首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhai  Xiaofeng  Zhao  Wen  Li  Kemang  Zhang  Cheng  Wang  Congcong  Su  Shuo  Zhou  Jiyong  Lei  Jing  Xing  Gang  Sun  Haifeng  Shi  Zhiyu  Gu  Jinyan 《中国病毒学》2019,34(6):601-609
Since late 2011, outbreaks of pseudorabies virus(PRV) have occurred in southern China causing major economic losses to the pig industry. We previously reported that variant PRV forms and recombination in China could be the source of continued epidemics. Here, we analyzed samples from intensive pig farms in eastern China between 2017 and 2019, and sequenced the main glycoproteins(gB, gC, gD, and gE) to study the evolution characteristics of PRV. Based on the g C gene, we found that PRV variants belong to clade 2 and detected a founder effect during by the PRV epidemic. In addition,we detected inter-and intra-clade recombination; in particular, inter-clade recombination in the g B genes of strains FJ-ZXF and FJ-W2, which were recombinant with clade 1 strains. We also found specific amino-acid changes and positively selected sites, possibly associated with functional changes. This analysis of the emergence of PRV in China illustrates the need for continuous monitoring and the development of vaccines against specific variants of PRV.  相似文献   

2.
【背景】伪狂犬病毒(pseudorabies virus,PRV)是养猪生产中的一类重要病原,自2011年以来,我国接种了Bartha-K61疫苗的养殖场暴发了大规模的伪狂犬病疫情。【目的】调查目前四川省PRV的流行病学以及毒株的遗传进化,对2018?2019年从86个猪场收集的384份疑似PRV感染样本进行病原学检测。【方法】根据PRV-gE基因检测引物对采集的384份样品进行PCR扩增,并对不同季节、不同地区的PRV阳性率进行统计,将PRV感染与临床症状的相关性进行统计学分析。选择部分PRV阳性样本在BHK-21细胞上进行病毒的分离,随后进行分离毒株的gC、gE、TK基因的遗传进化分析。【结果】PRV阳性猪只的比率为9.9% (38/384);阳性猪场比率为16.3% (14/86);流产母猪的PRV阳性率为32.1% (27/84);种公猪阳性率为2.0% (4/198);神经症状猪的PRV阳性率为11.4% (4/35);呼吸症状猪的PRV阳性率为4.5% (3/67)。统计学分析表明,PRV感染与母猪和公猪繁殖障碍症状相关(P<0.01)。其中,冬季(12月、1月、2月) PRV阳性率最高,约为33.0% (31/94);春季(3月、4月、5月)的阳性率为9.1% (3/33);夏季和秋季的阳性率分别约为1.5% (2/130)和1.6% (2/127)。在2018?2019年共分离出3株PRV毒株,分别命名为PRV-SN、PRV-DJY、PRV-CD。PRV-XJ为本实验室2016年在四川省分离的一株毒株,为了了解毒株的遗传进化信息,先后扩增了这4个毒株的gC、gE、TK基因。序列比对表明四川分离株与国内株相似,存在额外的零星性突变和缺失。【结论】养殖场仍应加强对种猪群中伪狂犬病的净化。  相似文献   

3.
猪瘟疫苗研究进展   总被引:2,自引:0,他引:2  
猪瘟是猪的一种重要传染病,给世界养猪业造成了巨大的经济损失。疫苗免疫是预防该病的主要手段。本文综述了猪瘟流行现状、传统疫苗、亚单位疫苗、活载体疫苗、标记疫苗、核酸疫苗的研究进展,并对它们的发展趋势作了初步探讨和展望。  相似文献   

4.
Hong Q  Qian P  Li XM  Yu XL  Chen HC 《Biotechnology letters》2007,29(11):1677-1683
Pseudorabies (PR), foot-and-mouth disease (FMD), and porcine parvovirus disease are three important infectious diseases in swine worldwide. The gene-deleted pseudorabies virus (PRV) has been used as a live-viral vector to develop multivalent genetic engineering vaccine. In this study, a recombinant PRV, which could co-express protein precursor P1-2A of FMDV and VP2 protein of PPV, was constructed using PRV TK/gE/LacZ+ mutant as the vector. After homologous recombination and plaque purification, recombinant virus PRV TK/gE/P1-2A-VP2 was acquired and identified. Immunogenicity, safety of the recombinant PRV and its protection against PRV were confirmed in a mouse model by indirect ELISA and serum neutralization test. The results show that the recombinant PRV is a candidate vaccine strain to develop a novel trivalent vaccine against PRV, FMDV and PPV in swine.  相似文献   

5.
6.
非洲猪瘟防控及疫苗研发:挑战与对策   总被引:3,自引:0,他引:3  
王涛  孙元  罗玉子  仇华吉 《生物工程学报》2018,34(12):1931-1942
非洲猪瘟是由非洲猪瘟病毒引起的一种接触传染性、广泛出血性猪烈性传染病,最急性和急性感染死亡率高达100%。自2018年8月我国发生首起非洲猪瘟疫情后,3个多月内,已有18个省份累计暴发69起,给我国养猪业造成了沉重打击。从目前非洲猪瘟全球流行态势及世界各国防控经验来看,我国非洲猪瘟防控和根除面临的形势不容乐观,亟需安全有效的疫苗用于该病的防控。文中结合当前非洲猪瘟病原学最新研究成果,系统总结了非洲猪瘟防控策略、疫苗研究进展及其面临的挑战,重点分析了疫苗研发历程、存在的问题、未来发展方向以及商业化应用所面临的关键科学问题,以期为我国非洲猪瘟防控及病原和疫苗研究提供借鉴。  相似文献   

7.
罗瑞  潘力  孙元  黄淑坚  仇华吉 《微生物学报》2021,61(12):3903-3917
非洲猪瘟(African swine fever,ASF)是由非洲猪瘟病毒(African swine fever virus,ASFV)引起的一种出血性、致死性的猪烈性传染病。ASF在全球广泛传播,给养猪业造成重大的经济损失。ASFV基因组庞大,可编码150多种蛋白,一些非必需基因编码的蛋白与调控病毒毒力、复制和免疫逃逸等相关。通过删除ASFV毒力相关的非必需基因所构建的减毒株是当前比较有前景的疫苗,然而其安全性有待提高。系统地鉴定ASFV非必需基因及其功能,不仅有助于ASF基因缺失疫苗的研发,也有益于ASFV致病机制研究。本文对目前已鉴定的ASFV非必需基因及其功能研究进行了总结分析,着重讨论了影响ASFV毒力、调控病毒复制、参与免疫逃逸的非必需基因及其编码蛋白的功能,旨在加深对ASFV病原学的认识,为新的ASFV非必需基因的鉴定和功能研究提供参考。  相似文献   

8.
Annemarie Bouma   《Biologicals》2005,33(4):241-245
The aim of vaccination in an eradication campaign is not only to induce clinical protection, but primarily to stop transmission of infections within and between herds by inducing herd immunity. Consequently, vaccines should be evaluated for their capacity to reduce virus transmission in the population. Glycoprotein E (gE) negative marker vaccines against Pseudorabies virus (PRV) infections in pigs have been evaluated this way in experiments and field studies. PRV infection in groups of (vaccinated) pigs was determined by measuring antibodies against gE of PRV from regularly taken serum samples. For the statistical analysis of the experiments a stochastic susceptible-infectious-removed (SIR) model was used. A measure for the transmission of virus is the reproduction ratio R, which is defined as the average number of secondary cases caused by one typical infectious individual. This implies that an infection will always fade out in a population when R < 1, but the infection can spread massively when R > 1. From several experiments it was shown that R < 1. Field studies showed that the R within herds was still > 1, but by reducing further contacts the R could be reduced to a value below one. This would imply that PRV could be eradicated by means of vaccination. In The Netherlands, an eradication campaign was launched in 1993, and in 2002 the virus was eradicated, as shown by a negligible number of gE-positive pigs. Farmers' organizations have to decide whether or not to stop vaccination.  相似文献   

9.
伪狂犬病新型疫苗研究进展   总被引:2,自引:0,他引:2  
伪狂犬病是多种家畜和野生动物的一种重要传染病,给世界畜牧业特别是养猪业造成了巨大的经济损失,疫苗免疫是预防控制该病的主要手段。综述了伪狂犬病亚单位疫苗,核酸疫苗,重组疫苗,基因缺失疫苗等新型疫苗的研究进展。  相似文献   

10.
The words 'guinea pig' are synonymous with scientific experimentation, but much less is known about this species than many other laboratory animals. This animal model has been used for approximately 200 y and was the first to be used in the study of infectious diseases such as tuberculosis and diphtheria. Today the guinea pig is used as a model for a number of infectious bacterial diseases, including pulmonary, sexually transmitted, ocular and aural, gastrointestinal, and other infections that threaten the lives of humans. Most studies on the immune response to these diseases, with potential therapies and vaccines, have been conducted in animal models (for example, mouse) that may have less similarity to humans because of the large number of immunologic reagents available for these other species. This review presents some of the diseases for which the guinea pig is regarded as the premier model to study infections because of its similarity to humans with regard to symptoms and immune response. Furthermore, for diseases in which guinea pigs share parallel pathogenesis of disease with humans, they are potentially the best animal model for designing treatments and vaccines. Future studies of immune regulation of these diseases, novel therapies, and preventative measures require the development of new immunologic reagents designed specifically for the guinea pig.  相似文献   

11.
Atlantic salmon (Salmo salar L.) mariculture has been associated with epidemics of infectious diseases that threaten not only local production, but also wild fish coming into close proximity to marine pens and fish escaping from them. Heart and skeletal muscle inflammation (HSMI) is a frequently fatal disease of farmed Atlantic salmon. First recognized in one farm in Norway in 1999[1], HSMI was subsequently implicated in outbreaks in other farms in Norway and the United Kingdom[2]. Although pathology and disease transmission studies indicated an infectious basis, efforts to identify an agent were unsuccessful. Here we provide evidence that HSMI is associated with infection with piscine reovirus (PRV). PRV is a novel reovirus identified by unbiased high throughput DNA sequencing and a bioinformatics program focused on nucleotide frequency as well as sequence alignment and motif analyses. Formal implication of PRV in HSMI will require isolation in cell culture and fulfillment of Koch''s postulates, or prevention or modification of disease through use of specific drugs or vaccines. Nonetheless, as our data indicate that a causal relationship is plausible, measures must be taken to control PRV not only because it threatens domestic salmon production but also due to the potential for transmission to wild salmon populations.  相似文献   

12.
猪伪狂犬病病毒流行株HLJ-01的分离鉴定及致病性分析   总被引:1,自引:1,他引:0  
【背景】自2011年以来,猪伪狂犬病毒(pseudorabies virus,PRV)发生变异,经典的疫苗株已不能完全抵抗PRV变异株的感染,国内多个猪场出现伪狂犬病的暴发,PRV变异毒株开始在我国大规模流行。【目的】通过分离PRV流行变异毒株,并对其进行遗传进化和致病性分析,为PRV流行病学调查及疫苗研制提供实验数据。【方法】采集黑龙江某猪场感染PRV的脑组织病料,根据GenBank PRV gEgB保守序列设计引物,进行PCR鉴定。通过对gEgC基因进行序列测定和遗传进化分析。利用BHK-21细胞分离病毒,采用噬斑纯化方法对病毒进行纯化。通过电镜、间接免疫荧光对病毒进行鉴定,测定病毒生长曲线并进行致病性研究。【结果】经PCR和测序鉴定分离株为PRV流行株,将其命名为HLJ-01。遗传进化分析结果显示,该分离毒株与我国近几年分离的流行变异株位于同一分支;氨基酸序列分析结果显示,gE和gC存在国内流行变异株的特征序列,表明该分离毒株为流行变异株。生长曲线显示,分离株HLJ-01在感染48h时滴度最高(108.5TCID50/mL)。电镜观察结果显示,病毒颗粒直径约150nm,呈球形,有囊膜,囊膜外有放射状纤突,呈现典型PRV病毒特征。动物感染实验结果显示,107.0TCID50剂量感染组死亡率为100%;106.0TCID50剂量感染组死亡率为80%;105.0TCID50剂量感染组死亡率为60%。仔猪在接种病毒后均出现PRV感染的典型症状和病理变化,证实分离毒株对仔猪有较强致病力。【结论】分离获得一株猪伪狂犬病毒,经鉴定该分离株为流行变异株,而且具有较强的致病力,这为PRV流行病学分析及疫苗候选株的筛选奠定了基础。  相似文献   

13.
Brukman A  Enquist LW 《Journal of virology》2006,80(21):10871-10873
Pseudorabies virus (PRV), an alphaherpesvirus related to herpes simplex virus type 1 and varicella-zoster virus, infects a broad host range of mammals. A striking characteristic of PRV infection is the different symptoms and outcomes of infection in natural and nonnatural hosts. Adult pigs, the natural hosts of PRV, survive infection with only mild respiratory symptoms, while nonnatural hosts, including rodents and cattle, invariably die after exhibiting neurological symptoms. Here, we show that the PRV EP0 protein is necessary to overcome an interferon-mediated antiviral response in primary cells from the natural host of PRV but is not necessary in nonnatural-host cells.  相似文献   

14.
Pseudorabies virus (PRV) is a herpesvirus of swine, a member of the Alphaherpesvirinae subfamily, and the etiological agent of Aujeszky's disease. This review describes the contributions of PRV research to herpesvirus biology, neurobiology, and viral pathogenesis by focusing on (i) the molecular biology of PRV, (ii) model systems to study PRV pathogenesis and neurovirulence, (iii) PRV transsynaptic tracing of neuronal circuits, and (iv) veterinary aspects of pseudorabies disease. The structure of the enveloped infectious particle, the content of the viral DNA genome, and a step-by-step overview of the viral replication cycle are presented. PRV infection is initiated by binding to cellular receptors to allow penetration into the cell. After reaching the nucleus, the viral genome directs a regulated gene expression cascade that culminates with viral DNA replication and production of new virion constituents. Finally, progeny virions self-assemble and exit the host cells. Animal models and neuronal culture systems developed for the study of PRV pathogenesis and neurovirulence are discussed. PRV serves as a self-perpetuating transsynaptic tracer of neuronal circuitry, and we detail the original studies of PRV circuitry mapping, the biology underlying this application, and the development of the next generation of tracer viruses. The basic veterinary aspects of pseudorabies management and disease in swine are discussed. PRV infection progresses from acute infection of the respiratory epithelium to latent infection in the peripheral nervous system. Sporadic reactivation from latency can transmit PRV to new hosts. The successful management of PRV disease has relied on vaccination, prevention, and testing.  相似文献   

15.
Pseudorabies virus (PRV) is a herpesvirus of swine, a member of the Alphaherpesvirinae subfamily, and the etiological agent of Aujeszky's disease. This review describes the contributions of PRV research to herpesvirus biology, neurobiology, and viral pathogenesis by focusing on (i) the molecular biology of PRV, (ii) model systems to study PRV pathogenesis and neurovirulence, (iii) PRV transsynaptic tracing of neuronal circuits, and (iv) veterinary aspects of pseudorabies disease. The structure of the enveloped infectious particle, the content of the viral DNA genome, and a step-by-step overview of the viral replication cycle are presented. PRV infection is initiated by binding to cellular receptors to allow penetration into the cell. After reaching the nucleus, the viral genome directs a regulated gene expression cascade that culminates with viral DNA replication and production of new virion constituents. Finally, progeny virions self-assemble and exit the host cells. Animal models and neuronal culture systems developed for the study of PRV pathogenesis and neurovirulence are discussed. PRV serves asa self-perpetuating transsynaptic tracer of neuronal circuitry, and we detail the original studies of PRV circuitry mapping, the biology underlying this application, and the development of the next generation of tracer viruses. The basic veterinary aspects of pseudorabies management and disease in swine are discussed. PRV infection progresses from acute infection of the respiratory epithelium to latent infection in the peripheral nervous system. Sporadic reactivation from latency can transmit PRV to new hosts. The successful management of PRV disease has relied on vaccination, prevention, and testing.  相似文献   

16.
猪瘟(Classical swine fever,CSF)是猪的一种急性、热性和致死性传染病。该病流行范围很广,而且致死率极高,给世界养猪业造成严重危害。目前,猪瘟流行地区或国家仍然采用接种弱毒疫苗的方法作为预防猪瘟的主要策略,但接种弱毒疫苗的传统预防控制方法无法区别猪瘟疫苗免疫抗体和野毒感染抗体。为了净化、消灭猪瘟,新型标记疫苗的研究已迫在眉睫。近些年,陆续有国内外研究者应用分子生物学和基因工程方法,对猪瘟野毒株或弱毒株进行基因修饰构建出新毒株,其中以Erns和E2为基础构建新毒株的方法占据着重要地位。部分候选疫苗具有较好的免疫效果,可用于区分免疫和自然感染动物,而且有望作为新一代疫苗来替代传统弱毒疫苗。  相似文献   

17.
The alpha-herpesviruses: molecular pathfinders in nervous system circuits   总被引:2,自引:0,他引:2  
Several neuroinvasive viruses can be used to study the mammalian nervous system. In particular, infection by pseudorabies virus (PRV), an alpha-herpesvirus with broad host range, reveals chains of functionally connected neurons in the nervous systems of a variety of mammals. The specificity of PRV trans-neuronal spread has been established in several systems. One attenuated strain, PRV-Bartha, causes a reduced inflammatory response and also spreads only from infected post- to pre-synaptic neurons. We review the basics of PRV tracing and then discuss new developments and novel approaches that have enabled a more detailed understanding of the architecture of the nervous system. As questions and techniques evolve in the field of neuroscience, advances in PRV tracing will certainly follow.  相似文献   

18.
Hepatitis C virus (HCV) infection is a leading cause of chronic liver diseases. Progress in the HCV field was greatly enhanced by constructing infectious cDNA clone of JFH-1. Since then, JFH-1-based intra- and intergenotypic recombinants have been developed, and this permitted the study of vaccines and antiviral inhibitors for all genotypes. Recently, highly efficient HCV culture systems have been established by using consensus sequence-based clones. We developed a novel strategy to construct infectious HCV cDNA clone by combining functional screening of sequences directly from a genotype 2a clinical isolate (PR63) and cell culture adaptation. Using JFH-1 cDNA as the starting backbone, we sequentially replaced the JFH-1 fragments with a sequence from the pools of PR63 sequences. Through engineering adaptive mutations that improve HCV infectivity, we finally established a full-length cell culture-derived infectious clone of PR63, named PR63cc, that could efficiently produce virus particles in Huh7-derived cells, with peak titers of 1.6 × 105 focus-forming units/ml. The PR63cc could be neutralized by an anti-E2 antibody and inhibited by antiviral agents but appeared more resistant to an NS5A inhibitor than JFH-1. In summary, we developed a new approach to construct an infectious HCV cDNA clone that can produce viruses efficiently in cell culture. This approach could be applied to other viral isolates, with potential implications for individualized treatments of HCV patients.  相似文献   

19.
Chagas' disease is caused by Trypanosoma cruzi (T. cruzi) which was once prevalent in Central and South America. Although the recent success in Triatoma vector control has made the disease being possibly "extinct" in the near future, the development of effective preventive and therapeutic vaccines is still necessary to prevent the resurgence of the neglected infection. In addition to the importance for containing the disease, T. cruzi infection presents unique features for elucidating hosts' immune responses against intracellular infectious agents. Due to its biological capacity for invading into principally any types of cells and for causing systemic infection which damages particularly muscle and neural cells, T cell immunity is critical for resolving its infection. Although T cell-mediated immune responses have been, so far, extensively investigated in viral and bacterial infections, parasitic infection such as malaria has presented epoch-making discovery in T cell immunity. Recent advances in the analyses of T cell-mediated immune responses against T. cruzi infection now make this infectious disease potentially more suitable for detecting subtle immunological changes in hosts' immune defense upon modifying immune system. The current review focuses on the usefulness of T. cruzi infection as a model for developing effective CD8(+) T cell-mediated vaccine against intracellular infectious agents.  相似文献   

20.
Li P  Bai X  Sun P  Li D  Lu Z  Cao Y  Fu Y  Bao H  Chen Y  Xie B  Liu Z 《BMC veterinary research》2012,8(1):57
ABSTRACT: BACKGROUND: Foot-and-mouth disease (FMD) is the most economically important and highly contagious disease of cloven-hoofed animals worldwide. Control of the disease has been mainly based on large-scale vaccinations with whole-virus inactivated vaccines. In recent years, a series of outbreaks of type O FMD occurred in China (including Chinese Taipei, Chinese Hong Kong) posed a tremendous threat to Chinese animal husbandry. Its causative agent, type O FMDV, has evolved into three topotypes (East-South Asia (ME-SA), Southeast Asia (SEA), Cathay (CHY)) in these regions, which represents an important obstacle to disease control. The available FMD vaccine in China shows generally good protection against ME-SA and SEA topotype viruses infection, but affords insufficient protection against some variants of the CHY topotype. Therefore, the choice of a new vaccine strain is of fundamental importance. RESULTS: The present study describes the generation of a full-length infectious cDNA clone of FMDV vaccine strain and a genetically modified virus with some amino acid substitutions in antigenic sites 1, 3, and 4, based on the established infectious clone. The recombinant viruses had similar growth properties to the wild O/HN/CHA/93 virus. All swine immunized with inactivated vaccine prepared from the O/HN/CHA/93 were fully protected from challenge with the viruses of ME-SA and SEA topotypes and partially protected against challenge with the virus of CHA topotype at 28 days post-immunization. In contrast, the swine inoculated with the genetically modified vaccine were completely protected from the infection of viruses of the three topotypes. CONCLUSIONS: Some amino acid substitutions in the FMDV vaccine strain genome did not have an effect on the ability of viral replication in vitro. The vaccine prepared from genetically modified FMDV by reverse genetics significantly improved the protective efficacy to the variant of the CHA topotype, compared with the wild O/HN/CHA/93 virus. Thus, the full-length cDNA clone of FMDV can be a useful tool to develop genetically engineered FMDV vaccine candidates to help control porcinophilic FMD epidemics in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号