首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
付银  常惠芸  刘静  陈慧勇 《生命科学》2013,(11):1065-1070
口蹄疫病毒(FMDV)导致了偶蹄动物口蹄疫的发生,它是一类有着自身特点的RNA病毒。首先,FMDV衣壳蛋白VP1识别结合宿主细胞膜上的整联蛋白等受体,以内吞的方式进入细胞,利用宿主细胞成分完成病毒蛋白的合成。这些新合成的L^pro、2C和3C^pro等病毒致病因子进一步抑制宿主基因的转录和翻译,诱导细胞凋亡和白噬,并抑制干扰素介导的一系列先天性和获得性免疫反应。宿主则在病毒侵染细胞的初期,利用病毒识别受体等来识别病毒并诱导合成干扰素等细胞因子,介导多种免疫反应以清除病毒。病毒和宿主两者在持续的利用和较量中完成疾病的发生和痊愈等。其次,不断发现的病毒受体、结合基序、致病因子及宿主细胞的多种免疫调节因子将成为相关领域新的研究内容。综上,开发高效安全疫苗、增强自身免疫力及利用RNAi直接抑制病毒RNA等便成为现代FMDV防治的主要内容。  相似文献   

2.
3.
Foot-and-mouth disease virus (FMDV), the causative agent of foot-and-mouth disease, is an Aphthovirus within the Picornaviridae family. During infection with FMDV, several host cell membrane rearrangements occur to form sites of viral replication. FMDV protein 2C is part of the replication complex and thought to have multiple roles during virus replication. To better understand the role of 2C in the process of virus replication, we have been using a yeast two-hybrid approach to identify host proteins that interact with 2C. We recently reported that cellular Beclin1 is a natural ligand of 2C and that it is involved in the autophagy pathway, which was shown to be important for FMDV replication. Here, we report that cellular vimentin is also a specific host binding partner for 2C. The 2C-vimentin interaction was further confirmed by coimmunoprecipitation and immunofluorescence staining to occur in FMDV-infected cells. It was shown that upon infection a vimentin structure forms around 2C and that this structure is later resolved or disappears. Interestingly, overexpression of vimentin had no effect on virus replication; however, overexpression of a truncated dominant-negative form of vimentin resulted in a significant decrease in viral yield. Acrylamide, which causes disruption of vimentin filaments, also inhibited viral yield. Alanine scanning mutagenesis was used to map the specific amino acid residues in 2C critical for vimentin binding. Using reverse genetics, we identified 2C residues that are necessary for virus growth, suggesting that the interaction between FMDV 2C and cellular vimentin is essential for virus replication.  相似文献   

4.
Foot-and-mouth disease virus (FMDV), the causative agent of foot-and-mouth disease, is an Apthovirus within the Picornaviridae family. Replication of the virus occurs in association with replication complexes that are formed by host cell membrane rearrangements. The largest viral protein in the replication complex, 2C, is thought to have multiple roles during virus replication. However, studies examining the function of FMDV 2C have been rather limited. To better understand the role of 2C in the process of virus replication, we used a yeast two-hybrid approach to identify host proteins that interact with 2C. We report here that cellular Beclin1 is a specific host binding partner for 2C. Beclin1 is a regulator of the autophagy pathway, a metabolic pathway required for efficient FMDV replication. The 2C-Beclin1 interaction was further confirmed by coimmunoprecipitation and confocal microscopy to actually occur in FMDV-infected cells. Overexpression of either Beclin1 or Bcl-2, another important autophagy factor, strongly affects virus yield in cell culture. The fusion of lysosomes to autophagosomes containing viral proteins is not seen during FMDV infection, a process that is stimulated by Beclin1; however, in FMDV-infected cells overexpressing Beclin1 this fusion occurs, suggesting that 2C would bind to Beclin1 to prevent the fusion of lysosomes to autophagosomes, allowing for virus survival. Using reverse genetics, we demonstrate here that modifications to the amino acids in 2C that are critical for interaction with Beclin1 are also critical for virus growth. These results suggest that interaction between FMDV 2C and host protein Beclin1 could be essential for virus replication.  相似文献   

5.
Foot-and-mouth disease virus (FMDV) can result in economical destruction of cloven-hoofed animals. FMDV infection has been reported to induce macroautophagy/autophagy; however, the precise molecular mechanisms of autophagy induction and effect of FMDV capsid protein on autophagy remain unknown. In the present study, we report that FMDV infection induced a complete autophagy process in the natural host cells of FMDV, and inhibition of autophagy significantly decreased FMDV production, suggesting that FMDV-induced autophagy facilitates viral replication. We found that the EIF2S1-ATF4 pathway was activated and the AKT-MTOR signaling pathway was inhibited by FMDV infection. We also observed that ultraviolet (UV)-inactivated FMDV can induce autophagy. Importantly, our work provides the first piece of evidence that expression of FMDV capsid protein VP2 can induce autophagy through the EIF2S1-ATF4-AKT-MTOR cascade, and we found that VP2 interacted with HSPB1 (heat shock protein family B [small] member 1) and activated the EIF2S1-ATF4 pathway, resulting in autophagy and enhanced FMDV replication. In addition, we show that VP2 induced autophagy in a variety of mammalian cell lines and decreased aggregates of a model mutant HTT (huntingtin) polyglutamine expansion protein (HTT103Q). Overall, our results demonstrate that FMDV capsid protein VP2 induces autophagy through interaction with HSPB1 and activation of the EIF2S1-ATF4 pathway.  相似文献   

6.
Xue  Qiao  Liu  Huisheng  Zeng  Qiaoying  Zheng  Haixue  Xue  Qinghong  Cai  Xuepeng 《中国病毒学》2019,34(6):610-617
Foot-and-mouth disease virus(FMDV) can infect domestic and wild cloven-hoofed animals. The non-structural protein 3 D plays an important role in FMDV replication and pathogenesis. However, the interaction partners of 3 D, and the effects of those interactions on FMDV replication, remain incompletely elucidated. In the present study, using the yeast two-hybrid system, we identified a porcine cell protein, DEAD-box RNA helicase 1(DDX1), which interacted with FMDV 3 D. The DDX1-3 D interaction was further confirmed by co-immunoprecipitation experiments and an indirect immunofluorescence assay(IFA) in porcine kidney 15(PK-15) cells. DDX1 was reported to either inhibit or facilitate viral replication and regulate host innate immune responses. However, the roles of DDX1 during FMDV infection remain unclear. Our results revealed that DDX1 inhibited FMDV replication in an ATPase/helicase activity-dependent manner. In addition, DDX1 stimulated IFN-b activation in FMDV-infected cells. Together, our results expand the body of knowledge regarding the role of DDX1 in FMDV infection.  相似文献   

7.
8.
Herpesviruses such as cytomegaloviruses encode functions that modulate the innate response in diverse ways to counteract host sensing and delay host clearance during infection. The murine cytomegalovirus M45 protein interacts with receptor-interacting protein (RIP) 1 and RIP3 via a RIP homotypic interaction motif. Cell death suppression by M45 requires RIP homotypic interaction motif-dependent interaction with RIP1. This interaction also underlies the cell tropism role of M45 in preventing premature death of endothelial cells during murine cytomegalovirus infection. Thus, M45 is a viral inhibitor of RIP activation that provides a direct cell type-dependent replication benefit to the virus while modulating other biological processes signaling via the RIP1 adaptor such as activation of Toll-like receptor (TLR)3 as well as other mediators of cell death.  相似文献   

9.
Candidate foot-and-mouth disease (FMD) DNA vaccines designed to produce viral capsids lacking infectious viral nucleic acid were evaluated. Plasmid DNAs containing a portion of the FMDV genome coding for the capsid precursor protein (P1-2A) and wild-type or mutant viral proteinase 3C (plasmids P12X3C or P12X3C-mut, respectively) were constructed. Cell-free translation reactions programmed with pP12X3C (wild-type 3C) and pP12X3C-mut produced a capsid precursor, but only the reactions programmed with the plasmid encoding the functional proteinase resulted in P1-2A processing and capsid formation. Baby hamster kidney (BHK) cells also produced viral capsid proteins when transfected with these plasmids. Plasmid P12X3C was administered to mice by intramuscular, intradermal, and epithelial (gene gun) inoculations. Anti-FMD virus (FMDV) antibodies were detected by radioimmunoprecipitation (RIP) and plaque reduction neutralization assays only in sera of mice inoculated by using a gene gun. When pP12X3C and pP12X3C-mut were inoculated into mice by using a gene gun, both plasmids elicited an antibody response detectable by RIP but only pP12X3C elicited a neutralizing antibody response. These results suggest that capsid formation in situ is required for effective immunization. Expression and stimulation of an immune response was enhanced by addition of an intron sequence upstream of the coding region, while addition of the FMDV internal ribosome entry site or leader proteinase (L) coding region either had no effect or reduced the immune response.  相似文献   

10.
The enterovirus 2B/2C cleavage site differs from the common cleavage site motif AxxQ/G by the occurrence of either polar residues at the P1' position or large aliphatic residues at the P4 position. To study (i) the putative contribution of these aberrant residues to the stability of precursor protein 2BC, (ii) the determinants of cleavage site specificity and efficiency of 3Cpro, and (iii) the importance of efficient cleavage at this site for viral replication, a mutational analysis of the coxsackie B3 virus (CBV3) 2B/2C cleavage site (AxxQ/N) was performed. Neither replacement of the P1' asparagine with a serine or a glycine nor replacement of the P4 alanine with a valine significantly affected 2B/2C cleavage efficiency, RNA replication, or virus growth. The introduction of a P4 asparagine, as can be found at the CBV3 3C/3D cleavage site, caused a severe reduction in 2B/2C cleavage and abolished virus growth. These data support the idea that a P4 asparagine is an unfavorable residue that contributes to a slow turnover of precursor protein 3CD but argue that it is unlikely that the aberrant 2B/2C cleavage site motifs serve to regulate 2B/2C processing efficiency and protein 2BC stability. The viability of a double mutant containing a P4 asparagine and a P1' glycine demonstrated that a P1' residue can compensate for the adverse effects of an unfavorable P4 residue. Poliovirus (or poliovirus-like) 2B/2C cleavage site motifs were correctly processed by CBV 3Cpro, albeit with a reduced efficiency, and yielded viable viruses. Analysis of in vivo protein synthesis showed that mutant viruses containing poorly processed 2B/2C cleavage sites were unable to completely shut off cellular protein synthesis. The failure to inhibit host translation coincided with a reduced ability to modify membrane permeability, as measured by the sensitivity to the unpermeant translation inhibitor hygromycin B. These data suggest that a critical level of protein 2B or 2C, or both, may be required to alter membrane permeability and, possibly as a consequence, to shut off host cell translation.  相似文献   

11.
We recently provided evidence that the ribonucleotide reductase R1 subunits of herpes simplex virus types 1 and 2 (HSV-1 and -2) protect cells against tumor necrosis factor alpha- and Fas ligand-induced apoptosis by interacting with caspase 8. Double-stranded RNA (dsRNA) is a viral intermediate known to initiate innate antiviral responses. Poly(I · C), a synthetic analogue of viral dsRNA, rapidly triggers caspase 8 activation and apoptosis in HeLa cells. Here, we report that HeLa cells after HSV-1 and HSV-2 infection were quickly protected from apoptosis caused by either extracellular poly(I · C) combined with cycloheximide or transfected poly(I · C). Cells infected with the HSV-1 R1 deletion mutant ICP6Δ were killed by poly(I · C), indicating that HSV-1 R1 plays a key role in antiapoptotic responses to poly(I · C). Individually expressed HSV R1s counteracted caspase 8 activation by poly(I · C). In addition to their binding to caspase 8, HSV R1s also interacted constitutively with receptor-interacting protein 1 (RIP1) when expressed either individually or with other viral proteins during HSV infection. R1(1-834)-green fluorescent protein (GFP), an HSV-2 R1 deletion mutant protein devoid of antiapoptotic activity, did not interact with caspase 8 and RIP1, suggesting that these interactions are required for protection against poly(I · C). HSV-2 R1 inhibited the interaction between the Toll/interleukin-1 receptor domain-containing adaptor-inducing beta interferon (IFN-β) (TRIF) and RIP1, an interaction that is essential for apoptosis triggered by extracellular poly(I · C) plus cycloheximide or TRIF overexpression. TRIF silencing reduced poly(I · C)-triggered caspase 8 activation in mock- and ICP6Δ-infected cells, confirming that TRIF is involved in poly(I · C)-induced apoptosis. Thus, by interacting with caspase 8 and RIP1, HSV R1s impair the apoptotic host defense mechanism prompted by dsRNA.  相似文献   

12.
Huang H  Chan H  Wang YY  Ouyang DY  Zheng YT  Tam SC 《Life sciences》2006,79(13):1287-1292
Trichosanthin (TCS) is a type 1 ribosome-inactivating protein (RIP) effective against HIV-1 and HSV-1 replication. The mechanism of its antiviral activity is not clear. Many believe that it is related to ribosome inactivation. Some RIPs and viral infection affect the phosphorylation of MAPK and Bcl-2 and these proteins may be the common element linking RIP and viral infection. This study investigated the effect of HSV-1 infection on p38 MAPK and Bcl-2 as well as possible interference by TCS. Results showed that HSV-1 infection induced an elevation of phosphorylated p38 and Bcl-2 in Vero cells, which could be partially blocked by TCS. At the same time, both viral replication and host cells viability were lowered. Viral replication, Vero cell viability, p38 MAPK and Bcl-2 were further reduced with the addition of a p38 MAPK inhibitor (SB203580). This suggested that TCS may interfere with MAPK and Bcl-2 signals generated by infection leading to inhibition of viral replication. In summary, our results demonstrated that HSV-1 infection in Vero cells induced an elevation of p38 MAPK and Bcl-2. TCS suppressed this rise and reduced viral replication. The MAPK family may play a role in the antiviral mechanism of TCS.  相似文献   

13.
14.
Infection of cells with picornaviruses can lead to a block in protein secretion. For poliovirus this is achieved by the 3A protein, and the consequent reduction in secretion of proinflammatory cytokines and surface expression of major histocompatibility complex class I proteins may inhibit host immune responses in vivo. Foot-and-mouth disease virus (FMDV), another picornavirus, can cause persistent infection of ruminants, suggesting it too may inhibit immune responses. Endoplasmic reticulum (ER)-to-Golgi apparatus transport of proteins is blocked by the FMDV 2BC protein. The observation that 2BC is processed to 2B and 2C during infection and that individual 2B and 2C proteins are unable to block secretion stimulated us to study the effects of 2BC processing on the secretory pathway. Even though 2BC was processed rapidly to 2B and 2C, protein transport to the plasma membrane was still blocked in FMDV-infected cells. The block could be reconstituted by coexpression of 2B and 2C, showing that processing of 2BC did not compromise the ability of FMDV to slow secretion. Under these conditions, 2C was located to the Golgi apparatus, and the block in transport also occurred in the Golgi apparatus. Interestingly, the block in transport could be redirected to the ER when 2B was coexpressed with a 2C protein fused to an ER retention element. Thus, for FMDV a block in secretion is dependent on both 2B and 2C, with the latter determining the site of the block.  相似文献   

15.
副粘病毒F蛋白的两段七肽重复序列(HR1和HR2)在病毒侵染细胞的过程中相互作用形成热稳定的富含α螺旋的异源二聚体,此结构的形成引起病毒囊膜与细胞膜的并置而最终导致膜融合的发生。腮腺炎病毒(Mumps virus, MuV)属于副粘病毒科,腮腺炎病毒属,可能利用与其他副粘病毒相似的侵染机制。本研究对MuV 融合蛋白的HR区进行了计算机程序预测,并利用大肠杆菌GST融合表达系统对MuV F蛋白HR1和HR2两段多肽进行了表达和纯化,通过GST pull_down 实验证实HR1和HR2多肽在体外能够相互作用,凝胶过滤层析证明HR1、HR2多肽能够形成多聚体,说明MuV F蛋白的HR区的相互作用可能是其发挥融合功能的关键因素。  相似文献   

16.
The IKK/NF‐κB pathway is an essential signalling process initiated by the cell as a defence against viral infection like influenza virus. This pathway is therefore a prime target for viruses attempting to counteract the host response to infection. Here, we report that the influenza A virus NS1 protein specifically inhibits IKK‐mediated NF‐κB activation and production of the NF‐κB induced antiviral genes by physically interacting with IKK through the C‐terminal effector domain. The interaction between NS1 and IKKα/IKKβ affects their phosphorylation function in both the cytoplasm and nucleus. In the cytoplasm, NS1 not only blocks IKKβ‐mediated phosphorylation and degradation of IκBα in the classical pathway but also suppresses IKKα‐mediated processing of p100 to p52 in the alternative pathway, which leads to the inhibition of nuclear translocation of NF‐κB and the subsequent expression of downstream NF‐κB target genes. In the nucleus, NS1 impairs IKK‐mediated phosphorylation of histone H3 Ser 10 that is critical to induce rapid expression of NF‐κB target genes. These results reveal a new mechanism by which influenza A virus NS1 protein counteracts host NF‐κB‐mediated antiviral response through the disruption of IKK function. In this way, NS1 diminishes antiviral responses to infection and, in turn, enhances viral pathogenesis.  相似文献   

17.
Previous studies have shown after the resolution of acute infection and viraemia, foot-and-mouth disease virus (FMDV) capsid proteins and/or genome are localised in the light zone of germinal centres of lymphoid tissue in cattle and African buffalo. The pattern of staining for FMDV proteins was consistent with the virus binding to follicular dendritic cells (FDCs). We have now demonstrated a similar pattern of FMDV protein staining in mouse spleens after acute infection and showed FMDV proteins are colocalised with FDCs. Blocking antigen binding to complement receptor type 2 and 1 (CR2/CR1) prior to infection with FMDV significantly reduced the detection of viral proteins on FDCs and FMDV genomic RNA in spleen samples. Blocking the receptors prior to infection also significantly reduced neutralising antibody titres, through significant reduction in their avidity to the FMDV capsid. Therefore, the binding of FMDV to FDCs and sustained induction of neutralising antibody responses are dependent on FMDV binding to CR2/CR1 in mice.  相似文献   

18.
19.
20.
Poliovirus (PV) modifies membrane-trafficking machinery in host cells for its viral RNA replication. To date, ARF1, ACBD3, BIG1/BIG2, GBF1, RTN3, and PI4KB have been identified as host factors of enterovirus (EV), including PV, involved in membrane traffic. In this study, we performed small interfering RNA (siRNA) screening targeting membrane-trafficking genes for host factors required for PV replication. We identified valosin-containing protein (VCP/p97) as a host factor of PV replication required after viral protein synthesis, and its ATPase activity was essential for PV replication. VCP colocalized with viral proteins 2BC/2C and 3AB/3B in PV-infected cells and showed an interaction with 2BC and 3AB but not with 2C and 3A. Knockdown of VCP did not suppress the replication of coxsackievirus B3 or Aichi virus. A VCP-knockdown-resistant PV mutant had an A4881G (a mutation of E253G in 2C) mutation, which is known as a determinant of a secretion inhibition-negative phenotype. However, knockdown of VCP did not affect the inhibition of cellular protein secretion caused by overexpression of each individual viral protein. These results suggested that VCP is a host factor required for viral RNA replication of PV among membrane-trafficking proteins and provides a novel link between cellular protein secretion and viral RNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号