobilized cells in 3 h. The same immobilized cells were recycled and used repeatedly for 10 batch cycles starting with fresh juice at the beginning of each cycle. It was found that immobilized cells were extremely stable and the percent hydrolysis was almost constant for all 10 batch cycles. In a continuous reactor using an immobilized cell concentration of 65.7 g (dry wt) l?1 of total working bioreactor volume, the percent hydrolysis was found to remain constant at ~100% at dilution rates <1.26 h?1, but beyond that it decreased. Volumetric productivity attained its maximum value at D = 2.08 h?1 and was found to be 100 g l?1 h?1. This was achieved at a feed sugar conversion of 80%. At 90% conversion and D = 1.66 h?1, the productivity was found to be 90 g l?1 h?1. Continuous operation of the immobilized cell bioreactor at a constant dilution rate of 1.65 h?1 for 240 h resulted in only 2% loss of original activity.  相似文献   

20.
In this study, nisin production of Lactococcus lactis N8 was optimized by independent variables of glucose, hemin and oxygen concentrations in fed‐batch fermentation in which respiration of cells was stimulated with hemin. Response surface model was able to explain the changes of the nisin production of L. lactis N8 in fed‐batch fermentation system with high fidelity (R2 98%) and insignificant lack of fit. Accordingly, the equation developed indicated the optimum parameters for glucose, hemin, and dissolved oxygen were 8 g L?1 h?1, 3 μg mL?1 and 40%, respectively. While 1711 IU mL?1 nisin was produced by L. lactis N8 in control fed‐batch fermentation, 5410 IU mL?1 nisin production was achieved within the relevant optimum parameters where the respiration of cell was stimulated with hemin. Accordingly, nisin production was enhanced 3.1 fold in fed‐batch fermentation using hemin. In conclusion the nisin production of L. lactis N8 was enhanced extensively as a result of increasing the biomass by stimulating the cell respiration with adding the hemin in the fed‐batch fermentation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:678–685, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号