首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat renal phosphate-dependent glutaminase is rapidly inactivated by incubating with L-2-amino-4-oxo-5-chloropentanoic scid. Concentrations of phosphate, which increase the glutaminase activity, decrease the rate of inactivation by chloroketone. In addition, inactivation is not blocked by glutamine. Instead, glutamate was shown to specifically reduce the rate of chloroketone inactivation. Upon sodium lauryl sulfate-polyacrylamide gel electrophoresis, the purified glutaminase preparation exhibits at least five protein staining bands which range in molecular weight from 57,000 to 75,000. Studies with 14C-labeled chloroketone indicate that this reagent reacts with each of these peptides. The mean stoichiometry of binding was calculated to be 1.3 mol/mol of enzyme. Therefore, these results indicate that the glutaminase may contain a specific site for binding glutamate and that the purified enzyme consists of a series of related peptides which may have resulted from partial proteolysis.  相似文献   

2.
Inactivation of rat renal phosphate-dependent glutaminase by 6-diazo-5-oxo-L-norleucine occurs only under conditions where the enzyme is catalytically active. The glutaminase activity and the rate of inactivation by the diazoketone exhibit very similar phosphate concentration-dependent activation profiles. Because of this phosphate dependency, it was not possible to differentiate an apparent protection by glutamine from the strong inhibition of inactivation caused by glutamate. The ability of glutamate to protect the glutaminase against inactivation is reversed by increasing concentrations of phosphate.The observed characteristics of inactivation by 6-diazo-5-oxo-L-norleucine differ considerably from those reported for the inactivation by L-2-amino-4-oxo-5-chloropentanoic acid. In addition, the presence of o-carbamoyl-L-serine was found to stimulate inactivation by 6-diazo-5-oxo-L-norleucine, but to protect the glutaminase against inactivation by the chloroketone. Preinactivation of the glutaminase by the diazoketone only slightly reduced the stoichiometry of binding of [5-14C]chloroketone. These observations suggest that 6-diazo-5-oxo-L-norleucine and L-2-amino-4-oxo-5-chloropentanoic acid interact with different sites on the glutaminase which are specific for binding glutamine and glutamate, respectively.  相似文献   

3.
Incubation of 5'-p-fluorosulfonylbenzoyladenosine with the catalytic subunit of bovine cardiac muscle cyclic AMP-dependent protein kinase led to the formation of an inactive enzyme irreversibly modified with approximately one mol of reagent per mol of subunit. The inactivation reaction followed pseudofirst order kinetics. The rate of inactivation at various reagent concentrations exhibited saturation kinetics implying that the reagent reversibly binds to the enzyme prior to inactivation. The addition of MgATP, MgADP, or MgAMP-PNP to the reaction mixture fully protected the enzyme from inactivation by 5'-p-fluorosulfonylbenzoyladenosine. The reagent was demonstrated to be a competitive inhibitor of MgATP with a Ki of 0.235 mM. Metal-free nucleotides were without effect upon the reaction rate while metal ions alone accelerated the inactivation rate up to 7-fold. The inclusion of casein or synthetic peptide substrate in the incubation mixture did not affect the reaction kinetics. Reaction of 5'-p-fluorosulfonylbenzoyladenosine with the kinase subunit exhibits all of the characteristics of affinity labeling of the MgATP-binding site.  相似文献   

4.
C T Grubmeyer  W R Gray 《Biochemistry》1986,25(17):4778-4784
Salmonella typhimurium L-histidinol dehydrogenase (EC 1.1.1.23), a four-electron dehydrogenase, was inactivated by an active-site-directed modification reagent, 7-chloro-4-nitro-2,1,3-benzoxadiazole (NBD-Cl). The inactivation followed pseudo-first-order kinetics and was prevented by low concentrations of the substrate L-histidinol or by the competitive inhibitors histamine and imidazole. The observed rate saturation kinetics for inactivation suggest that NBD-Cl binds to the enzyme noncovalently before covalent inactivation occurs. The UV spectrum of the inactivated enzyme showed a peak at 420 nm, indicative of sulfhydryl modification. Stoichiometry experiments indicated that full inactivation was correlated with modification of 1.5 sulfhydryl groups per subunit of enzyme. By use of a substrate protection scheme, it was shown that 0.5 sulfhydryl per enzyme subunit was neither protected against NBD-Cl modification by L-histidinol nor essential for activity. Modification of the additional 1.0 sulfhydryl caused complete loss of enzyme activity and was prevented by L-histidinol. Pepsin digestion of NBD-modified enzyme was used to prepare labeled peptides under conditions that prevented migration of the NBD group. HPLC purification of the peptides was monitored at 420 nm, which is highly selective for NBD-labeled cysteine residues. By amino acid sequencing of the major peptides, it was shown that the reagent modified primarily Cys-116 and Cys-377 and that the presence of L-histidinol gave significant protection of Cys-116. The presence of a cysteine residue in the histidinol binding site is consistent with models in which formation and subsequent oxidation of a thiohemiacetal occurs as an intermediate step in the overall reaction.  相似文献   

5.
1. The kinetics of the reaction catalysed by fructose bisphosphatase have been studied at pH 7.2 and at pH 9.5. The activity of the enzyme was shown to respond sigmoidally to increasing concentrations of free Mg2+ or Mn2+ ions at pH 7.2, whereas the dependence was hyperbolic at pH 9.5. At both pH values the enzyme responded hyperbolically to increasing concentrations of fructose 1,6-bisphosphate, although inhibition was observed at higher concentrations of this substrate. This high substrate inhibition was shown to be partial in nature and the enzyme was found to be more sensitive at pH 7.2 than at pH 9.5. 2. The properties of the enzyme, are consistent with the enzyme obeying either a random-order equilibrium mechanism or a compulsory-order steady-state mechanism in which fructose bisphosphate binds to the enzyme before the cation. 3. Reaction of the enzyme with a four-fold molar excess of p-chloromercuribenzoate caused activation of the enzyme when its activity was assayed in the presence of MN2+ ions but inhibition when Mg2+ ions were used. Higher concentrations of p-chloromercuribenzoate caused inhibition. This activation at low p-chloromercuribenzoate concentrations, and the reaction of 5,5'-dithio-bis(2-nitrobenzoate) with the four thiol groups in the enzyme that reacted rapidly with this reagent, were prevented or slowed by the presence of inhibitory, but not non-inhibitory, concentrations of fructose bisphosphate. After reaction with a four-fold molar excess of p-chloromercuribenzoate the enzyme was no longer sensitive to high substrate inhibition by fructose bisphosphate.  相似文献   

6.
We have investigated the inhibition of Escherichia coli glutamine synthetase (GS) with alpha- and gamma-substituted analogues of phosphinothricin [L-2-amino-4-(hydroxymethylphosphinyl)butanoic acid (PPT)], a naturally occurring inhibitor of GS. These compounds display inhibition of bacterial GS that is competitive vs L-glutamate, with Ki values in the low micromolar range. At concentrations greater than Ki the phosphinothricins caused time-dependent loss of enzyme activity, while dilution after enzyme inactivation resulted in recovery of enzyme activity. ATP was required for inactivation; the nonhydrolyzable ATP analogue AMP-PCP failed to support inhibition of GS by the phosphinothricins. The binding of these inhibitors to the enzyme was also characterized by measurement of changes in protein fluorescence, which provided similar inactivation rate constants k1 and k2 for the entire series of compounds. Rate constants koff for recovery were also determined by fluorescence measurement and were comparable for both PPT and the gamma-hydroxylated analogue GHPPT and significantly greater for the alpha- and gamma-alkyl-substituted compounds. Electron paramagnetic resonance spectra provided information on the interaction of the phosphinothricins with the manganese form of the enzyme in the absence of ATP, and significant binding was observed for PPT and GHPPT. 31P NMR experiments confirmed that enzyme inactivation is accompanied by hydrolysis of ATP, although phosphorylated phosphinothricins could not be detected in solution. The kinetic behavior of these compounds is consistent with a mechanism involving inhibitor phosphorylation, followed by release from the active site and simultaneous hydrolysis to form Pi and free inhibitor.  相似文献   

7.
The optical isomers of 3-amino-1-chloro-2-pentanone, which are the alpha-chloroketone analogs of L- and D-alpha-aminobutyrate, were synthesized and found to be highly potent irreversible inactivators of gamma-glutamylcysteine synthetase. These chloroketones are 20 to 30 times more active than L-2-amino-4-oxo-5-chlorpentanoate. L- and D-Glutamate, in the presence of Mg2+ or Mn2+, protect the enzyme against inactivation. The enzyme is almost completely inhibited by cystamine under conditions in which 0.5 mol of this compound is bound/mol of enzyme. Treatment of the enzyme with cystamne, which produces inhibition that is reversible by dithiothreitol, prevents the interaction of the new chloroketones, L-2-amino-4-oxo-5-chloropentanoate and methionine sulfoximine with the enzyme. The findings suggest that a sulfhydryl group at the active site interacts with the chloroketones and with cystamine and that the chloroketone inhibitors and cystamine bind to the enzyme as glutamine analogs. The data also suggest that a gamma-glutamyl-S-enzyme intermediate may be formed in the reaction catalyzed by this enzyme.  相似文献   

8.
The sequence of substrate addition and product release during the reaction catalyzed by gamma-glutamylcysteine synthetase was investigated with purified enzyme from bovine lens. Thermal inactivation and kinetic studies suggest that L-glutamate is the first substrate to bind to the enzyme. L-beta-Chloroalanine was used as the L-cysteine analogue. Utilizing substrate activation and product inhibition studies, the following reaction sequence was determined: L-glutamate binding. ATP binding, ADP release, L-beta-chloroalanine binding, followed by inorganic phosphate and then dipeptide release. The implications of this mechanism with regard to control of the enzyme in situ and its importance in glutathione synthesis are discussed.  相似文献   

9.
Pigeon liver fatty acid synthetase (FAS) was inactivated irreversibly by stoichiometric concentration of o-phthalaldehyde exhibiting a bimolecular kinetic process. FAS-o-phthalaldehyde adduct gave a characteristic absorption maxima at 337 nm. Moreover this derivative showed fluorescence emission maxima at 412 nm when excited at 337 nm. These results were consistent with isoindole ring formation in which the -SH group of cysteine and epsilon-NH2 group of lysine participate in the reaction. The inactivation is caused by the reaction of the phosphopantetheine -SH group since it is protected by either acetyl- or malonyl-CoA. The enzyme incubated with iodoacetamide followed by o-phthalaldehyde showed no change in fluorescence intensity but decrease in intensity was found in the treatment of 2,4,6-trinitrobenzenesulphonic acid (TNBS), a lysine specific reagent with the enzyme prior to o-phthalaldehyde addition. As o-phthalaldehyde did not inhibit enoyl-CoA reductase activity, so nonessential lysine is involved in the o-phthalaldehyde reaction. Double inhibition experiments showed that 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), a thiol specific reagent, binds to the same cysteine which is also involved in the o-phthalaldehyde reaction. Stoichiometric results indicated that 2 moles of o-phthalaldehyde were incorporated per mole of enzyme molecule upon complete inactivation.  相似文献   

10.
Properties of glutamine-dependent glutamate synthase have been investigated using homogeneous enzyme from Escherichia coli K-12. In contrast to results with enzyme from E. coli strain B (Miller, R. E., and Stadtman, E. R. (1972) J. Biol. Chem. 247, 7407-7419), this enzyme catalyzes NH3-dependent glutamate synthase activity. Selective inactivation of glutamine-dependent activity was obtained by treatment with the glutamine analog. L-2-amino-4-oxo-5-chloropentanoic acid (chloroketone). Inactivation by chloroketone exhibited saturation kinetics; glutamine reduced the rate of inactivation and exhibited competitive kinetics. Iodoacetamide, other alpha-halocarbonyl compounds, and sulfhydryl reagents gave similar selective inactivation of glutamine-dependent activity. Saturation kinetics were not obtained for inactivation by iodoacetamide but protection by glutamine exhibited competitive kinetics. The stoichiometry for alkylation by chloroketone and iodoacetamide was approximately 1 residue per protomer of molecular weight approximately 188,000. The single residue alkylated with iodo [1-14C]acetamide was identified as cysteine by isolation of S-carboxymethylcysteine. This active site cysteine is in the large subunit of molecular weight approximately 153,000. The active site cysteine was sensitive to oxidation by H2O2 generated by autooxidation of reduced flavin and resulted in selective inactivation of glutamine-dependent enzyme activity. Similar to other glutamine amidotransferases, glutamate synthase exhibits glutaminase activity. Glutaminase activity is dependent upon the functional integrity of the active site cysteine but is not wholly dependent upon the flavin and non-heme iron. Collectively, these results demonstrate that glutamate synthase is similar to other glutamine amidotransferases with respect to distinct sites for glutamine and NH3 utilization and in the obligatory function of an active site cysteine residue for glutamine utilization.  相似文献   

11.
The half-time method for the determination of Michaelis parameters from enzyme progress-curve data (Wharton, C.W. and Szawelski, R.J. (1982) Biochem. J. 203, 351-360) has been adapted for analysis of the kinetics of irreversible enzyme inhibition by an unstable site-specific inhibitor. The method is applicable to a model in which a product (R) of the decomposition of the site-specific reagent, retaining the chemical moiety responsible for inhibitor specificity, binds reversibly to the enzyme with dissociation constant Kr: (formula; see text). Half-time plots of simulated enzyme inactivation time-course data are shown to be unbiased, and excellent estimates of the apparent second-order rate constant for inactivation (k +2/Ki) and Kr can be obtained from a series of experiments with varying initial concentrations of inhibitor. Reliable estimates of k +2 and Ki individually are dependent upon the relative magnitudes of the kinetic parameters describing inactivation. The special case, Kr = Ki, is considered in some detail, and the integrated rate equation describing enzyme inactivation shown to be analogous to that for a simple bimolecular reaction between enzyme and an unstable irreversible inhibitor without the formation of a reversible enzyme-inhibitor complex. The half-time method can be directly extended to the kinetics of enzyme inactivation by an unstable mechanism-based (suicide) inhibitor, provided that the inhibitor is not also a substrate for the enzyme.  相似文献   

12.
Treatment of purified ATPase of the thermophilic bacterium PS-3 with the arginine reagent phenylglyoxal or with Woodward's reagent K, gave complete inactivation of the enzyme. The inactivation rates followed apparent first-order kinetics. The apparent order of reaction with respect to inhibitor concentrations gave values near to 1 with both reagents, suggesting that inactivation was a consequence of modifying one arginine or carboxyl group per active site. ADP and ATP strongly protected the thermophilic ATPase against both reagents. GDP and IDP protected less, whilst CTP did not protect. Experiments in which the incorporation of [14C]phenylglyoxal into the enzyme was measured show that extrapolation of incorporation to 100% inactivation of the enzyme gives 8-9 mol [14C]phenylglyoxal per mol ATPase, whilst ADP or ATP prevent modification of about one arginine per mol.  相似文献   

13.
Glutamate racemase of Pediococcus pentosaceus contained no cofactor, and was completely inactivated by a thiol reagent. The role of a cysteine residue in the enzyme reaction was studied by chemical modification. The modification of this cysteine residue resulted in a concomitant loss of activity. DL-Glutamate protected the enzyme from inactivation. The inactivated enzyme was reactivated by addition of dithiothreitol. The racemization in 2H2O showed an overshoot in the optical rotation of glutamate before the substrate was completely racemized. This indicates that the removal of alpha-hydrogen is the rate determining step. During the racemization of D- or L-glutamate in 3H2O, tritium was incorporated preferentially into the product. Glutamate is racemized by the enzyme probably through a two base mechanism.  相似文献   

14.
Regulation of glutamine synthetase in the blue-green alga Anabaena L-31   总被引:1,自引:0,他引:1  
In N2-grown cultures of Anabaena L-31, in which protein synthesis was prevented by chloramphenicol, presence of NH+4 caused a drastic decrease of glutamine synthetase (L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2) activity indicating NH+4-mediated inactivation or degradation of the enzyme. The half-life of glutamine synthetase was more than 24 h, whereas that of nitrogenase (reduced ferredoxin:dinitrogen oxidoreductase (ATP-hydrolysing), EC 1.18.2.1) was less than 4 h, suggesting that glutamine synthetase may not act as positive regulator of nitrogenase synthesis in Anabaena. Glutamine synthetase purified to homogeneity was subject to cumulative inhibition by alanine, serine and glycine. The amino acids, however, exhibited partial antagonism in this behaviour. Glyoxylate, an intermediate in photorespiration, virtually prevented the amino acid inhibition. Kinetic studies revealed inhibition of the enzyme activity by high Mg2+ concentration under limiting glutamate level and by high glutamate in limiting Mg2+. Maximum enzyme activity occurred when the ratio of glutamate to free Mg2+ was 0.5 to 1.0. The results demonstrate that the enzyme is subject to multiple regulation by various metabolites involved in nitrogen assimilation.  相似文献   

15.
S-Adenosylhomocysteinase (EC 3.3.1.1) from rat liver is inactivated by 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate (CMC) in a pseudo-first-order fashion. The rate of inactivation is linearly related to the concentration of the reagent, and a second-order rate constant of 4.94 +/- 0.27 M-1 min-1 is obtained at pH 5.5 and 25 degrees C. The inactivation does not involve change in the quaternary structure of the enzyme nor modification or release of the enzyme-bound NAD. Lack of modification at tyrosine, serine, cysteine, histidine, and lysine residues and the fact that the inactivation is favored at low pH suggest that the inactivation is caused by the modification of a carboxyl group. Statistical analysis of the relationship between the residual enzyme activity and the extent of modification, and comparison of the number of residues modified in the presence and absence of the substrate adenosine show that, among four reactive residues per enzyme subunit, only one residue which reacts more rapidly with the reagent than the rest is critical for activity. The CMC-modified enzyme binds adenosine and S-adenosylhomocysteine and is able to oxidize the 3' hydroxyl of these substrates, but apparently fails to catalyze the abstraction of the 4' proton of adenosine.  相似文献   

16.
Steady-state kinetic analysis shows that glutathione binds reversibly to both Mg . enzyme and Mg . enzyme . L-glutamate forms of gamma-glutamylcysteine synthetase to form inactive complexes. The Ki values for binding to these two species of enzyme are 4 mM and 0.4 mM, respectively; those for S-methyl glutathione are 16 mM and 0.5 mM, respectively. These data suggest that glutathione is an important feedback inhibitor and contributes to the regulation of glutathione synthesis by modulating the synthesis rate of the precursor dipeptide. Adenosine 5'-diphosphate (5'ADP) is also an inhibitor and competes with both ATP and L-beta-chloroalanine for Mg . enzyme . L-glutamate and Mg . enzyme . L-glutamylphosphate, respectively. Under physiological conditions in the lens, 5' ADP competes effectively with L-cysteine for Mg . enzyme . L-glutamylphosphate, owing to the low concentration of L-cysteine, and less effectively with ATP for Mg . enzyme . L-glutamate, because of a high concentration of ATP.  相似文献   

17.
The kinetic properties of the enzyme L-glutamate:4,5-dioxovaleric acid aminotransferase (Glu:DOVA transaminase) from Euglena gracilis have been studied. 5-Aminolevulinic acid formation was linear with time for at least 45 min at 37 degrees C and L-glutamate was the most effective amino-group donor. Lineweaver-Burk double-reciprocal plots suggested a ping-pong reaction mechanism, with Km values for L-glutamate and DOVA of 1.92 mM and 0.48 mM respectively. Competitive parabolic substrate inhibition by DOVA at concentrations greater than 3.5-4.5 mM was observed. Glyoxylate (4-10 mM) was found to be a competitive inhibitor with respect to DOVA, whereas at low concentrations (0-4 mM) noncompetitive plots were obtained. An analysis of the possible enzyme forms involved, was carried out. In more crude preparations most of the enzyme is found to be in the form of an enzyme-glutamate complex.  相似文献   

18.
Citrate lyase from Clostridium sphenoides was purified 72-fold with a yield of 11%. In contrast to citrate lyase from other sources the activity of this enzyme was strictly dependent on the presence of L-glutamate. The purified enzyme was only stable in the presence of 150 mM L-glutamate or 7 mM L-glutamate plus glycerol, sucrose or bovine serum albumin. Changes of the L-glutamate pool and of enzyme activity in growing cells of C. sphenoides indicated that citrate lyase activity in this organism was regulated by the intracellular L-glutamate concentration. Citrate lyase isolated from C. sphenoides, Rhodopseudomonas gelatinosa and Streptococcus diacetilactis was investigated by electron microscopy using the negative staining technique. Three different projections of enzyme molecules were observed: 'star' form, 'ring' form and 'triangle' form. In samples from R. gelatinosa and S. diacetilactis, star and ring forms occurred in a ratio of about 1:9. Using the enzyme from S. diacetilactis it was demonstrated that this ratio could be altered in favour of the star form by the addition of citrate or tricarballylate. The triangle form was observed in less than 1% of all evaluated molecules and may represent a transition form. In lyase samples from C. sphenoides there existed a correlation between enzyme activity and the proportion of stars and rings at varying concentrations of L-glutamate.  相似文献   

19.
Human erythrocyte gamma-glutamylcysteine synthetase is inactivated by the disulfide cystamine (2,2'-dithiobis-(ethylamine)) at pH 8.2 with a rate constant of 1020 min-1 mM-1. Magnesium ion and various combinations of substrates and products confer differing degrees of protection against cystamine inactivation, thus allowing the detection and quantification of certain enzyme-ligand interactions. By measuring inactivation rates as a function of ligand concentrations in incomplete reaction mixtures, we have obtained evidence for the following complexes: enzyme . Mg2+; enzyme . Mg2+ . MgATP2-; enzyme . Mg2+ . L-glutamate; enzyme . Mg2+ . MgATP2- . L-glutamate; enzyme . Mg2+ . L-gamma-glutamyl-L-alpha-aminobutyrate. The data also imply the existence of enzyme . (Mg2+)2 . MgATP2- . L-glutamate and several enzyme forms resulting from the weak binding to L-alpha-aminobutyrate. The methods used permit the calculation of cystamine inactivation rates for most of these enzyme forms and also give values for the equilibrium constants describing their formation.  相似文献   

20.
The ATP analog 6-[(3-carboxy-4-nitrophenyl)thiol]-9-beta-D-ribofuranosylpurine 5'-triphosphate (Nbs6ITP) is slowly hydrolyzed at pH 7.4 by the (Na+ + K+)-ATPase, whereas it binds covalently at pH 8.5 and inhibits the enzyme irreversibly. Time courses of irreversible inhibition could only be fitted to a model in which the enzyme can exist in two slowly interchangeable states, one of which is enzymatically active and binds Nbs6ITP first reversibly and then covalently. Arguments that the covalent binding occurs at a low affinity nucleotide binding site are: (a) similarity of the Ki Nbs6ITP for the reversible and the irreversible inhibition and of K0.5 for ATP protection; (b) stoichiometry of covalent Nbs6ITP binding per alpha subunit of 0.8; and (c) change of complex substrate dependence of the enzyme to a Michaelis-Menten type after Nbs6ITP modification. This change in kinetics and the finding that the Nbs6ITP inactivation at a low affinity nucleotide binding site is increased by micromolar ADP concentrations indicates that the (Na+ + K+)-ATPase contains two different nucleotide binding sites. Since studies of nucleotide effects on enzyme inactivation by 5,5'-dithiobis(2-nitrobenzoic acid) did not confirm the hypothesis of an SH-group in a nucleotide binding site, Nbs6ITP may bind to another functional group, e.g. to an OH-group of tyrosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号