共查询到20条相似文献,搜索用时 0 毫秒
1.
孙怀昌 《Virologica Sinica》1999,14(3):236-243
蛋白多肽二级结构的电脑预测表明,非洲猪瘟病毒( African swine fever virus , A S F V)j5 R阅读框编码12 .9 k Da 膜蛋白。该蛋白的 C 末端含有一个潜在抗原决定簇,针对其合成肽的抗体能在 A S F V 感染细胞和病毒颗粒中检测到23 或25 k Da( 取决于不同毒株) 特异蛋白。免疫荧光试验显示,j5 R 蛋白主要位于感染细胞的病毒复制部位。油水两相分离和细胞分级分离试验结果证明j5 R 蛋白是膜相关蛋白 相似文献
2.
Sheng Chen Xinheng Zhang Yu Nie Hongxin Li Weiguo Chen Wencheng Lin Feng Chen Qingmei Xie 《中国病毒学》2021,36(2):196-206
African swine fever virus(ASFV), as a member of the large DNA viruses, may regulate autophagy and apoptosis by inhibiting programmed cell death. However, the function of ASFV proteins has not been fully elucidated, especially the role of autophagy in ASFV infection. One of three Pyrroline-5-carboxylate reductases(PYCR), is primarily involved in conversion of glutamate to proline. Previous studies have shown that depletion of PYCR2 was related to the induction of autophagy. In the present study, we found for the first time that ASFV E199 L protein induced a complete autophagy process in Vero and HEK-293 T cells. Through co-immunoprecipitation coupled with mass spectrometry(CoIP-MS)analysis, we firstly identified that E199 L interact with PYCR2 in vitro. Importantly, our work provides evidence that E199 L down-regulated the expression of PYCR2, resulting in autophagy activation. Overall, our results demonstrate that ASFV E199 L protein induces complete autophagy through interaction with PYCR2 and down-regulate the expression level of PYCR2, which provide a valuable reference for the role of autophagy during ASFV infection and contribute to the functional clues of PYCR2. 相似文献
3.
非洲猪瘟是由非洲猪瘟病毒感染家猪或野猪后引发的一种急性、烈性传染病,主要通过病猪及其周围环境传播,蜱是中间宿主。1921年该病首次暴发于非洲肯尼亚,2018年8月传入我国,目前已有24个省级行政区发生疫情。非洲猪瘟病毒主要经呼吸道和消化道进入猪体内,感染靶细胞主要是单核-巨噬细胞,目前受体还不明确。非洲猪瘟病毒是单分子双链DNA病毒,长度为170~190kb,编码150~200种蛋白,包括多种免疫调控蛋白,可以抵抗机体免疫。非洲猪瘟病毒疫苗研究较多,包括灭活疫苗、减毒疫苗、亚单位疫苗和基因疫苗等,但迄今这些疫苗都不能保护家猪免受非洲猪瘟病毒感染。今后需要对非洲猪瘟病毒及其发病机制做详细系统的研究,为开发有效防治方案提供资料。 相似文献
4.
African swine fever virus (ASFV), a highly contagious virus, can cause diseases with high mortality rates in pigs, making it a pathogen of social and economic significance. ASFV has been reported to show potential long-term survival in living livestock, such as pigs, but also in leftover cooking meat and undercooked pork meat. Hence, it is possible that there could be direct reinfection or secondary infection through feed produced from household food waste and treatment facilities. Many polymerase chain reaction (PCR)-based molecular diagnostic techniques to detect ASFV in clinical swine samples have been reported. However, those with applicability for food waste samples, which contain relatively low viral copy numbers and may contain various unknown inhibitors of PCR, are still lacking. In this study, we developed a conventional PCR-based diagnostic system that can detect ASFV with high sensitivity from food waste sample types. The technique shows a 10–100 times higher limit of detection compared to that of previously reported methods based on conventional PCR and quantitative real-time PCR. It is also capable of amplifying a sequence that is approximately 751 nucleotides, which is advantageous for similarity analysis and genotyping. Moreover, a ASFV-modified positive material different from ASFV that could synthesize 1400 nucleotide amplicons was developed to identify false-positive cases and thus enhance diagnostic accuracy. The method developed herein may be applicable for future ASFV monitoring, identification, and genotyping in food waste samples.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12088-022-01007-y. 相似文献
5.
非洲猪瘟(African swine fever,ASF)是由非洲猪瘟病毒(African swine fever virus,ASFV)引起的一种致死率可高达100%的猪烈性传染病。ASF的传播方式复杂多样,目前无商品化疫苗可用,仅能依靠检疫结合扑杀进行防控,严重威胁全球养猪及相关行业的健康发展。阻碍ASF疫苗研发的主要因素是ASFV的基因型众多、结构复杂,以及对ASFV致病和免疫逃逸机制的认识不足。本文从基因组学、转录组学、蛋白质组学和代谢组学等层面多角度综述ASFV的生物学特性及其致病和免疫逃逸机制,以期揭开ASF这个"杀手"的神秘面纱,为ASFV的致病机制研究和ASF的防控提供参考。 相似文献
6.
Meishen Ren Hong Mei Ming Zhou Zhen F. Fu Heyou Han Dingren Bi Fuhu Peng Ling Zhao 《中国病毒学》2021,36(2):220-230
African swine fever(ASF) is an infectious disease caused by African swine fever virus(ASFV) with clinical symptoms of high fever, hemorrhages and high mortality rate, posing a threat to the global swine industry and food security. Quarantine and control of ASFV is crucial for preventing swine industry from ASFV infection. In this study, a recombinase polymerase amplification(RPA)-CRISPR-based nucleic acid detection method was developed for diagnosing ASF. As a highly sensitive method, RPA-CRISPR can detect even a single copy of ASFV plasmid and genomic DNA by determining fluorescence signal induced by collateral cleavage of CRISPR-lwCas13 a(previously known as C2 c2) through quantitative real-time PCR(qPCR) and has the same or even higher sensitivity than the traditional qPCR method. A lateral flow strip was developed and used in combination with RPA-CRISPR for ASFV detection with the same level of sensitivity of TaqMan qPCR. Likewise, RPA-CRISPR is capable of distinguishing ASFV genomic DNA from viral DNA/RNA of other porcine viruses without any cross-reactivity. This diagnostic method is also available for diagnosing ASFV clinical DNA samples with coincidence rate of 100% for both ASFV positive and negative samples. RPA-CRISPR has great potential for clinical quarantine of ASFV in swine industry and food security. 相似文献
7.
人工合成VP73基因全长序列,利用DNAstar软件确定其中抗原性较高的区域,利用Primer Premier5.0设计一对特异性引物,通过PCR扩增得到243bp的非洲猪瘟病毒VP73基因片段(vp73l)。将该片段与表达载体pET-32a连接克隆至大肠杆菌Escherichia coli(E.coli)DH5α菌株,经测序、菌落PCR和酶切鉴定,选取VP73L基因正向插入,读码框正确的阳性克隆。构建重组质粒并转化BL21(DE3),经IPTG诱导,融合蛋白以可溶性形式在E.coli BL2(DE3)高效表达,经His亲和层析柱得以纯化。Western blotting显示,该融合蛋白能与兔抗非洲猪瘟病毒VP73多克隆抗体发生特异性反应。所得结果为进一步研究:分离纯化该重组融合蛋白;确证目标抗原蛋白VP73L免疫原性及其特异性,进而达到建立非洲猪瘟病毒的免疫检测方法奠定了必要的材料与技术基础。 相似文献
8.
9.
Chen Chen Deping Hua Jingxuan Shi Zheng Tan Min Zhu Kun Tan Lilin Zhang Jinhai Huang 《中国病毒学》2021,36(2):207-219
African swine fever virus(ASFV) infects domestic pigs and European wild boars with strong, hemorrhagic and high mortality. The primary cellular targets of ASFV is the porcine macrophages. Up to now, no commercial vaccine or effective treatment available to control the disease. In this study, three recombinant Saccharomyces cerevisiae(S. cerevisiae) strains expressing fused ASFV proteins-porcine Ig heavy chains were constructed and the immunogenicity of the S. cerevisiae-vectored cocktail ASFV feeding vaccine was further evaluated. To be specific, the P30-Fcc and P54-Fca fusion proteins displaying on surface of S. cerevisiae cells were produced by fusing the Fc fragment of porcine immunoglobulin Ig G1 or IgA1 with p30 or p54 gene of ASFV respectively. The recombinant P30-Fcc and P54-Fca fusion proteins expressed by S. cerevisiae were verified by Western blotting, flow cytometry and immunofluorescence assay.Porcine immunoglobulin Fc fragment fused P30/P54 proteins elicited P30/P54-specific antibody production and induced higher mucosal immunity in swine. The absorption and phagocytosis of recombinant S. cerevisiae strains in IPEC-J2 cells or porcine alveolar macrophage(PAM) cells were significantly enhanced, too. Here, we introduce a kind of cheap and safe oral S. cerevisiae-vectored vaccine, which could activate the specific mucosal immunity for controlling ASFV infection. 相似文献
10.
旨为建立稳定表达非洲猪瘟病毒(ASFV)P54蛋白的Vero细胞系,将ASFV-P54基因与绿色荧光基因Azami Green的融合基因片段,将其克隆至慢病毒载体pLV-puro中构建重组慢病毒质粒pLV-ASFV-P54-AG,将该质粒与慢病毒包装质粒pH1和pH2共转染HEK-293V细胞,包装表达ASFV-P54蛋白的慢病毒。将重组慢病毒在聚凝胺(Polybrene)的介导下感染Vero细胞,筛选出一株稳定表达ASFV-P54蛋白的Vero细胞系,命名为Vero-AG-ASFV-P54。间接免疫荧光试验表明,该细胞系能够与P54多克隆抗体反应;经波兰国家兽医研究所进一步验证,结果显示,该细胞系与ASFV抗体阳性血清也能发生反应,并且与阴性血清无反应。结果表明,Vero-AG-ASFV-P54细胞系能够稳定高效的表达具有生物活性的ASFV-P54蛋白。 相似文献
11.
非洲猪瘟(African swine fever, ASF)是由非洲猪瘟病毒(African swine fever virus, ASFV)感染引起家猪和野猪的一种高死亡率的传染性疾病。ASFV具有庞大的基因组,其中非结构蛋白pD1133L被预测为其编码的6个解旋酶之一。本实验室应用免疫沉淀-质谱联用(immunoprecipitation-mass spectrometry, IP-MASS)技术筛选与pD1133L互作的宿主细胞蛋白,发现细胞波形蛋白(vimentin, VIM)为pD1133L互作的宿主蛋白之一,但尚不清楚宿主蛋白VIM对ASFV复制的影响。【目的】探究ASFV与VIM的相互调控作用,揭示VIM促进ASFV复制的机制。【方法】通过免疫共沉淀(co-immunoprecipitation, Co-IP)试验验证pD1133L与VIM存在互作关系;外源过表达VIM蛋白以及设计并合成VIM的siRNA探究VIM对ASFV复制的影响;利用Western blotting以及荧光定量PCR (quantitative real-time PCR, qPCR)方法检测ASFV对VIM蛋白水平以及转录水平的影响;通过Western blotting、间接免疫荧光试验(immunofluorescence assay, IFA)探究巨噬细胞感染ASFV后VIM磷酸化水平变化以及亚细胞定位变化情况;CCK-8试剂盒检测VIM磷酸化抑制剂KN-93处理的最佳浓度,并利用Western blotting以及IFA检测KN-93对VIM磷酸化、亚细胞定位以及对ASFV复制影响。【结果】VIM过表达促进ASFV复制,敲低VIM的表达则抑制ASFV复制;ASFV感染抑制VIM蛋白水平以及转录水平表达,且呈时间依赖性;ASFV感染后VIM发生磷酸化修饰且发生亚细胞定位改变,从而促进ASFV复制。【结论】证实了ASFV与宿主蛋白VIM之间的相互调控作用;初步确定ASFV感染后VIM受到ASFV pD1133L调控,亚细胞定位发生重排向核周聚集从而促进ASFV复制的机制。 相似文献
12.
13.
为获得猪瘟病毒(classical swine fever virus, CSFV) NS2-3抗原集中区蛋白,并建立CSFV抗体快速检测方法.本研究以CSFV全长基因组质粒为模板,PCR扩增NS2-3抗原表位集中区,利用扩增片段和克隆载体,构建重组表达质粒,命名为pET32a-NS2-3-1.重组表达质粒转化Rosetta (DE3)细胞,利用IPTG诱导表达, SDS-PAGE电泳和Western-blot鉴定重组表达产物.结果表明,重组质粒pET32a-NS2-3-1在28℃诱导5 h得到高效表达,重组蛋白能够与兔抗CSFV阳性血清发生反应.获得CSFV NS2-3抗原集中区蛋白,并且获得的重组蛋白具有抗原性,能够作为CSFV抗体检测的抗原. 相似文献
14.
African swine fever (ASF) is a highly contagious and acute hemorrhagic viral disease with a high mortality approaching 100% in domestic pigs. ASF is an endemic in countries in sub-Saharan Africa. Now, it has been spreading to many countries, especially in Asia and Europe. Due to the fact that there is no commercial vaccine available for ASF to provide sustainable prevention, the disease has spread rapidly worldwide and caused great economic losses in swine industry. The knowledge gap of ASF virus (ASFV) pathogenesis and immune evasion is the main factor to limit the development of safe and effective ASF vaccines. Here, we will summarize the molecular mechanisms of how ASFV interferes with the host innate and adaptive immune responses. An in-depth understanding of ASFV immune evasion strategies will provide us with rational design of ASF vaccines. 相似文献
15.
16.
Jiakai Zhao Jiahong Zhu Ying Wang Mengting Yang Qiang Zhang Chong Zhang Yuchen Nan En-Min Zhou Yani Sun Qin Zhao 《中国病毒学》2022,37(6):922-933
African swine fever virus (ASFV) infection is a big threat to the global pig industry. Because there is no effective vaccine, rapid, low-cost, and simple diagnosis methods are necessary to detect the ASFV infection in pig herds. Nanobodies, with advantages of small molecular weight and easy genetic engineering, have been universally used as reagents for developing diagnostic kits. In this study, the recombinant ASFV-p30 was expressed and served as an antigen to immunize the Bactrian camel. Then, seven nanobodies against ASFV-p30 were screened using phage display technique. Subsequently, the seven nanobodies fused horseradish peroxidase (nanobody-HRP) were secretory expressed and one fusion protein ASFV-p30-Nb75-HRP was selected with the highest sensitivity in blocking ELISA. Using the ASFV-p30-Nb75-HRP fusion protein as a probe, a competitive ELISA (cELISA) was developed for detecting anti-ASFV antibodies in pig sera. The cut-off value of cELISA was determined to be 22.7% by testing 360 negative pig sera. The detection limit of the cELISA for positive pig sera was 1:320, and there was no cross-reaction with anti-other swine virus antibodies. The comparative assay showed that the agreement of the cELISA with a commercial ELISA kit was 100%. More importantly, the developed cELISA showed low cost and easy production as a commercial kit candidate. Collectively, a simple nanobody-based cELISA for detecting antibodies against ASFV is developed and it provides a new method for monitoring ASFV infection in the pig herds. 相似文献
17.
18.
An Indirect ELISA of Classical Swine Fever Virus Based on Quadruple Antigenic Epitope Peptide Expressed in E.coli 总被引:1,自引:0,他引:1
Guo-zhen LIN Fu-ying ZHENG Ji-zhang ZHOU Xiao-an CAO Xiao-wei GONG Guang-hua WANG Chang-qing QIU 《Virologica Sinica》2010,(1)
In this study,a synthesized quadruple antigenic epitope gene region of the classical swine fever virus (CSFV)E2 glycoprotein was expressed in E.coli to a obtain target protein.This target protein was used as a coating antigen to establish an indirect ELISA for specifically detecting anti-CSFV antibodies in serum samples from pigs.The P/N cut-off value of this assay was 1.92 by receiver operating characteristic curve(ROC)analysis based on 30 negative sera and 80 positive samples.The test gave 97.5%sensitivit... 相似文献
19.
20.
特异寡聚核苷酸对猪瘟病毒在细胞中增殖抑制作用的研究 总被引:1,自引:0,他引:1
本实验探讨了寡聚核苷酸对CSFV复制的影响以及作为抗CSFV新型药物的可行性。实验结果表明针对CSFV5'um端非编码区NS3蛋白丝氨酸蛋白酶功能区的寡聚核酸对CSFV复制均有显著的抑制作用,而针对CSFV3' 端非编码区寡聚核苷酸仅有轻微抑制作用,5'端寡聚核苷酸具有最佳抑制作用,同时发现相应序列中正义聚核苷酸的作用要优于反义寡聚核苷酸;脂质体介导转染能显著提高寡聚核苷酸对CSF复制的抑制作用。这些初步结果也提示,CSFV5'端和3'端非编码区对CSFV复制的重要性和作用有所不同。 相似文献