首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme rhodanese (thiosulfate sulfurtransferase, EC 2.8.1.1) is inactivated on incubation with reducing sugars such as glucose, mannose, or fructose, but is stable with non-reducing sugars or related polyhydroxy compounds. The enzyme is inactivated with (ES) or without (E) the transferable sulfur atom, although E is considerably more sensitive, and inactivation is accentuated by cyanide. Inactivation of E is accompanied by increased proteolytic susceptibility, a decreased sulfhydryl titer, a red-shift and quenching of the protein fluorescence, and the appearance of hydrophobic surfaces. Superoxide dismutase and/or catalase protect rhodanese. Inactive enzyme can be partially reactivated during assay and almost completely reactivated by incubation with thiosulfate, lauryl maltoside, and 2-mercaptoethanol. These results are similar to those observed when rhodanese is inactivated by hydrogen peroxide. These observations, as well as the cyanide-dependent, oxidative inactivation by phenylglyoxal, are explained by invoking the formation of reactive oxygen species such as superoxide or hydrogen peroxide from autooxidation of alpha-hydroxy carbonyl compounds, which can be facilitated by cyanide.  相似文献   

2.
C Cannella  R Berni 《FEBS letters》1983,162(1):180-184
Cyanide-promoted inactivation of the enzyme rhodanese [thiosulfate sulfurtransferase (EC 2.8.1.1)] in the presence of ketoaldehydes is caused by reduced forms of molecular oxygen generated during autoxidation of the reaction products. The requirement of both catalase and superoxide dismutase to prevent rhodanese inactivation indicates that hydroxyl radical could be the most efficient inactivating agent. Rhodanese, also in the less stable sulfur-free form, shows a different sensitivity towards oxygen activated species. While the enzyme is unaffected by superoxide radical, it is rapidly inactivated by hydrogen peroxide. The extent of inactivation depends on the molar ratio between sulfur-free enzyme and oxidizing agent. Fully inactive enzyme is reactivated by reduction with its substrate thiosulfate.  相似文献   

3.
It was previously shown that rhodanese, inactivated with hydrogen peroxide, could only be reactivated in the presence of a reductant or the substrate thiosulfate if these reagents were added soon after inactivation and if the oxidant was removed. Here, we report on the facilitated reactivation (75%) of hydrogen peroxide-inactivated rhodanese by the chaperone alpha-crystallin. Reactivation by the chaperone still required a reductant and thiosulfate. Without alpha-crystallin, but in the presence of the reductant and thiosulfate, the inactivated enzyme regained about 39% of its original activity. The alpha-crystallin-assisted reactivation of hydrogen peroxide-inactivated rhodanese was independent of ATP. Further, we found, that alpha-crystallin interacted transiently, but could not form a stable complex with hydrogen peroxide-inactivated rhodanese. Unlike in prior studies that involved denaturation of rhodanese through chemical or thermal means, we have clearly shown that alpha-crystallin can function as a molecular chaperone in the reactivation of an oxidatively inactivated protein.  相似文献   

4.
K562 erythroleukemic cells cultured at low population density in the absence of serum die within 12-24 hours, unless 0.1 mM glyoxylic acid is added to the culture medium. Earlier events, preceding cell death and occurring within 2 hours culture, are: a) a marked drop of both the NAD+/NADH ratio and the NAD+ concentration, which is prevented by 10mM benzamide, b) an increased biosynthesis of NAD+, leading to extensive depletion of cellular ATP. In the presence of 0.1 mM glyoxylic acid the NAD+/NADH ratio as well as their absolute concentrations remain unchanged, while NAD+ biosynthesis is absent. A NAD+/NADH glycohydrolase activity is present in the cell extract, inhibited by 10 mM benzamide and with a higher affinity for NADH than for NAD+. Preservation of a high NAD+/NADH ratio by glyoxylic acid apparently prevents enzyme activity and the related loss of pyridine nucleotides.  相似文献   

5.
The 2',3'-dialdehyde derivative of ADP (oADP) has been shown to be an affinity label for the NAD+ binding site of recombinant Candida boidinii formate dehydrogenase (FDH). Inactivation of FDH by oADP at pH 7.6 followed biphasic pseudo first-order saturation kinetics. The rate of inactivation exhibited a nonlinear dependence on the concentration of oADP, which can be described by reversible binding of reagent to the enzyme (Kd = 0.46 mM for the fast phase, 0.45 mM for the slow phase) prior to the irreversible reaction, with maximum rate constants of 0.012 and 0.007 min-1 for the fast and slow phases, respectively. Inactivation of formate dehydrogenase by oADP resulted in the formation of an enzyme-oADP product, a process that was reversed after dialysis or after treatment with 2-mercaptoethanol (> 90% reactivation). The reactivation of the enzyme by 2-mercaptoethanol was prevented if the enzyme-oADP complex was previously reduced by NaBH4, suggesting that the reaction product was a stable Schiff's base. Protection from inactivation was afforded by nucleotides (NAD+, NADH and ADP) demonstrating the specificity of the reaction. When the enzyme was completely inactivated, approximately 1 mol of [14C]oADP per mol of subunit was incorporated. Cleavage of [14C]oADP-modified enzyme with trypsin and subsequent separation of peptides by RP-HPLC gave only one radioactive peak. Amino-acid sequencing of the radioactive tryptic peptide revealed the target site of oADP reaction to be Lys360. These results indicate that oADP inactivates FDH by specific reaction at the nucleotide binding site, with negative cooperativity between subunits accounting for the appearance of two phases of inactivation. Molecular modelling studies were used to create a model of C. boidinii FDH, based on the known structure of the Pseudomonas enzyme, using the MODELLER 4 program. The model confirmed that Lys360 is positioned at the NAD+-binding site. Site-directed mutagenesis was used in dissecting the structure and functional role of Lys360. The mutant Lys360-->Ala enzyme exhibited unchanged kcat and Km values for formate but showed reduced affinity for NAD+. The molecular model was used to help interpret these biochemical data concerning the Lys360-->Ala enzyme. The data are discussed in terms of engineering coenzyme specificity.  相似文献   

6.
A fluorescence-detected structural transition occurs in the enzyme rhodanese between 30–40°C that leads to inactivation and aggregation, which anomalously decrease with increasing protein concentration. Rhodanese at 8 µg/ml is inactivated at 40°C after 50 min of incubation, but it is protected as its concentration is raised, such that above 200 µg/ml, there is only slight inactivation for at least 70 min. Inactivation is increased by lauryl maltoside, or by low concentrations of 2-mercaptoethanol. The enzyme is protected by high concentrations of 2-mercaptoethanol or by the substrate, thiosulfate. The fluorescence of 1,8-anilinonaphthalene sulfonate reports the appearance of hydrophobic sites between 30–40°C. Light scattering kinetics at 40°C shows three phases: an initial lag, a relatively rapid increase, and then a more gradual increase. The light scattering decreases under several conditions: at increased protein concentration; at high concentrations of 2-mercaptoethanol; with lauryl maltoside; or with thiosulfate. Aggregated enzyme is inactive, although enzyme can inactivate without significant aggregation. Gluteraldehyde cross-linking shows that rhodanese can form dimers, and that higher molecular weight species are formed at 40°C but not at 23°;C. Precipitates formed at 40°C contain monomers with disulfide bonds, dimers, and multimers. We propose that thermally perturbed rhodanese has increased hydrophobic exposure, and it can either: (a) aggregate after a rate-limiting inactivation; or (b) reversibly dimerize and protect itself from inactivation and the formation of large aggregates.  相似文献   

7.
Alanine dehydrogenase (L-alanine: NAD+ oxidoreductase, deaminating) was simply purified to homogeneity from a thermophile, Bacillus sphaericus DSM 462, by ammonium sulfate fractionation, red-Sepharose 4B chromatography and preparative slab gel electrophoresis. The enzyme had a molecular mass of about 230 kDa and consisted of six subunits with an identical molecular mass of 38 kDa. The enzyme was much more thermostable than that from a mesophile, B. sphaericus, and retained its full activity upon heating at 75 degrees C for at least 60 min and with incubation in pH 5.5-9.5 at 75 degrees C for 10 min. The enzyme can be stored without loss of its activity in a frozen state (-20 degrees C, at pH 7.2) for over 5 months. The optimum pH for the L-alanine deamination and pyruvate amination were around 10.5 and 8.2, respectively. The enzyme exclusively catalyzed the oxidative deamination of L-alanine in the presence of NAD+, but showed low amino acceptor specificity; hydroxypyruvate, oxaloacetate, 2-oxobutyrate and 3-fluoropyruvate are also aminated as well as pyruvate in the presence of NADH and ammonia. Initial velocity and product inhibition studies showed that the reductive amination proceeded through a sequential mechanism containing partially random binding. NADH binds first to the enzyme, and then pyruvate and ammonia bind in a random fashion. The products are sequentially released from the enzyme in the order L-alanine then NAD+. A dead-end inhibition by the formation of an abortive ternary complex which consists of the enzyme, NAD+ and pyruvate was included in the reaction. A possible role of the dead-end inhibition is to prevent the enzyme from functioning in the L-alanine synthesis. The Michaelis constants for the substrates were as follows: NADH, 0.10 mM; pyruvate, 0.50 mM; ammonia, 38.0 mM; L-alanine, 10.5 mM and NAD+, 0.26 mM.  相似文献   

8.
The chaperonin protein cpn60 from Escherichia coli protects the monomeric, mitochondrial enzyme rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) against heat inactivation. The thermal inactivation of rhodanese was studied for four different states of the enzyme: native, refolded, bound to cpn60 in the form of a binary complex formed from unfolded rhodanese, and a thermally perturbed state. Thermal stabilization is observed in a range of temperatures from 25 to 48 degrees C. Rhodanese that had been inactivated by incubation at 48 degrees C, in the presence of cpn60 can be reactivated at 25 degrees C, upon addition of cpn10, K+, and MgATP. A recovery of about 80% was achieved after 1 h of the addition of those components. Thus, the enzyme is protected against heat inactivation and kept in a reactivable form if inactivation is attempted using the binary complex formed between rhodanese folding intermediate(s) and cpn60. The chaperonin-assisted refolding of urea-denatured rhodanese is dependent on the temperature of the refolding reaction. However, optimal chaperonin assisted refolding of rhodanese observed at 25 degrees C, which is achieved upon addition of cpn10 and ATP to the cpn60-rhodanese complex, is independent of the temperature of preincubation of the complex, that was formed previously at low temperature. The results are in agreement with a model in which the chaperonin cpn60 interacts with partly folded intermediates by forming a binary complex which is stable to elevated temperatures. In addition, it appears that native rhodanese can be thermally perturbed to produce a state different from that achieved by denaturation that can interact with cpn60.  相似文献   

9.
Freshly prepared samples of yeast alcohol dehydrogenase (EC 1.1.1.1) were inhibited by 1,10-phenanthroline at pH 7.0 and 0 degrees C in a two-stage process. The first step appeared to be slowly established, but was rendered reversible by removal of reagent or by addition of excess Zn2+ ions. The second step was irreversible and was associated with the dissociation of the tetrameric enzyme. The presence of saturating concentrations of NAD+ or NADH promoted and enhanced inhibition by the slowly established reversible process, but prevented dissociation of the enzyme. For the incubation mixtures containing NAD+, removal of the 1,10-phenanthroline resulted in virtually complete recovery of activity, whereas, for the incubation mixtures containing NADH, removal of the reagent gave only partial re-activation. The presence of NAD+ and pyrazole, or NADH and acetamide, in incubation mixtures with the enzyme gave rise to ternary complexes that gave protection against both forms of inactivation by 1,10-phenanthroline. The results support the view that at least some of the Zn2+ ions associated with yeast alcohol dehydrogenase have a catalytic, as opposed to a purely structural, role.  相似文献   

10.
Mutation of all nonessential cysteine residues in rhodanese turns the enzyme into a form (C3S) that is fully active but less stable than wild type (WT). This less stable mutant allowed testing of two hypotheses; (a) the two domains of rhodanese are differentially stable, and (b) the chaperonin GroEL can bind better to less stable proteins. Reduced temperatures during expression and purification were required to limit inclusion bodies and obtain usable quantities of soluble C3S. C3S and WT have the same secondary structures by circular dichroism. C3S, in the absence of the substrate thiosulfate, is cleaved by trypsin to give a stable 21-kDa species. With thiosulfate, C3S is resistant to proteolysis. In contrast, wild type rhodanese is not proteolyzed significantly under any of the experimental conditions used here. Mass spectrometric analysis of bands from SDS gels of digested C3S indicated that the C-terminal domain of C3S was preferentially digested. Active C3S can exist in a state(s) recognized by GroEL, and it displays additional accessibility of tryptophans to acrylamide quenching. Unlike WT, the sulfur-loaded mutant form (C3S-ES) shows slow inactivation in the presence of GroEL. Both WT and C3S lacking transferred sulfur (WT-E and C3S-E) become inactivated. Inactivation is not due to irreversible covalent modification, since GroEL can reactivate both C3S-E and WT-E in the presence of GroES and ATP. C3S-E can be reactivated to 100%, the highest reactivation observed for any form of rhodanese. These results suggest that inactivation of C3S-E or WT-E is due to formation of an altered, labile conformation accessible from the native state. This conformation cannot as easily be achieved in the presence of the substrate, thiosulfate.  相似文献   

11.
Glutathione reductase from Escherichia coli is inactivated when incubated with either NADPH or NADH. The process is inversely dependent on the enzyme concentration. Inactivation is rapid and monophasic with 1 microM NADPH and 1 nM enzyme FAD giving a t1/2 of 1 min. Complex formation between NADPH and the two-electron reduced enzyme (EH2) at higher levels of NADPH protects against rapid inactivation. NADP+, produced in a side reaction with oxygen, also protects by forming a complex with EH2. These complexes make analysis of the concentration dependence of the inactivation process difficult. Inactivation with NADH, where complexes do not interfere, is slower but can be analyzed more readily. With 152 microM NADH and 5.4 nM enzyme FAD, the time required for 50% inactivation is 17 min. The process is markedly biphasic, reaching the final inactivation level after 5-7 h. Analysis of the relationship between the final level of inactivation with NADH and the enzyme concentration indicates that inactivation is due to dissociation of the normally dimeric enzyme. Thus, the position of the dimer-monomer equilibrium between an active dimeric two-electron reduced species and an inactive monomeric two-electron reduced form determines the enzyme activity. An apparent equilibrium constant (Kd) for dissociation of dimer obtained from the anaerobic concentration dependent inactivation curves is 220 nM. Enzyme inactivated with NADH can be reactivated with glutathione, and the reactivation kinetics are second order, monomer-monomer over 75% of the reaction with an average apparent association rate constant (ka) of 13.1 (+/- 5.5) X 10(6) M-1 min-1.  相似文献   

12.
Superoxide production by inside-out coupled bovine heart submitochondrial particles, respiring with succinate or NADH, was measured. The succinate-supported production was inhibited by rotenone and uncouplers, showing that most part of superoxide produced during succinate oxidation is originated from univalent oxygen reduction by Complex I. The rate of the superoxide (O2*-)) production during respiration at a high concentration of NADH (1 mM) was significantly lower than that with succinate. Moreover, the succinate-supported O2*- production was significantly decreased in the presence of 1 mM NADH. The titration curves, i.e., initial rates of superoxide production versus NADH concentration, were bell-shaped with the maximal rate (at 50 microM NADH) approaching that seen with succinate. Both NAD+ and acetyl-NAD+ inhibited the succinate-supported reaction with apparent Ki's close to their Km's in the Complex I-catalyzed succinate-dependent energy-linked NAD+ reduction (reverse electron transfer) and NADH:acetyl-NAD+ transhydrogenase reaction, respectively. We conclude that: (i) under the artificial experimental conditions the major part of superoxide produced by the respiratory chain is formed by some redox component of Complex I (most likely FMN in its reduced or free radical form); (ii) two different binding sites for NADH (F-site) and NAD+ (R-site) in Complex I provide accessibility of the substrates-nucleotides to the enzyme red-ox component(s); F-site operates as an entry for NADH oxidation, whereas R-site operates in the reverse electron transfer and univalent oxygen reduction; (iii) it is unlikely that under the physiological conditions (high concentrations of NADH and NAD+) Complex I is responsible for the mitochondrial superoxide generation. We propose that the specific NAD(P)H:oxygen superoxide (hydrogen peroxide) producing oxidoreductase(s) poised in equilibrium with NAD(P)H/NAD(P)+ couple should exist in the mitochondrial matrix, if mitochondria are, indeed, participate in ROS-controlled processes under physiologically relevant conditions.  相似文献   

13.
Controlled conditions have been found that give complete reactivation and long term stabilization of rhodanese (EC 2.8.1.1) after oxidative inactivation by hydrogen peroxide. Inactivated rhodanese was completely reactivated by reductants such as thioglycolic acid (TGA) (100 mM) and dithiothreitol (DTT) (100 mM) or the substrate thiosulfate (100 mM) if these reagents were added soon after inactivation. Reactivability fell in a biphasic first order process. At pH 7.5, in the presence of DTT inactive rhodanese lost 40% of its reactivability in less than 5 min, and the remaining 60% was lost more gradually (t 1/2 = 3.5 h). TGA reactivated better than DTT, and the rapid phase was much less prominent. If excess reagents were removed by gel filtration immediately after inactivation, there was time-independent and complete reactivability with TGA for at least 24 h, and the resulting samples were stable. Reactivable enzyme was resistant to proteolysis and had a fluorescence maximum at 335 nm, just as the native protein. Oxidized rhodanese, Partially reactivated by DTT, was unstable and lost activity upon further incubation. This inactive enzyme was fully reactivated by 200 mM TGA. Also, the enzyme could be reactivated by arsenite and high concentrations of cyanide. Addition of hydrogen peroxide (40-fold molar excess) to inactive rhodanese after column chromatography initiated a time-dependent loss of reactivability. This inactivation was a single first order process (t 1/2 = 25 min). Sulfhydryl titers showed that enzyme could be fully reactivated after the loss of either one or two sulfhydryl groups. Irreversibly inactivated enzyme showed the loss of one sulfhydryl group even after extensive reduction with TGA. The results are consistent with a two-stage oxidation of rhodanese. In the first stage there can form sulfenyl and/or disulfide derivative(s) at the active site sulfhydryl that are reducible by thioglycolate. A second stage could give alternate or additional oxidation states that are not easily reducible by reagents tried to date.  相似文献   

14.
Sulfhydryl groups of bovine liver rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1) were modified by treatment with tetrathionate. There was a linear relationship between loss of enzyme activity and the amount of tetrathionate used. At a ratio of one tetrathionate per mole of rhodanese, 100% of enzyme activity was lost in the sulfur-free E-form as compared with a 70% loss for the sulfur-containing ES-form of the enzyme. Addition of up to a 100-fold molar excess of tetrathionate to ES gave no further inactivation. Addition of cyanide to the maximally inactivated ES-tetrathionate complex gave complete loss of activity. Kinetic studies of maximally inactivated ES and partially inactivated E gave Km (Ks) values that were essentially the same as native enzyme, indicating that the active enzyme, in all cases, bound thiosulfate similarly. Reactivation was faster with the ES-form than with the E-form. The substrate, thiosulfate, could reactivate the enzyme up to 70% in 1 h with ES as compared to 24 h with E. Tetrathionate modification of rhodanese could be correlated with the changes in intrinsic fluorescence and with the binding of the active site reporter 2-anilinonaphthalene-8-sulfonic acid (2,8-ANS). Circular dichroism spectra of the protein suggested increased ordered secondary structure in the protein after reaction with tetrathionate. Cadmium chloride and phenylarsine oxide totally inactivated the enzyme at levels usually associated with their effect on enzymes containing vicinal sulfhydryl groups. Further, cadmium inhibition could be reversed by EDTA. Tetrathionate modification of rhodanese may proceed through the formation of sulfenylthiosulfate intermediates at sulfhydryl groups, close to but not identical with the active-site sulfhydryl group, which then can react further with the active-site sulfhydryl group to form disulfide bridges.  相似文献   

15.
Rhodanese is oxidatively inactivated by several reagents, some of which are not normally considered oxidants. Rhodanese, in a form not containing persulfide sulfur (E), was inactivated by phenylglyoxal under conditions where disulfides are formed. There was the concomitant increase in the fluorescence of the apolar probe 1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid (bisANS). At 0.2 mg/ml protein, there was no turbidity, while at 1 mg/ml, turbidity formed after an induction period of 23 min. Phenylglyoxal-inactivated E was extensively digested by endoproteinase glutamate C (V8 protease) to give two discrete high molecular weight fragments (Mr = 29,500 and 16,000). Enzymatically active E or ES, the form of rhodanese containing transferred sulfur (Mr = 33,000) was totally refractory to V8 protease and gave only small fluorescent enhancement of bisANS. Phenylglyoxal inactivated ES (reaction at arginine) gave very little fluorescence enhancement of bisANS and was not digested by V8. Hydrogen peroxide rapidly inactivated E (t1/2 less than 2 min) giving a slow increase in bisANS fluorescence (t1/2 greater than 10 min) identical to that observed with phenylglyoxal. The turbidity also increased after an induction period of approximately 30 min. Inactivation of E by hydrogen peroxide gave the same digestion pattern as that observed with phenylglyoxal inactivation. The turbidity was associated with the formation of disulfide-bonded structures that formed with the stoichiometry of E, 2E, 4E, 6E, 8E, etc. relative to the native enzyme, E. E was inactivated with several other reagents that lead to oxidatively inactivated rhodanese including NADH, dithiothreitol, mercaptoethanol, and m-dinitrobenzene. Enzyme inactivated with dithiothreitol or NADH gave an identical digestion pattern as above. In addition, with the exception of NADH which could not be used due to optical interference, each of the reagents gave rise to increased fluorescence of bisANS after inactivation. The results are consistent with a model in which the oxidized rhodanese resulting from diverse treatments is in a new conformation that has extensive exposed apolar surfaces and can form both noncovalent and disulfide-bonded aggregates.  相似文献   

16.
Nitrite reductase from Escherichia coli K12 requires the presence of NAD+, one of the products of the reduction of NO2-by NADH, for full activity. The effect is observed with both crude extracts and purified enzyme. NAD+ also acts as a product inhibitor at high concentrations, and plots of initial rate against NAD+ concentration are bell-shaped. The maximum occurs at about 1 mM-NAD+, but increases with increasing NADH concentration. In the presence of 1 mM-NAD+ and saturating NO2-(2mM) the Michaelis constant for NADH is about 16 micron. The Michaelis constant for NO2-is about 5 micron and is largely independent of the NAD+ concentration. Similar but more pronounced effects of NAD+ are observed with hydroxylamine as electron acceptor instead of NO2-. The maximum rate of NADH oxidation by hydroxylamine is about 5.4 times greater than the maximum rate of NADH oxidation by NO2- when assayed with the same volume of the same preparation of purified enzyme. The Michaelis constant for hydroxylamine is 5.3 mM, however, about 1000 times higher than for NO2-. These results are consistent with a mechanism in which the same enzyme-hydroxylamine complex occurs as an intermediate in both reactions.  相似文献   

17.
Neoplanocin A, a cyclopentenyl analog of adenosine, has been shown recently to be a tight binding inhibitor of S-adenosylhomocysteine (AdoHcy) hydrolase (EC 3.3.1.1), exhibiting a stoichiometry of one molecule of inhibitor per molecule of the enzyme tetramer (Borchardt, R. T., Keller, B. T., and Patel-Thombre, U. (1984) J. Biol. Chem. 259, 4353-4358). In the present study a detailed analysis was performed of the possible role of the enzyme-bound NAD+ in the inactivation of AdoHcy hydrolase by neplanocin A. The NAD+/NADH content was quantitated using a fluorescence technique. The native enzyme showed intrinsic fluorescence with an emission maximum at 460 nm when excited at 340 nm, partially due to NADH bound to the enzyme. It was found that the content of NAD+ and NADH in freshly prepared, native enzyme is equal, having a stoichiometry of two nucleotides per enzyme molecule (tetramer). In addition, it was observed that the enzymatic activity of the native enzyme can be increased by about 30% following preincubation with NAD+. Furthermore, it was demonstrated that the mechanism of inhibition of AdoHcy hydrolase by neplanocin A involves the reduction of enzymatically bound NAD+ to NADH. Catalytic activity of the inactivated enzyme could be fully recovered in a time-dependent manner by further incubation with NAD+ (but not NADH). It was also found that inhibition by neplanocin A does not involve dissociation of the bound NAD+ or NADH from the enzyme, but simply reduction of the NAD+ to NADH.  相似文献   

18.
When air oxidized, partially inactivated rhodanese (EC 2.8.1.1) is treated with dithiothreitol (DTT) to regenerate the reduced essential sulfhydryl group there is an initial reactivation followed by an anomalous slower inactivation. Fully active enzyme shows only inactivation. The inactivated enzyme may be completely reactivated on long incubation with the substrate thiosulfate ion. None of the normal potentialities of DTT appear to be responsible for the inactivation. The results are interpreted in terms of disulfide formation between DTT and an essential enzymic sulfhydryl group with the resulting complex being stabilized by secondary interactions which are particularly favorable due to similarities between DTT and lipoic acid--a normal sulfur acceptor substrate.  相似文献   

19.
Incubation of the complex metalloflavoprotein, assimilatory nitrate reductase with N-ethylmaleimide, or a spin-labeled analog, 4-maleimido-2,2,6,6-tetramethylpiperidinooxyl, resulted in a time-dependent inactivation of NADH:nitrate reductase and NADH: cytochrome-c reductase activity with no effect on reduced methyl viologen:nitrate reductase activity. Inactivation of the enzyme, which could be prevented by incubation in the presence of NADH, was achieved following modification of a single sulfhydryl group determined from [3H]N-ethylmaleimide incorporation and quantitation of the EPR spectrum of the spin-labeled enzyme. Sulfhydryl group modification precluded reduction of the enzyme by NADH and NAD+ binding. The EPR spectrum of the spin-labeled enzyme revealed the presence of a single species with the nitroxide retaining substantial motional freedom. Cleavage of the spin-labeled enzyme using corn-inactivating protease and separation into its flavin and molybdenum/heme domains followed by EPR spectroscopy revealed the modified sulfhydryl group to be associated with the latter fragment suggesting a close interaction of these domains in the region of the nucleotide-binding site.  相似文献   

20.
P Pasta  G Mazzola  G Carrea 《Biochemistry》1987,26(5):1247-1251
Diethyl pyrocarbonate inactivated the tetrameric 3 alpha,20 beta-hydroxysteroid dehydrogenase with second-order rate constants of 1.63 M-1 s-1 at pH 6 and 25 degrees C or 190 M-1 s-1 at pH 9.4 and 25 degrees C. The activity was slowly and partially restored by incubation with hydroxylamine (81% reactivation after 28 h with 0.1 M hydroxylamine, pH 9, 25 degrees C). NADH protected the enzyme against inactivation with a Kd (10 microM) very close to the Km (7 microM) for the coenzyme. The ultraviolet difference spectrum of inactivated vs. native enzyme indicated that a single histidyl residue per enzyme subunit was modified by diethyl pyrocarbonate, with a second-order rate constant of 1.8 M-1 s-1 at pH 6 and 25 degrees C. The histidyl residue, however, was not essential for activity because in the presence of NADH it was modified without enzyme inactivation and modification of inactivated enzyme was rapidly reversed by hydroxylamine without concomitant reactivation. Progesterone, in the presence of NAD+, protected the histidyl residue against modification, and this suggests that the residue is located in or near the steroid binding site of the enzyme. Diethyl pyrocarbonate also modified, with unusually high reaction rate, one lysyl residue per enzyme subunit, as demonstrated by dinitrophenylation experiments carried out on the treated enzyme. The correlation between inactivation and modification of lysyl residues at different pHs and the protection by NADH against both inactivation and modification of lysyl residues indicate that this residue is essential for activity and is located in or near the NADH binding site of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号