首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
IL-1β converting enzyme (ICE) family cysteine proteases are subdivided into three groups; ICE-, CPP32-, and Ich-1–like proteases. In Fas-induced apoptosis, activation of ICE-like proteases is followed by activation of CPP32-like proteases which is thought to be essential for execution of the cell death. It was recently reported that two subfamily members of the mitogen-activated protein kinase superfamily, JNK/SAPK and p38, are activated during Fas-induced apoptosis. Here, we have shown that MKK7, but not SEK1/ MKK4, is activated by Fas as an activator for JNK/ SAPK and that MKK6 is a major activator for p38 in Fas signaling. Then, to dissect various cellular responses induced by Fas, we used several peptide inhibitors for ICE family proteases in Fas-treated Jurkat cells and KB cells. While Z-VAD-FK which inhibited almost all the Fas-induced cellular responses blocked the activation of JNK/SAPK and p38, Ac-DEVD-CHO and Z-DEVD-FK, specific inhibitors for CPP32-like proteases, which inhibited the Fas-induced chromatin condensation and DNA fragmentation did not block the activation of JNK/SAPK and p38. Interestingly, these DEVD-type inhibitors did not block the Fas-induced morphological changes (cell shrinkage and surface blebbing), induction of Apo2.7 antigen, or the cell death (as assessed by the dye exclusion ability). These results suggest that the Fas-induced activation of the JNK/SAPK and p38 signaling pathways does not require CPP32-like proteases and that CPP32-like proteases, although essential for apoptotic nuclear events (such as chromatin condensation and DNA fragmentation), are not required for other apoptotic events in the cytoplasm or the cell death itself. Thus, the Fas signaling pathway diverges into multiple, separate processes, each of which may be responsible for part of the apoptotic cellular responses.  相似文献   

2.
7-hydroxystaurosporine (UCN-01) is a more selective protein kinase C inhibitor than staurosporine. UCN-01 exhibits antitumor activity in experimental tumor models and is presently in clinical trials. Our study reveals that human myeloblastic leukemia HL60 and K562 and colon carcinoma HT29 cells undergo internucleosomal DNA fragmentation and morphological changes characteristic of apoptosis after UCN-01 treatment. These three cell lines lack functional p53, and K562 and HT29 cells are usually resistant to apoptosis. DNA fragmentation in HT29 and K562 cells occurred after 1 day of treatment while it took less than 4 h in HL60 cells. Cycloheximide prevented UCN-01-induced DNA fragmentation in HT-29 cells, but not in HL60 and K562 cells, suggesting that macromolecular synthesis is selectively required for apoptotic DNA fragmentation in HT29 cells. UCN-01-induced DNA fragmentation was preceded by activation of cyclin B1/cdc2 kinase. Further studies in HL60 cells showed that UCN-01-induced apoptosis was associated with degradation of CPP32, PARP, and lamin B and that the inhibitor of caspases (ICE/CED-3 cysteine proteases), Z-VAD-FMK, and the serine protease inhibitor, DCI, protected HL60 cells from UCN-01-induced DNA fragmentation. However, only DCI and TPCK, but not Z-VAD-FMK, inhibited DNA fragmentation in the HL60 cell-free system, suggesting that serine protease(s) may play a role in the execution phase of apoptosis in HL60 cells treated with UCN-01. Z-VAD-FMK and DCI also inhibited apoptosis in HT29 cells. These data demonstrate that the protein kinase C inhibitor and antitumor agent, UCN-01 is a potent apoptosis inducer in cell lines that are usually resistant to apoptosis and lack p53 and that caspases and probably serine proteases are activated during UCN-01-induced apoptosis.  相似文献   

3.
CED-3 is a cysteine protease required for programmed cell death in the nematode, Caenorhabditis elegans, and shares a sequence similarity with mammalian ICE (interleukin-1beta converting enzyme) family proteases. Both CED-3 and ICE family proteases can induce programmed cell death in mammalian cells. Structural and functional similarities between CED-3 and ICE family proteases indicate that the mechanism of cell death is evolutionarily conserved, suggesting the presence of a similar mechanism involving CED-3/ICE-like proteases in Drosophila. Here we determined whether CED-3 or ICE functions to induce programmed cell death in Drosophila. We have generated transformant lines in which ced-3 or Ice is ectopically expressed using the GAL4-UAS system. Expression of CED-3 and ICE can elicit cell death in Drosophila and the cell death was blocked by coexpressing the p35 gene which encodes a viral inhibitor of CED-3/ICE proteases. Results support the idea that the mechanism of programmed cell death controlled by CED-3/ICE is conserved among widely divergent animal species including Drosophila, and the system described provides a tool to dissect cell death mechanism downstream of CED-3/ICE proteases.  相似文献   

4.
The major mechanism of cytotoxic lymphocyte killing involves the directed release of granules containing perforin and a number of proteases onto the target cell membrane. One of these proteases, granzyme B, has an unusual substrate site preference for Asp residues, a property that it shares with members of the emerging interleukin-1beta-converting enzyme (ICE)/CED-3 family of proteases. Here we show that granzyme B is sufficient to reproduce rapidly all of the key features of apoptosis, including the degradation of several protein substrates, when introduced into Jurkat cell-free extracts. Granzyme B-induced apoptosis was neutralized by a tetrapeptide inhibitor of the ICE/CED-3 family protease, CPP32, whereas a similar inhibitor of ICE had no effect. Granzyme B was found to convert CPP32, but not ICE, to its active form by cleaving between the large and small subunits of the CPP32 proenzyme, resulting in removal of the prodomain via an autocatalytic step. The cowpox virus protein CrmA, a known inhibitor of ICE family proteases as well as granzyme B, inhibited granzyme B-mediated CPP32 processing and apoptosis. These data demonstrate that CPP32 activation is a key event during apoptosis initiated by granzyme B.  相似文献   

5.
Upon activation, cell surface death receptors, Fas/APO-1/CD95 and tumor necrosis factor receptor-1 (TNFR-1), are attached to cytosolic adaptor proteins, which in turn recruit caspase-8 (MACH/FLICE/Mch5) to activate the interleukin-1 beta-converting enzyme (ICE)/CED-3 family protease (caspase) cascade. However, it remains unknown whether these apoptotic proteases are generally involved in apoptosis triggered by other stimuli such as Myc and p53. In this study, we provide lines of evidence that a death protease cascade consisting of caspases and serine proteases plays an essential role in Myc-mediated apoptosis. When Rat-1 fibroblasts stably expressing either s-Myc or c-Myc were induced to undergo apoptosis by serum deprivation, a caspase-3 (CPP32)-like protease activity that cleaves a specific peptide substrate, Ac-DEVD-MCA, appeared in the cell lysates. Induction of s-Myc- and c-Myc-mediated apoptotic cell death was effectively prevented by caspase inhibitors such as Z-Asp-CH2-DCB and Ac-DEVD-CHO. Furthermore, exposing the cells to a serine protease inhibitor, 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), also significantly inhibited s-Myc- and c-Myc-mediated apoptosis and the appearance of the caspase-3-like protease activity in vivo. However, AEBSF did not directly inhibit caspase-3-like protease activity in the apoptotic cell lysates in vitro. Together, these results indicate that caspase-3-like proteases play a critical role in both s-Myc- and c-Myc-mediated apoptosis and that caspase-3-like proteases function downstream of the AEBSF-sensitive step in the signaling pathway of Myc-mediated apoptosis.  相似文献   

6.
Baculovirus p35 prevents programmed cell death in diverse organisms and encodes a protein inhibitor (P35) of the CED-3/interleukin-1 beta-converting enzyme (ICE)-related proteases. By using site-directed mutagenesis, we have identified P35 domains necessary for suppression of virus-induced apoptosis in insect cells, the context in which P35 evolved. During infection, P35 was cleaved within an essential domain at or near the site DQMD-87G required for cleavage by CED-3/ICE family proteases. Cleavage site substitution of alanine for aspartic acid at position 87 (D87A) of the P1 residue abolished P35 cleavage and antiapoptotic activity. Although the P4 residue substitution D84A also caused loss of apoptotic suppression, it did not eliminate cleavage and suggested that P35 cleavage is not sufficient for antiapoptotic activity. Apoptotic insect cells contained a CED-3/ICE-like activity that cleaved in vitro-translated P35 and was inhibited by recombinant wild-type P35 but not P1- or P4-mutated P35. Thus, baculovirus infection directly or indirectly activates a novel CED-3/ICE-like protease that is inhibited by P35, thereby preventing virus-induced apoptosis. Our findings confirmed the inhibitory activity of P35 towards the CED-3/ICE protease, including recombinant mammalian enzymes, and were consistent with a mechanism involving P35 stoichiometric interaction and cleavage. P35's inhibition of phylogenetically diverse proteases accounts for its general effectiveness as an apoptotic suppressor.  相似文献   

7.
Interleukin-1beta-converting enzyme (ICE)-like proteases comprise a novel family of unusual cysteine proteases which have been implicated in programmed cell death in both invertebrates and mammals. Current available evidence indicates a role of ICE proteases as central executioners of apoptosis triggered by the cell surface receptor Fas (APO-l). The presence of multiple mammalian ICE proteases with partially overlapping but distinct activities suggests a complex proteolytic cascade which is induced upon Fas ligation. The precise role of single members of the ICE family in Fas-mediated apoptosis, however, is still unclear. Here, we summarize the present knowledge about the relevance of ICE proteases, their potential targets, and interaction with unrelated proteases in cell death mediated by Fas and other apoptotic stimuli.  相似文献   

8.
Bcl-2 family proteins and interleukin-1-beta converting enzyme/Caenorhabditis elegans cell death gene-3 (ICE/CED-3) family proteases (caspases) represent the basic regulators of apoptosis. However, the precise mechanism by which they interact is unclear. In this study, we found that gamma-radiation-induced apoptosis of leukemia cells was associated with activation of multiple caspases and bax up-regulation. Membrane changes and caspase activities were suppressed by specific caspase inhibitors. Similarly, the serine protease inhibitors z-Ala-Ala-Asp-cmk (AAD) and tosyl-lysine chloromethyl ketone (TLCK) also prevented caspase activation and poly(ADP-ribose) polymerase cleavage in vivo but had no effect on caspase activity in vitro. TLCK also prevented bax up-regulation as a result of its inhibitory effect on p53 function. Inhibitors of caspases and serine proteases partially prevented cell death, suggesting a caspase involvement in Bax-mediated cell death. We propose an ordering of signaling events in Bax-mediated cell death, including steps upstream and downstream of p53 and bax up-regulation.  相似文献   

9.
Abstract: Tumor necrosis factor (TNF) is thought to be one of the mediators responsible for the damage of oligodendrocytes (OLGs) in multiple sclerosis (MS). We report here the involvement of the interleukin 1β-converting enzyme (ICE)/ Caenorhabditis elegans gene ced-3 (CED-3) family in TNF-mediated cell death of OLGs. The addition of TNF-α to primary cultures of OLGs that express ice and cpp32 significantly decreased the number of live OLGs in 72 h. DNA fragmentation was detected in TNF-treated OLGs at 36 h with the terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. Benzyloxycarbonyl-Asp-CH2OC(O)-2,6-dichlorobenzene, an inhibitor of the ICE/CED-3 family that shows p35 -like inhibitory specificity, protected against the TNF-induced cell death of OLGs. Furthermore, acetyl-YVAD-CHO (a specific inhibitor of ICE-like proteases) as well as acetyl-DEVD-CHO (a specific inhibitor of CPP32-like proteases) enhanced the survival of OLGs treated with TNF-α, indicating that ICE- and the CPP32-mediated cell death pathways are activated in TNF-induced OLG cell death. Our results suggest that the inhibition of ICE/CED-3 proteases may be a novel approach to treat neurodegenerative diseases such as MS.  相似文献   

10.
In this study, we investigated the involvement of Akt and members of the mitogen-activated protein kinase (MAPK) superfamily, including ERK, JNK, and p38 MAPK, in gemcitabine-induced cytotoxicity in human pancreatic cancer cells. We found that gemcitabine induces apoptosis in PK-1 and PCI-43 human pancreatic cancer cell lines. Gemcitabine specifically activated p38 MAPK in a dose- and time-dependent manner. A selective p38 MAPK inhibitor, SB203580, significantly inhibited gemcitabine-induced apoptosis in both cell lines, suggesting that phosphorylation of p38 MAPK may play a key role in gemcitabine-induced apoptosis in pancreatic cancer cells. A selective JNK inhibitor, SP600125, failed to inhibit gemcitabine-induced apoptosis in both cell lines. MKK3/6, an upstream activator of p38 MAPK, was phosphorylated by gemcitabine, indicating that the MKK3/6-p38 MAPK signaling pathway is indeed involved in gemcitabine-induced apoptosis. Furthermore, gemcitabine-induced cleavage of the caspase substrate poly(ADP-ribose) polymerase was inhibited by pretreatment with SB203580, suggesting that activation of p38 MAPK by gemcitabine induces apoptosis through caspase signaling. These results together suggest that gemcitabine-induced apoptosis in human pancreatic cancer cells is mediated by the MKK3/6-p38 MAPK-caspase signaling pathway. Further, these results lead us to suggest that p38 MAPK should be investigated as a novel molecular target for human pancreatic cancer therapies.  相似文献   

11.
Apoptosis is commonly associated with DNA digestion, but it remains controversial as to which endonuclease is involved. The ability of zinc to inhibit DNA digestion in intact cells, and inhibit a Ca2+/Mg2+-dependent endonuclease in cell lysates, has been used frequently to suggest this is the endonuclease involved. However, zinc has many other effects on cells, and here it is shown that zinc also prevents many upstream events in apoptosis. These studies were performed in human ML-1 cells following incubation with etoposide. During apoptosis, these cells undergo intracellular acidification, increased accumulation of Hoechst 33342, DNA digestion and chromatin condensation. Zinc inhibited all of these events. An upstream event in apoptosis is activation of ICE/CED-3 proteases which is commonly observed as proteolysis of a substrate protein, poly(ADP-ribose) polymerase (PARP). The ICE/CED-3 proteases are themselves activated by proteolysis, and this was detected here by cleavage of one family member CPP32. Zinc prevented cleavage of both CPP32 and PARP. We recently demonstrated that dephosphorylation of the retinoblastoma susceptibility protein Rb was a marker of an event even further upstream in apoptosis; zinc was also found to inhibit Rb dephosphorylation. Therefore, zinc must protect cells at a very early step in the apoptotic pathway, and not as a direct inhibitor of an endonuclease.  相似文献   

12.
13.
Vascular endothelial growth factor (VEGF) utilizes a phosphoinositide 3-kinase (PI 3-kinase)/Akt signaling pathway to protect endothelial cells from apoptotic death. Here we show that PI 3-kinase/Akt signaling promotes endothelial cell survival by inhibiting p38 mitogen-activated protein kinase (MAPK)-dependent apoptosis. Blockade of the PI 3-kinase or Akt pathways in conjunction with serum withdrawal stimulates p38-dependent apoptosis. Blockade of PI 3-kinase/Akt also led to enhanced VEGF activation of p38 and apoptosis. In this context, the pro-apoptotic effect of VEGF is attenuated by the p38 MAPK inhibitor SB203580. VEGF stimulation of endothelial cells or infection with an adenovirus expressing constitutively active Akt causes MEKK3 phosphorylation, which is associated with decreased MEKK3 kinase activity and down-regulation of MKK3/6 and p38 MAPK activation. Conversely, activation-deficient Akt decreases VEGF-stimulated MEKK3 phosphorylation and increases MKK/p38 activation. Activation of MKK3/6 is not dependent on Rac activation since dominant negative Rac does not decrease p38 activation triggered by inhibition of PI 3-kinase. Thus, cross-talk between the Akt and p38 MAPK pathways may regulate the level of cytoprotection versus apoptosis and is a new mechanism to explain the cytoprotective actions of Akt.  相似文献   

14.
We investigated activation of mitogen-activated protein kinase (MAPK) subtype cascades in human neutrophils stimulated by IL-1beta. IL-1beta induced phosphorylation and activation of p38 MAPK and phosphorylation of MAPK kinase-3/6 (MKK3/6). Maximal activation of p38 MAPK was obtained by stimulation of cells with 300 U/ml IL-1beta for 10 min. Extracellular signal-regulated kinase (ERK) was faintly phosphorylated and c-Jun N-terminal kinase (JNK) was not phosphorylated by IL-1beta. IL-1beta primed neutrophils for enhanced release of superoxide (O(2)(-)) stimulated by FMLP in parallel with increased phosphorylation of p38 MAPK. IL-1beta also induced O(2)(-) release and up-regulation of CD11b and CD15, and both responses were inhibited by SB203580 (p38 MAPK inhibitor), suggesting that p38 MAPK activation mediates IL-1beta-induced O(2)(-) release and up-regulation of CD11b and CD15. Combined stimulation of neutrophils with IL-1beta and G-CSF, a selective activator of the ERK cascade, resulted in the additive effects when the priming effect and phosphorylation of p38 MAPK and ERK were assessed. IL-1beta induced phosphorylation of ERK and JNK as well as p38 MAPK in human endothelial cells. These findings suggest that 1) in human neutrophils the MKK3/6-p38 MAPK cascade is selectively activated by IL-1beta and activation of this cascade mediates IL-1beta-induced O(2)(-) release and up-regulation of CD11b and CD15, and 2) the IL-1R-p38 MAPK pathway and the G-CSF receptor-ERK pathway work independently for activation of neutrophils.  相似文献   

15.
Fas/CD95/Apo-I has been shown to stimulate a variety of molecules including several members of the caspase family and the acidic sphingomyelinase (Martin and Green 1995; Gulbins et al, 1995). Here, we demonstrate that Fas receptor-triggered activation of the acidic sphingomyelinase, consumption of sphingomyelin, release of ceramide, and subsequent activation of JNK and p38-K are regulated by caspases. Inhibition of caspases by Ac-YVAD-chloromethylketone or transient CrmA transfection prevented stimulation of acidic sphingomyelinase, release of ceramide and activation of JNK and p38-K upon Fas-receptor crosslinking. Likewise, Fas triggered apoptosis was almost completely blocked by Ac-YVAD-chloromethylketone or CrmA mediated inhibition of caspases. The results suggest a new signalling cascade from the Fas receptor via caspases to acidic sphingomyelinase, ceramide and JNK/p38-K.  相似文献   

16.
The inhibitory Smad7, a direct target gene for transforming growth factor-beta (TGF-beta), mediates TGF-beta1-induced apoptosis in several cell types. Herein, we report that apoptosis of human prostate cancer PC-3U cells induced by TGF-beta1 or Smad7 overexpression is caused by a specific activation of the p38 mitogen-activated protein kinase pathway in a TGF-beta-activated kinase 1 (TAK1)- and mitogen-activated protein kinase kinase 3 (MKK3)-dependent manner. Expression of dominant negative p38, dominant negative MKK3, or incubation with the p38 selective inhibitor [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole], prevented TGF-beta1-induced apoptosis. The expression of Smad7 was required for TGF-beta-induced activation of MKK3 and p38 kinases, and endogenous Smad7 was found to interact with phosphorylated p38 in a ligand-dependent manner. Ectopic expression of wild-type TAK1 promoted TGF-beta1-induced phosphorylation of p38 and apoptosis, whereas dominant negative TAK1 reduced TGF-beta1-induced phosphorylation of p38 and apoptosis. Endogenous Smad7 was found to interact with TAK1, and TAK1, MKK3, and p38 were coimmunoprecipitated with Smad7 in transiently transfected COS1 cells. Moreover, ectopically expressed Smad7 enhanced the coimmunoprecipitation of HA-MKK3 and Flag-p38, supporting the notion that Smad7 may act as a scaffolding protein and facilitate TAK1- and MKK3-mediated activation of p38.  相似文献   

17.
We have previously shown that lovastatin, an HMG-CoA reductase inhibitor, induces apoptosis in rat brain neuroblasts. c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) are implicated in regulation of neuronal apoptosis. In this work, we investigated the role of JNK and p38 MAPK in neuroblast apoptosis induced by lovastatin. We found that lovastatin induced the activation of JNK, but not p38 MAPK. It also induced c-Jun phosphorylation with a subsequent increase in activator protein-1 (AP-1) binding, AP-1-mediated gene expression and BimEL protein levels. The effects of lovastatin were prevented by mevalonate. Pre-treatment with iJNK-I (a selective JNK inhibitor) prevented the effect of lovastatin on both neuroblast apoptosis and the activation of the JNK cascade. Furthermore, we found that the activation of the JNK signalling pathway triggered by lovastatin is accompanied by caspase-3 activation which is also inhibited by iJNK-I pre-treatment. Finally, a specific inhibitor of p38 MAPK, SB203580, had no effect on lovastatin-induced neuroblast apoptosis. Taken together, our data suggest that the activation of the JNK/c-Jun/BimEL signalling pathway plays a crucial role in lovastatin-induced neuroblast apoptosis. Our findings may also contribute to elucidate the intracellular mechanisms involved in the central nervous system side effects associated with statin therapy.  相似文献   

18.
Complement component C3, the central player in the complement cascade and the pro-inflammatory cytokine IL-1β is expressed by activated glial cells and may contribute to neurodegeneration. This study examines the regulation of the expression of C3 by IL-1β in astroglial cells focusing on the role of the upstream kinase MKK6, p38-α MAPK, and C/EBP-β isoforms (LAP1, LAP2, or LIP) in astroglial cells. Activation of human astroglial cell line, U373 with IL-1β, led to the induction of C3 mRNA and protein expression as determined by real-time RT-PCR and Western blot analysis, respectively. This induction was suppressed by the pharmacological inhibitor of p38 MAPK (i.e., SB202190-HCl), suggesting the involvement of p38 MAPK in C3 gene expression. IL-1β also induced C3 promoter activity in U373 cells in a MAP kinase- and C/EBP-β-dependent manner. Cotransfection of C3 luciferase reporter construct with constitutively active form of the upstream kinase in the MAP kinase cascade, that is, MKK6 (the immediate upstream activator of p38 kinase) resulted in marked stimulation of the promoter activity, whereas overexpression of a dominant negative forms of MKK6 and p38α MAPK inhibited C3 promoter activity. Furthermore, a mutant form of C/EBP-β, LAP(T235A) showed reduction in IL-1β-mediated C3 promoter activation. These results suggest that the p38α, MAPK, and MKK6 play prominent roles in IL-1β and C/EBP-β-mediated C3 gene expression in astrocytes.  相似文献   

19.
13-Deoxytedanolide is a structurally unique macrolide with strong antitumor activity isolated from a marine sponge. Recently, we showed that 13-deoxytedanolide bound to the large subunit of the yeast ribosome and inhibited polypeptide elongation in vitro, but the mechanism by which it exerts antitumor activity is still unknown. Here we show that 13-deoxytedanolide strongly induces plasminogen activator inhibitor 1 (PAI-1) promoter-derived gene expression. 13-Deoxytedanolide, unlike TGF-beta, did not cause apparent nuclear translocation of Smad2/3, but it relocalized the temperature-sensitive mutant of mouse p53 (p53Val153) from the cytoplasm to the nucleus at a nonpermissive temperature, suggesting that 13-deoxytedanolide inhibits protein synthesis. Indeed, the drug inhibited in vivo protein synthesis at low nanomolar concentrations and strongly activated stress-activated protein kinases such as p38 mitogen-activated protein kinase and Jun NH2-terminal protein kinase (JNK). Anisomycin, a well-known inducer of ribotoxic stress that activates both p38 and JNK, also activated PAI-1 gene expression, while other protein synthesis inhibitors that do not activate the kinases failed to do so. PAI-1 gene expression by 13-deoxytedanolide and anisomycin was blocked by SB202190, a specific inhibitor of p38, and SP600125, an inhibitor of both p38 and JNK. 13-Deoxytedanolide and anisomycin caused activation of apoptosis signal-regulating kinase 1, MKK3/MKK6, and SEK1/MKK4, the regulatory kinases upstream of p38 and JNK. These results suggest that 13-deoxytedanolide, like anisomycin, triggers a ribotoxic stress response that activates stress-activated protein kinase cascades, thereby inducing PAI-1 gene expression and apoptosis.  相似文献   

20.
Members of the inhibitor of apoptosis (iap) gene family prevent programmed cell death induced by multiple signals in diverse organisms, suggesting that they act at a conserved step in the apoptotic pathway. To investigate the molecular mechanism of iap function, we expressed epitope-tagged Op-iap, the prototype viral iap from Orgyia pseudotsugata nuclear polyhedrosis virus, by using novel baculovirus recombinants and stably transfected insect cell lines. Epitope-tagged Op-iap blocked both virus- and UV radiation-induced apoptosis. With or without apoptotic stimuli, Op-IAP protein (31 kDa) cofractionated with cellular membranes and the cytosol, suggesting a cytoplasmic site of action. To identify the step(s) at which Op-iap blocks apoptosis, we monitored the effect of Op-iap expression on in vivo activation of the insect CED-3/ICE death proteases (caspases). Op-iap prevented in vivo caspase-mediated cleavage of the baculovirus substrate inhibitor P35 and blocked caspase activity upon viral infection or UV irradiation. However, unlike the stoichiometric inhibitor P35, Op-IAP failed to affect activated caspase as determined by in vitro protease assays. These findings provide the first biochemical evidence that Op-iap blocks activation of the host caspase or inhibits its activity by a mechanism distinct from P35. Moreover, as suggested by the capacity of Op-iap to block apoptosis induced by diverse signals, including virus infection and UV radiation, iap functions at a central point at or upstream from steps involving the death proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号