首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electroenzymatic oxidation of veratryl alcohol by lignin peroxidase   总被引:5,自引:0,他引:5  
This paper reports the formation of veratraldehyde by electroenzymatic oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) hybridizing both electrochemical and enzymatic reactions and using lignin peroxidase. The novel electroenzymatic method was found to be effective for replacement of hydrogen peroxide by an electrochemical reactor, which is essential for enzyme activity of lignin peroxidase. The effects of operating parameters such as enzyme dosage, pH, and electric potential were investigated. Further, the kinetics of veratryl alcohol oxidation in an electrochemical reactor were compared to oxidation when hydrogen peroxide was supplied externally.  相似文献   

2.
Summary The effects of various parameters on Phanerochaete chrysosporium lignin peroxidase activity as obtained in ligninase assay based on the oxidation of veratryl alcohol were investigated. Marked differences in the ligninase activity were observed when the temperature and pH were varied within the ranges of 23 to 37°C and 2.5 to 4.0, respectively, reported to have been used by various research groups. Further, both veratryl alcohol, and hydrogen peroxide concentration had a significant effect on ligninase activity.  相似文献   

3.
The mechanism of inhibition of the veratryl alcohol oxidase activity of lignin peroxidase H2 (LiPH2) by EDTA was investigated. It was found that EDTA was decarboxylated and that cytochrome c, nitro blue tetrazolium, ferric iron, and molecular oxygen were reduced in a reaction mixture containing LiPH2, H2O2, veratryl alcohol, and EDTA. The reductive activity observed with LiPH2 followed first order kinetics with respect to the concentration of EDTA. Stoichiometry studies showed that in the presence of sufficient EDTA, 1.7 mol of ferric iron were reduced per mole of H2O2 added to the reaction mixture. Superoxide- and EDTA-derived radicals were detected by ESR spin trapping upon incubation of LiPH2 with H2O2, veratryl alcohol, and EDTA. The Km values of veratryl alcohol and H2O2 remained the same for both the oxidative and reductive activities of LiPH2. Reductive activity was also observed with LiPH2 and EDTA using other free radical mediators in the place of veratryl alcohol, such as 1,4-dimethoxybenzene, 1,2,3- and 1,2,4-trimethoxybenzenes, and 1,2,4,5-tetramethoxybenzene. EDTA reduced the cation radical of 1,2,4,5-tetramethoxybenzene formed by LiPH2 in the presence of H2O2. Hence, it is proposed that the apparent inhibition of the veratryl alcohol oxidase activity of LiPH2 by EDTA is due to the reduction of the veratryl alcohol cation radical intermediate back to veratryl alcohol by EDTA. The reduction of cytochrome c, nitro blue tetrazolium, ferric ion, and molecular oxygen appears to be mediated by the EDTA radical formed by reduction of the veratryl alcohol cation radical.  相似文献   

4.
A number of peroxidases, such as lignin peroxidase and manganese peroxidase have proved to be useful for industrial applications. Some studies on the effects of temperature and pH stability have been carried out. It is known that veratryl alcohol increases their stability in the range 28-50 degrees C and is oxidized, leading to veratryl aldehyde formation. Similar results with horseradish peroxidase (HRP) in the presence of cofactors were found, but the oxidation of veratryl alcohol in the absence of cofactors was extremely labile at acid pH and inactivated in a few minutes. Considering the growing industrial application of HRP, knowledge of its stability and denaturation kinetics is required. In this study, horseradish peroxidase pool (HRP-VI) and its isoenzymes HRP-VIII (acid) and HRP-IX (basic) have been shown to catalyze the oxidation of veratryl alcohol to veratryl aldehyde in the presence of hydrogen peroxide at pH 5.8 in the 35-45 degrees C range and in the absence of any cofactors. Heat and pH denaturation experiments in the presence and absence of veratryl alcohol incubation were conducted with HRP-VI and HRP-IX isoenzymes. HRP-IX was the most active isoenzyme acting on veratryl alcohol but HRP-VI was the most stable for the temperature range tested. At 35 degrees C the HRP pool presented decay constant (Kd) values of 5.5 x 10(-2) h(-1) and 1.4 10(-2) h(-1) in the absence and presence of veratryl alcohol, respectively, with an effective ratio of 3.9. These results present a new feature of peroxidases that opens one more interesting application of HRP to industrial processes.  相似文献   

5.
The purpose of this study was to determine the effect of heme pocket hydrophobicity on the reactivity of manganese peroxidase. Residues within 5 A of the heme active site were identified. From this group, Leu169 and Ser172 were selected and mutated to Phe and Ala, respectively. The mutant proteins were then characterized by steady-state kinetics. Whereas the Leu169Phe mutation had little, if any, effect on activity, the Ser172Ala mutation decreased kcat and also the specificity constant (kcat/Km) for Mn2+, but not H2O2. Transient-state studies indicated that the mutation affected only the reactions of compound II. These results indicate that compound II is the most sensitive to changes in the heme environment.  相似文献   

6.
The kinetics of decay of veratryl alcohol radical cation, generated by cerium(IV) ammonium nitrate induced oxidation of veratryl alcohol, have been followed spectrophotometrically in a stopped-flow apparatus. In acidic aqueous acetonitrile the radical cation was found to decay by a first-order process, due to deprotonation from the alpha-carbon leading to an alpha-hydroxybenzyl radical with the rate constant of 17.1+/-0.5 s(-1). This value is in full agreement with those obtained by pulse radiolysis studies but much lower than the value (1.2x10(3) s(-1)) indirectly determined by EPR experiments. The implications of these results with respect to the possible role of veratryl alcohol as a mediator in the oxidative biodegradation of lignin catalysed by lignin peroxidase are discussed.  相似文献   

7.
Sun Y  Yang H  Wang W 《Biotechnology letters》2011,33(10):2049-2055
Site-directed mutagenesis was applied to enhance the thermostability and enzymatic activity of cholesterol oxidase (ChOx) isolated from Brevibacterium sp. Three amino acid residues (Q153E, F128L, and S143H) located near the FAD-binding site of the enzyme were substituted based on structural analysis. The specific activity of the two-sites mutant Q153E/F128L increased by 11.6% and the relative activity increased by 47% when grown for 2 h at 50°C. This mutant is a potential industrial strain for producing ChOx.  相似文献   

8.
9.
Benzyl alcohol dehydrogenase from Acinetobacter calcoaceticus oxidises a wide range of aromatic and other cyclic alcohols and it has high specificity constants for these substrates, but it does not oxidise short- or long-chain aliphatic alcohols. Mutation of an active-site arginine to a histidine can switch the substrate specificity of the enzyme so that it has a very much greater preference for perillyl alcohol than for benzyl alcohol. © Rapid Science Ltd. 1998  相似文献   

10.
Horseradish peroxidase has been shown to catalyze the oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) and benzyl alcohol to the respective aldehydes in the presence of reduced glutathione, MnCl2, and an organic acid metal chelator such as lactate. The oxidation is most likely the result of hydrogen abstraction from the benzylic carbon of the substrate alcohol leading to eventual disproportionation to the aldehyde product. An aromatic cation radical intermediate, as would be formed during the oxidation of veratryl alcohol in the lignin peroxidase-H2O2 system, is not formed during the horseradish peroxidase-catalyzed reaction. In addition to glutathione, dithiothreitol, L-cysteine, and beta-mercaptoethanol are capable of promoting veratryl alcohol oxidation. Non-thiol reductants, such as ascorbate or dihydroxyfumarate (known substrates of horseradish peroxidase), do not support oxidation of veratryl alcohol. Spectral evidence indicates that horseradish peroxidase compound II is formed during the oxidation reaction. Furthermore, electron spin resonance studies indicate that glutathione is oxidized to the thiyl radical. However, in the absence of Mn2+, the thiyl radical is unable to promote the oxidation of veratryl alcohol. In addition, Mn3+ is unable to promote the oxidation of veratryl alcohol in the absence of glutathione. These results suggest that the ultimate oxidant of veratryl alcohol is a Mn(3+)-GSH or Mn(2+)-GS. complex (where GS. is the glutathiyl radical).  相似文献   

11.
Summary Several bacteria, yeast and fungi selectively isolated from paper-mill waste-water grew on veratryl alcohol, a key intermediate of lignin metabolism. Penicillium simplicissimum oxidized veratryl alcohol via a NAD(P)+-dependent veratryl alcohol dehydrogenase to veratraldehyde, which was further oxidized to veratric acid in a NAD(P)+-dependent reaction. Veratric-acid-grown cells contained NAD(P)H-dependent O-demethylase activity for veratrate, vanillate and isovanillate. Protocatechuate was cleaved by a protocatechuate 3,4-dioxygenase.Offprint requests to: E. de Jong  相似文献   

12.
K Valli  H Wariishi  M H Gold 《Biochemistry》1990,29(37):8535-8539
Lignin peroxidase (LiP), an extracellular heme enzyme from the lignin-degrading fungus Phanerochaete chrysosporium, catalyzes the H2O2-dependent oxidation of a variety of nonphenolic lignin model compounds. The oxidation of monomethoxylated lignin model compounds, such as anisyl alcohol (AA), and the role of veratryl alcohol (VA) in LiP reactions were studied. AA oxidation reached a maximum at relatively low H2O2 concentrations, beyond which the extent of the reactions decreased. The presence of VA did not affect AA oxidation at low molar ratios of H2O2 to enzyme; however, at ratios above 100, the presence of VA abolished the decrease in AA oxidation. Addition of stoichiometric amounts of AA to LiP compound II (LiPII) resulted in its reduction to the native enzyme at rates that were significantly faster than the spontaneous rate of reduction, indicating that AA and other monomethoxylated aromatics are directly oxidized by LiP, albeit slowly. Under steady-state conditions in the presence of excess H2O2 and VA, a visible spectrum for LiPII was obtained. In contrast, under steady-state conditions in the presence of AA a visible spectrum was obtained for LiPIII*, a noncovalent complex of LiPIII and H2O2. AA competitively inhibited the oxidation of VA by LiP; the Ki for AA inhibition was 32 microM. Addition of VA to LiPIII* resulted in its conversion to the native enzyme. In contrast, AA did not convert LiPIII* to the native enzyme; instead, LiPIII* was bleached in the presence of AA. Thus, AA does not protect LiP from inactivation by H2O2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
In previous site-directed mutagenesis study on thermolysin, mutations which increase the catalytic activity or the thermal stability have been identified. In this study, we attempted to generate highly active and stable thermolysin by combining the mutations so far revealed to be effective. Three mutant enzymes, L144S (Leu144 in the central alpha-helix located at the bottom of the active site cleft is replaced with Ser), G8C/N60C/S65P (Gly8, Asn60, and Ser65 in the N-terminal region are replaced with Cys, Cys, and Pro, respectively, to introduce a disulfide bridge between the positions 8 and 60), and G8C/N60C/S65P/L144S, were constructed by site-directed mutagenesis. In the hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide (FAGLA) and N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester (ZDFM), the k(cat)/K(m) values of L144S and G8C/N60C/S65P/L144S were 5- to 10-fold higher than that of the wild-type enzyme. The rate constants for thermal inactivation at 70 degrees C and 80 degrees C of G8C/N60C/S65P and G8C/N60C/S65P/L144S decreased to 50% of that of the wild-type enzyme. These results indicate that G8C/N60C/S65P/L144S is more active and stable than the wild-type thermolysin. Thermodynamic analysis suggests that the single mutation of Leu144-->Ser and the triple mutation of Gly8-->Cys, Asn60-->Cys, and Ser65-->Pro are independent.  相似文献   

14.
I Momohara  Y Matsumoto  A Ishizu 《FEBS letters》1990,273(1-2):159-162
Degradation of 2-hydroxy-1,4-naphthoquinone (HNQ) by lignin peroxidase is discussed. Degradation rat was remarkably increased by an increase in veratryl alcohol concentration. Degradation is partly prevented by adding OH. scavenger (mannitol or DMSO) to the reaction mixture. Addition of O2-. scavenger (Mn2+) to the reaction mixture completely prevents the degradation. These results suggest that active oxygen species formed in the lignin peroxidase-H2O2-veratryl alcohol system play an important role in HNQ degradation.  相似文献   

15.
The activity of lignin peroxidase (LiP) and the partition of its optimum substrate veratryl alcohol (VA) in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane/toluene/water reverse micelles were studied in this paper to understand the microheterogeneous effect of the medium on the catalytic properties of LiP hosted in the reverse micelle. Results showed that LiP from Phanerochaete chrysosporium could express its activity in the reverse micelles, but its activity depended, to a great extent, on the composition of the reverse micelles. Optimum activity occurred at a molar ratio of water to AOT (ω0) of 11, a pH value of 3.6, and a volume ratio of isooctane to toluene of 7–9. Under optimum conditions, the half-life of LiP was circa 12 h. The dependence of LiP activity on the volume fraction of water in the medium (θ), at a constant ω0 value of 11, indicated that VA was mainly solubilized in the pseudophase of the reverse micelle. Based on the pseudobiphasic model and the corresponding kinetic method, a linear line can be obtained in a plot of apparent Michaelis constant of VA vs θ, and the partition coefficient of VA between the pseudophase and the organic solvent phase was determined to be 35.8, which was higher than that (22.3) between bulk water and the corresponding mixed organic solvent. H2O2 inhibited LiP at concentrations higher than 80 μM; this concentration value seems to be different from that in aqueous solution (about 3 mM). The differences mentioned above should be ascribed to the microheterogeneity and the interface of the AOT reverse micelle.  相似文献   

16.
Using site-directed mutagenesis, we introduced two stop codons immediately upstream of the putative transmembrane domain in human thyroid peroxidase (hTPO) cDNA, truncating the carboxyl terminus of hTPO (933 amino acids) by 85 residues. Mutated hTPO cDNA, inserted into a eukaryotic expression vector, was stably transfected into Chinese hamster ovary (CHO) cells. Immunoprecipitation of cellular 35S-methionine-labeled proteins with Hashimoto's serum revealed a 105-101 kilodalton doublet. In contrast, cells transfected with wild-type hTPO yielded a 112-105 kilodalton doublet. In pulse-chase experiments, CHO cells expressing the truncated hTPO protein secreted immunoprecipitable TPO into the culture medium after 4 h of chase, with levels accumulating progressively over a 24-h period. In contrast, CHO cells expressing wild-type hTPO released no immunoprecipitable TPO into the culture medium. The secreted, truncated form of hTPO appeared as a single band of lesser electrophoretic mobility, as opposed to the doublet expressed within cells. TPO enzymatic activity was present in conditioned media from CHO cells transfected with the mutated hTPO, but was absent in media from cells expressing wild-type hTPO. The stability of the mutated protein appeared similar to that of wild-type hTPO. In summary, we have generated a mutated, secreted form of hTPO that is enzymatically active and immunologically intact. Our data confirm the existence of a transmembrane domain in hTPO, and that hTPO is predominantly an enzyme with an extracellular orientation. The secreted form of hTPO has the potential for generating large amounts of soluble TPO protein for use in future structural and immunological studies.  相似文献   

17.
An inert carrier (nylon sponge), a non-inert carrier (barley straw) and the addition of veratryl alcohol or manganese (IV) oxide to the cultures were used to study the production of ligninolytic enzymes by Phanerochaete chrysosporium BKM-F-1767 (ATCC 24725) during semi solid state fermentation conditions. By supplementing the medium with these compounds we could stimulate the ligninolytic system of this fungus. The different carriers employed and the effect of adding veratryl alcohol or manganese (IV) oxide to the cultures were compared in order to determine the best system to produce high activities of ligninolytic enzymes. Lignin peroxidase (LiP) activities higher than 500 U/L and manganese-dependent peroxidase (MnP) activities about 1100 U/L were achieved.  相似文献   

18.
To elucidate the role of sulfhydryl groups in the enzymatic reaction of the aspartase from Escherichia coli, we used site-directed mutagenesis which showed that the enzyme was activated by replacement of Cys-430 with a tryptophan. This mutation produced functional alterations without appreciable structural change: The kcat values became 3-fold at pH 6.0; the Hill coefficient values became higher under both pH conditions; the dependence of enzyme activity on divalent metal ions increased; and hydroxylamine, a good substrate for the wild-type enzyme, proved a poor substrate for the mutant.  相似文献   

19.
Resonance Raman spectra are reported for FeII and FeIII forms of cytochrome c peroxidase (CCP) mutants prepared by site-directed mutagenesis and cloning in Escherichia coli. These include the bacterial "wild type", CCP(MI), and mutations involving groups on the proximal (Asp-235----Asn, Trp-191----Phe) and distal (Trp-51----Phe, Arg-48----Leu and Lys) side of the heme. These spectra are used to assess the spin and ligation states of the heme, via the porphyrin marker band frequencies, especially v3, near 1500 cm-1, and, for the FeII forms, the status of the Fe-proximal histidine bond via its stretching frequency. The FeII-His frequency is elevated to approximately 240 cm-1 in CCP(MI) and in all of the distal mutants, due to hydrogen-bonding interactions between the proximal His-175 N delta and the carboxylate acceptor group on Asp-235. The FeII-His RR band has two components, at 233 and 246 cm-1, which are suggested to arise from populations having H-bonded and deprotonated imidazole; these can be viewed in terms of a double-well potential involving proton transfer coupled to protein conformation. The populations shift with changing pH, possibly reflecting structure changes associated with protonation of key histidine residues, and are influenced by the Leu-48 and Phe-191 mutations. A low-spin FeII form is seen at high pH for the Lys-48, Leu-48, Phe-191, and Phe-51 mutants; for the last three species, coordination of the distal His-52 is suggested by a approximately 200-cm-1 RR band assignable to Fe(imidazole)2 stretching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The specific activity of subtilisin E, an alkaline serine protease of Bacillus subtilis, was substantially increased by optimizing the amino acid residue at position 31 (Ile in the wild-type enzyme) in the vicinity of the catalytic triad of the enzyme. Eight uncharged amino acids (Cys, Ser, Thr, Gly, Ala, Val, Leu, and Phe) were introduced at this site, which is next to catalytic Asp32, using site-directed mutagenesis. Mutant enzymes were expressed in Escherichia coli and were prepared from the periplasmic space. Only the Val and Leu substitutions gave active enzyme, and the Leu31 mutant was found to have a greatly increased activity compared to the wild-type enzyme. The other six mutant enzymes showed a marked decrease in activity. This result indicates that a branched-chain amino acid at position 31 is essential for the expression of subtilisin activity and that the level of the activity depends on side chain structure. The purified Leu31 mutant enzyme was analyzed with respect to substrate specificity, heat stability, and optimal temperature. It was found that the Leu31 replacement caused a prominent 2-6-fold increase in catalytic efficiency (kcat/Km) due to a larger kcat for peptide substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号