首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-sectional areas and succinate dehydrogenase (SDH) activities of soleus muscle fibers and their spinal motoneurons in male Wistar Hannover rats were determined after 16 days of hindlimb suspension. A decreased percentage of type I fibers and an increased percentage of type I+II fibers were observed after hindlimb suspension. Cross-sectional areas of all types of fibers were smaller in the hindlimb suspended than control rats. SDH activities of all types of fibers did not change after hindlimb suspension. Numbers, cross-sectional areas, or SDH activities of spinal motoneurons did not change after hindlimb suspension. It is suggested that spinal motoneurons innervating the rat soleus muscle are not affected by decreased neuromuscular activity on Earth and that gravity itself is important for maintaining of spinal motoneuron metabolic properties.  相似文献   

2.
To determine the level of coordination in succinate dehydrogenase (SDH) activity between plantaris motoneurons and muscle fibers, the soleus and gastrocnemius muscles were bilaterally excised in four cats to subject the plantaris to functional overload (FO). Five normal cats served as controls. Twelve weeks after surgery the right plantaris in each cat was injected with horseradish peroxidase to identify plantaris motoneurons. SDH activity then was measured in a population of plantaris motoneurons and muscle fibers in each cat. Control motoneurons and muscle fibers had similar mean SDH activities and a similar relationship between cell size and SDH activity. After FO, muscle fiber size doubled and mean muscle fiber SDH activity halved. Motoneuron mean SDH activity and size were unaffected by FO. Total SDH activity was unchanged in both the motoneurons and muscle fibers after FO. These changes suggest a selective increase in contractile proteins with little or no modulation of mitochondrial proteins in the muscle fibers, because total SDH activity was unchanged in muscle fibers after FO. These data demonstrate that although mean SDH activities were similar in control motoneurons and muscle fibers, mean SDH activities in these two cell types can change independently.  相似文献   

3.
Rats with type 2 diabetes exhibit decreased oxidative capacity, such as reduced oxidative enzyme activity, low-intensity staining for oxidative enzymes in fibers, and no high-oxidative type IIA fibers, in the skeletal muscle, especially in the soleus muscle. In contrast, there are no data available concerning the oxidative capacity of spinal motoneurons innervating skeletal muscle of rats with type 2 diabetes. This study examined the oxidative capacity of motoneurons innervating the soleus muscle of non-obese rats with type 2 diabetes. In addition, this study examined the effects of mild hyperbaric oxygen at 1.25 atmospheres absolute with 36 % oxygen for 10 weeks on the oxidative capacity of motoneurons innervating the soleus muscle because mild hyperbaric oxygen improves the decreased oxidative capacity of the soleus muscle in non-obese rats with type 2 diabetes. Spinal motoneurons innervating the soleus muscle were identified using nuclear yellow, a retrograde fluorescent neuronal tracer. Thereafter, the cell body sizes and succinate dehydrogenase activity of identified motoneurons were analyzed. Decreased succinate dehydrogenase activity of small-sized alpha motoneurons innervating the soleus muscle was observed in rats with type 2 diabetes. The decreased succinate dehydrogenase activity of these motoneurons was improved by mild hyperbaric oxygen. Therefore, we concluded that rats with type 2 diabetes have decreased oxidative capacity in motoneurons innervating the soleus muscle and this decreased oxidative capacity is improved by mild hyperbaric oxygen.  相似文献   

4.
The arrangement of the motoneurons innervating the supramandibular and suprahyoid muscles was studied in Wistar albino rats using two fluorescent tracers: nuclear yellow and true blue. All supramandibular motoneurons were found within the trigeminal motor nucleus; they appeared to be somatotopically arranged. The suprahyoid motoneurons were located in an accessory trigeminal-facial motor complex. No overlap of the motoneuron pools of the supramandibular and suprahyoid muscle group was observed. Only motoneurons ipsilateral to the treated muscles were labeled. It was shown that a one-to-one relationship always exists between motoneuron and muscle.  相似文献   

5.
After 7 weeks of hypobaric-hypoxia adaptation, horseradish peroxidase was injected into the soleus muscle to label motoneurons of the spinal cord in rats. Fiber type distribution in the soleus muscle and oxidative enzyme activity of motoneurons innervating the soleus muscle were examined. Fiber type was converted from slow-twitch-oxidative (SO) to fast-twitch-oxidative-glycolytic (FOG). Oxidative enzyme activity of motoneurons (25-45 micron soma diameter) was increased. However, oxidative capacity of larger motoneurons (greater than or equal to 45 micron soma diameter) was not changed. These data suggest that the lack of increase in oxidative capacity of larger motoneurons (innervating SO units) by hypoxia secondarily causes fiber type shift from SO to FOG.  相似文献   

6.
The cell body sizes and succinate dehydrogenase (SDH) activities of motoneurons in the dorsolateral region of the ventral horn at the cervical and lumbar segments in the rat spinal cord were determined following 9 days of spaceflight with or without 10 days of recovery on Earth. The motoneurons were divided into three types based on their cell body sizes; small-, medium-, and large-sized motoneurons. In control rats, there was no difference in the cell body size or SDH activity of small- and large-sized motoneurons between the cervical and lumbar segments. The SDH activity of medium-sized motoneurons in control rats was higher in the lumbar segment than in the cervical segment, while the cell body sizes of medium-sized motoneurons were identical. The SDH activity of medium-sized motoneurons in the lumbar segment decreased to a level similar to that in the cervical segment of control rats following spaceflight. In addition, the decreased SDH activity of medium-sized motoneurons persisted for at least 10 days of recovery on Earth. It is concluded that spaceflight selectively affects the SDH activity of medium-sized motoneurons in the lumbar segment of the spinal cord, which presumably innervate skeletal muscles having an antigravity function.  相似文献   

7.
Succinate dehydrogenase (SDH) activity levels of motoneurons in the rostral, middle, and caudal portions of the dorsolateral region of the ventral horn of the 6th lumbar (L6) segment of the rat spinal cord were determined after 14 days of spaceflight and after 9 days of recovery on Earth. The mean SDH activity of motoneurons with cell body sizes between 500 and 800 micrometers2 located in the rostral portion of the L6 segment was lower in spaceflight than in age-matched control rats. The decrease in motoneuron SDH activity persisted for at least 9 days of recovery on Earth. In contrast, the mean SDH activity of motoneurons located in the middle and caudal portions of the L6 segment were unaffected by spaceflight and recovery on Earth. The motoneurons in the rostral portion of the L6 segment presumably innervate both high- and low-oxidative fibers in hindlimb muscles, whereas those in the middle and caudal portions presumably innervate perineal muscles that are comprised only of low-oxidative fibers. These data indicate that moderate-sized motoneurons, most likely innervating fibers in high-oxidative muscles, are responsive to the microgravity environment.  相似文献   

8.
We studied neuronal pathways from low-threshold muscle (group I, II) and cutaneous afferents (group A(alpha)beta) innervating the tail to motoneurons innervating trunk muscles (m. iliocostalis lumborum and m. obliquus externus abdominus) in 18 spinalized cats. Stimulation of group I muscle afferents produced excitatory postsynaptic potentials or excitatory postsynaptic potentials followed by inhibitory postsynaptic potentials in all motoneurons innervating the m. iliocostalis lumborum which showed effects (32%), and predominantly inhibitory postsynaptic potentials in motoneurons innervating the m. obliquus externus abdominus (47%). Stimulation of group I+II afferents produced significant increases of the incidence of motoneurons showing postsynaptic potentials (the notoneurons innervating the m. iliocostalis lumborum, 87%; the motoneurons innervating the m. obliquus externus abdominus, 82%). The effects of low threshold cutaneous afferents were bilateral, predominantly producing inhibitory postsynaptic potentials in motoneurons innervating both muscles. These results suggest that neuronal pathways from muscle afferents to back muscle motoneurons mainly increase the stiffness of the trunk to maintain its stability, while those to abdominal muscles help to extend the dorsal column by decreasing their activities. The results also indicate that neuronal pathways from cutaneous afferents to trunk motoneurons functionallY disconnect the tail from the trunk.  相似文献   

9.
The distribution and morphology of motoneurons innervating specific types of muscle fibers in the levator scapulae superior (LSS) muscle complex of the bullfrog (Rana catesbeiana) and tiger salamander (Ambystoma tigrinum) were studied by retrograde labelling with cholera toxin-conjugated horseradish peroxidase (CT-HRP). The LSS muscle complex in both of these amphibians has a segregated pattern of muscle-fiber types (tonic; fast oxidative-glycolytic twitch [FOG]; fast glycolytic twitch [FG]) along an anteroposterior axis. The entire motor pool was labelled by injection of CT-HRP into the whole LSS muscle complex. The motoneurons innervating specific fiber types were labelled by injection of CT-HRP into certain muscle regions. The organization of the motoneuron pool of the LSS complex of both species was arranged in two columns—one ventrolateral and one medial. In bullfrogs, the ventrolateral column contains motoneurons innervating FG and tonic fiber types and the medial column contains motoneurons innervating FOG fiber types. In tiger salamanders, the ventrolateral column contains motoneurons innervating FG fiber types and the medial column contains motoneurons innervating FOG and tonic fiber types. The different motoneuron types also have different soma sizes and patterns of dendritic arborization. In both species, FG motoneurons are the largest, whereas FOG motoneurons are intermediate in size and tonic motoneurons are the smallest. In bullfrogs, the main dendrites of FG motoneurons extend into the dorsolateral and the ventrolateral gray matter of the spinal cord, whereas the dendrites of FOG motoneurons extend into the ventral and medial cord. In the tiger salamander, dendrites of FG motoneurons extend into the ventrolateral spinal cord and dendrites of the FOG motoneurons extend more generally into the ventral cord. Dendrites of tonic motoneurons in both amphibians were small and short, and difficult to observe. These results establish that motoneurons innervating different types of muscle fibers in the LSS muscle complex are segregated spatially and display consistent morphological differences. © 1993 Wiley-Liss, Inc.  相似文献   

10.
In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. These episodes of decreased synchrony can occur spontaneously, especially in the rostral spinal cord where the propagating body waves of swimming originate. Application of serotonin, an endogenous spinal neurotransmitter known to presynaptically inhibit excitatory synapses in lamprey, can promote decreased synchrony of dorsal-ventral bursting. These observations suggest the possible existence of dorsal and ventral locomotor networks with modifiable coupling strength between them. Intracellular recordings of motoneurons during locomotor activity provide some support for this model. Pairs of motoneurons innervating myotomal muscle fibers of similar ipsilateral dorsoventral location tend to have higher correlations of fast synaptic activity during fictive locomotion than do pairs of motoneurons innervating myotomes of different ipsilateral dorsoventral locations, suggesting their control by different populations of premotor interneurons. Further, these different motoneuron pools receive different patterns of excitatory and inhibitory inputs from individual reticulospinal neurons, conveyed in part by different sets of premotor interneurons. Perhaps, then, the locomotor network of the lamprey is not simply a unitary burst generator on each side of the spinal cord that activates all ipsilateral body muscles simultaneously. Instead, the burst generator on each side may comprise at least two coupled burst generators, one controlling motoneurons innervating dorsal body muscles and one controlling motoneurons innervating ventral body muscles. The coupling strength between these two ipsilateral burst generators may be modifiable and weakening when greater swimming maneuverability is required. Variable coupling of intrasegmental burst generators in the lamprey may be a precursor to the variable coupling of burst generators observed in the control of locomotion in the joints of limbed vertebrates.  相似文献   

11.
Partial depletion of spinal motoneuron populations induces dendritic atrophy in neighboring motoneurons, and treatment with testosterone protects motoneurons from induced dendritic atrophy. We explored a potential mechanism for this induced atrophy and protection by testosterone, examining the microglial response to partial depletion of motoneurons. Motoneurons innervating the vastus medialis muscles of adult male rats were killed by intramuscular injection of cholera toxin‐conjugated saporin; some saporin‐injected rats were treated with testosterone. Microglia were later visualized via immunohistochemical staining, classified as monitoring or activated, and counted stereologically. Partial motoneuron depletion increased the number of activated microglia in the quadriceps motor pool, and this increase was attenuated with testosterone treatment. The attenuation in microglial response could reflect an effect of testosterone on suppressing microglia activation, potentially sparing motoneuron dendrites. Alternatively, testosterone could be neuroprotective, sparing motoneuron dendrites, secondarily resulting in reduced microglial activation. To discriminate between these hypotheses, following partial motoneuron depletion, rats were treated with minocycline to inhibit microglial activation. Motoneurons innervating the ipsilateral vastus lateralis muscle were later labeled with cholera toxin‐conjugated horseradish peroxidase, and dendritic arbors were reconstructed. Reduction of microglial activation by minocycline did not prevent induced dendritic atrophy following partial motoneuron depletion. Further, reduction of microglial activation by minocycline treatment resulted in dendritic atrophy in intact animals. Together, these findings indicate that the neuroprotective effect of testosterone on dendrites following motoneuron death is not due to inhibiting microglial activation, and that microglial activity contributes to the normal maintenance of dendritic arbors.  相似文献   

12.
The alpha motoneuron pool and the surface electromyogram (EMG) of the human soleus muscle are modelled, respectively, by an alpha motoneuron pool model generating the firing patterns in the motor units of e muscle and by a muscle model using these discharge patterns to simulate the surface EMG. In the alpha motoneuron pool model, we use a population of motoneurons in which cellular properties like cell size and membrane conductance are distributed according to experimentally observed data. By calculating the contribution from each motor unit, the muscle model predicts the EMG. Wave forms of the motor unit action potentials in the surface EMG are obtained from experimental data. Using the model, we are able to give a quantitative prediction of the motoneuron pool activity and the reflex EMG output at different preactivation levels. The simulated data are consistent with experimentally obtained results in healthy humans. During static isometric muscle preactivations, the simulations show that the reflex strength is highly dependent on the intrinsic threshold properties of the alpha motoneuron pool. Received: 27 April 1993/Accepted in revised form: 8 September 1993  相似文献   

13.
Partial depletion of spinal motoneuron populations induces dendritic atrophy in neighboring motoneurons, and treatment with testosterone is neuroprotective, attenuating induced dendritic atrophy. In this study we examined whether the protective effects of testosterone could be mediated via its androgenic or estrogenic metabolites. Furthermore, to assess whether these neuroprotective effects were mediated through steroid hormone receptors, we used receptor antagonists to attempt to prevent the neuroprotective effects of hormones after partial motoneuron depletion. Motoneurons innervating the vastus medialis muscles of adult male rats were selectively killed by intramuscular injection of cholera toxin‐conjugated saporin. Simultaneously, some saporin‐injected rats were treated with either dihydrotestosterone or estradiol, alone or in combination with their respective receptor antagonists, or left untreated. Four weeks later, motoneurons innervating the ipsilateral vastus lateralis muscle were labeled with cholera toxin‐conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Compared with intact normal animals, partial motoneuron depletion resulted in decreased dendritic length in remaining quadriceps motoneurons. Dendritic atrophy was attenuated with both dihydrotestosterone and estradiol treatment to a degree similar to that seen with testosterone, and attenuation of atrophy was prevented by receptor blockade. Together, these findings suggest that neuroprotective effects on motoneurons can be mediated by either androgenic or estrogenic hormones and require action via steroid hormone receptors, further supporting a role for hormones as neurotherapeutic agents in the injured nervous system. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 691–707, 2017  相似文献   

14.
Approximately half of the motoneurons generated during normal embryonic development undergo programmed cell death. Most of this death occurs during the time when synaptic connections are being formed between motoneurons and their target, skeletal muscle. Subsequent muscle activity stemming from this connection helps determine the final number of surviving motoneurons. These observations have given rise to the idea that motoneuron survival is dependent upon access to muscle derived trophic factors, presumably through intact neuromuscular synapses. However, it is not yet understood how the muscle regulates the supply of such trophic factors, or if there are additional mechanisms operating to control the fate of the innervating motoneuron. Recent observations have highlighted target independent mechanisms that also operate to support the survival of motoneurons, such as early trophic-independent periods of motoneuron death, trophic factors derived from Schwann cells and selection of motoneurons during pathfinding. Here we review recent investigations into motoneuron cell death when the molecular signalling between motoneurons and muscle has been genetically disrupted. From these studies, we suggest that in addition to trophic factors from muscle and/or Schwann cells, specific adhesive interactions between motoneurons and muscle are needed to regulate motoneuron survival. Such interactions, along with intact synaptic basal lamina, may help to regulate the supply and presentation of trophic factors to motoneurons.  相似文献   

15.
Summary The enzyme histochemical profiles of glucose-6-phosphate dehydrogenase (a marker of synthetic performance), succinate dehydrogenase (an indicator of oxidative metabolism), and NADH tetrazolium reductase (a marker of overall neuronal activity) were determined for identified white muscle motoneurons in six control and six cordotomized eels. Images were digitized and mean integrated absorbances obtained using appropriate hardware and software. For motoneurons caudal to the transection site there was a significant decrease in the mean absorbance value for NADH tetrazolium reductases which declines from 0.28 a.u. (arbitrary units) in control animals to 0.23 a.u. in cordotomized animals. However, no significant changes were detected in the activities of glucose-6-phosphate and succinate dehydrogenases. The cross-sectional area of the motoneuronal cell body was not affected by cordotomy. The decrease by around 20% in overall neuronal activity, as expressed by NADH tetrazolium reductase activity, might be expected from the decline in body motility that follows cordotomy. Changes in SDH and G6PDH activities would also be expected to follow this surgery, but none were seen, perhaps because they are compensated for by changes in neuronal metabolism that result from deafferentation.  相似文献   

16.
Spinal motoneurons innervating skeletal muscles comprised predominantly of high oxidative fibers, i.e. slow oxidative and fast oxidative glycolytic, have higher oxidative enzyme activities than motoneurons innervating skeletal muscles comprised primarily of low oxidative fibers, i.e. fast glycolytic. These findings suggest that there is a close relationship between the oxidative phosphorylation capacity of a motoneuron and of the muscle fibers that it innervates. Since some skeletal muscles become faster and less oxidative after 4-14 days of spaceflight, it might be expected that oxidative enzyme activities in some motoneurons also may decrease after spaceflight. In addition, there is significant muscular atrophy after even short spaceflights and, therefore, it may be expected that some motoneurons associated with these muscles also would atrophy. In the present paper, we examine the issue of whether spaceflight induces changes in the oxidative enzyme activity and/or size of spinal motoneurons.  相似文献   

17.
The effect of heavy ion radiation exposure of the spinal cord on the properties of the motoneurons innervating the slow soleus and fast plantaris muscles was investigated. A 15-, 20-, 40-, 50-, or 70-Gy dose of carbon ions (5 Gy/min) was applied to the 2nd to the 6th lumbar segments of the spinal cord in rats. After a 1-month recovery period, the number and cell body size of the irradiated motoneurons innervating the soleus and plantaris muscles did not differ from that of the non-irradiated controls, irrespective of the dose received. However, the oxidative enzyme activity of these motoneurons was decreased by heavy ion radiation at doses of 40, 50, and 70 Gy compared to that of the non-irradiated controls. This decrease in oxidative enzyme activity levels in the motoneurons returned to that of the non-irradiated controls after a 6-month recovery period. We conclude that heavy ion radiation at doses of 40–70 Gy reversibly decreases the oxidative enzyme activity of motoneurons in the spinal cord of rats.  相似文献   

18.
Aging is associated with a variety of pathologies, including motor dysfunctions and reductions in sexual behavior. In male rats, declines in sexual behavior during the aging process may be caused in part by the loss of the lumbar spinal cord motoneurons that innervate the penile musculature. Alternatively, declining sexual behavior may be caused by the precipitous reductions in circulating testosterone that occur during aging. In this paper, we report two experiments examining these issues. In Experiment 1, we counted motoneurons in the lumbar motor nuclei and measured several androgen-sensitive morphological properties of the penile muscles and their innervating motoneurons at several time points during the aging process. Motoneuron number in the lumbar nuclei did not change over time, even with very advanced age. In contrast, the penile muscles and their innervating motoneurons underwent profound atrophy, with muscle weight and motoneuron dendritic length declining to less than 50% of young adult levels. In Experiment 2, we treated aged animals with exogenous testosterone, and then examined their penile neuromuscular systems for morphological changes. Testosterone treatment, both acute and chronic, completely reversed age-related declines in the weight of the penile muscles and in the soma size and dendritic length of their innervating motoneurons. Together, these data suggest that reductions in male sexual behavior during the aging process are caused primarily by declines in testosterone levels rather than motoneuron loss. Furthermore, they raise the possibility that testosterone treatment could play an important role in maintaining neuronal connectivity in the aging body.  相似文献   

19.
Motoneuron loss is a severe medical problem that can result in loss of motor control and eventually death. We have previously demonstrated that partial motoneuron loss can result in dendritic atrophy and functional deficits in nearby surviving motoneurons, and that an androgen‐dependent effect of exercise following injury can be neuroprotective against this dendritic atrophy. In this study, we explored where the necessary site of androgen action is for exercise‐driven neuroprotective effects on induced dendritic atrophy. Motoneurons innervating the vastus medialis muscles of adult male rats were selectively killed by intramuscular injection of cholera toxin‐conjugated saporin. Simultaneously, some saporin‐injected animals were given implants of the androgen receptor antagonist hydroxyflutamide, either directly at the adjacent vastus lateralis musculature ipsilateral to the saporin‐injected vastus medialis or interscapularly as a systemic control. Following saporin injections, some animals were allowed free access to a running wheel attached to their home cages. Four weeks later, motoneurons innervating the same vastus lateralis muscle were labeled with cholera toxin‐conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Dendritic arbor lengths of saporin‐injected animals allowed to exercise were significantly longer than those not allowed to exercise. Androgen receptor blockade locally at the vastus lateralis muscle prevented the protective effect of exercise. These findings indicate that exercise following neural injury exerts a protective effect on motoneuron dendrites, which acts via androgen receptor action at the target muscle.  相似文献   

20.
There is a mediolateral gradient in activation of the parasternal intercostal (PI) muscle during inspiration. In the present study, we tested the hypotheses that serotonergic [5-hydroxytryptamine (5-HT)] input from descending central drive and/or intrinsic size-related properties of PI motoneurons leads to the differential activation of PI muscles. In dogs, PI motoneurons innervating the medial and lateral regions of the PI muscles at the T(3)-T(5) interspaces were retrogradely labeled by intramuscular injection of cholera toxin B subunit. After a 10-day survival period, PI motoneurons and 5-HT terminals were visualized by using immunohistochemistry and confocal imaging. There were no differences in motoneuron morphology among motoneurons innervating the medial and lateral regions of the PI muscle. However, the number of 5-HT terminals and the 5-HT terminal density (normalized for surface area) were greater in motoneurons innervating the medial region of the PI muscle compared with the lateral region. These results suggest that differences in distribution of 5-HT input may contribute to regional differences in PI muscle activation during inspiration and that differences in PI motoneuron recruitment do not relate to size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号